
PRINCIPLE OF LEAST ACTION AND PERFECT FLUIDS

THEODORE D. DRIVAS

Abstract. In this note, we describe Arnold’s variational formulation of the Euler
equations as geodesic motion on the group of volume preserving diffeomorphisms.

Let M Ă Rd be a bounded simply connected open domain, possibly with boundary
BM having exterior unit normal n̂. The Euler equations governing the velocity upt, xq :
r0, T s ˆM Ñ Rd of a fluid which is perfect and confined to M read

Btu` u ¨∇u “ ´∇p, in M, (0.1)
∇ ¨ u “ 0, in M, (0.2)
u|t“0 “ u0, in M, (0.3)
u ¨ n̂ “ 0, on BM (0.4)

where ppt, xq : r0, T s ˆM Ñ R is the hydrodynamic pressure which enforces incompress-
ibility. We shall sometimes refer to M as the fluid vessel.

The Euler equations have a beautiful geometric interpretation. Let DµpMq denote
the group of smooth volume-preserving diffeomorphisms of M which leave the boundary
invariant. This acts as the configuration space of the fluid, labelling particle positions.
Perfect fluid motion is governed by the ODE for t ÞÑ Φt in the space DµpMq:

:Φtpxq “ ´∇p pt,Φtpxqq pt, xq P r0, T s ˆM ,
Φ0pxq “ x x PM ,
Φtp¨q P DµpMq t P r0, T s,

(0.5)

In these equations, the acceleration (the pressure gradient) acts in keeping with its role
as a constraint to enforce incompressibility. The system (0.5) can be thought of as arising
from d’Alembert’s principle of constrained motion, namely Φt P Dµ, 9Φt P TΦtDµ (the
tangent space to Dµ at Φt consisting of divergence-free vector fields tangent to BM) and
:Φt P pTΦtDµq

K (the orthogonal complement to the tangent space consisting of gradient
vector fields). Said another way, the acceleration (the pressure gradient) is orthogonal
to the constraint (that Φt remain in Dµ). The system (0.5) can be considered as the
definition of perfect fluid motion.

Arnold interpreted the ODE (0.5) for t ÞÑ Φt as a geodesic equation on DµpMq. To
understand this view, fix γ1, γ2 P DµpMq. Then, for any path γ¨ : rt1, t2s ÞÑ DµpMq
satisfying γt1 “ γ1 and γt2 “ γ2, define the action functional

A rγst2t1 :“

ż t2

t1

ż

M

1

2
| 9γtpxq|

2dxdt. (0.6)

We take variations of A in path space as follows. Consider a smooth one-parameter
family of paths γε¨ : rt1, t2s ÞÑ DµpMq for ε P p´1, 1q with fixed endpoints γεt1 “ γ1 and
γεt2 “ γ2 and where γ0 “ γ. Then we define the variation by

δA rγst2t1 :“
d

dε
A rγεst2t1

ˇ

ˇ

ˇ

ε“0
. (0.7)
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In order to compute this object we need the variation of the path, defined by

δγtpxq :“
d

dε
γεt pxq

ˇ

ˇ

ˇ

ε“0
. (0.8)

Fixing x P M , the variation δγ¨pxq : rt1, t2s ÞÑ Tγ¨pxqM defines an element of the
tangent space of the manifold at γ¨pxq (formally δγ¨ : rt1, t2s ÞÑ Tγ¨

DµpMq defines
an element of the tangent space of DµpMq along the path γ). Composing with γ´1,
δγ ˝ γ´1 : rt1, t2s ÞÑ TidDµpMq gives an element of the tangent space to the volume
preserving diffeomorphism group at the identity. Let XµpMq be the space of smooth
divergence-free vector fields over M which are tangent to the boundary. The tangent
space TidDµpMq can be identified with XµpMq. For our discussion, we require only that
for any variation defined by pinned paths as above, it holds

δγtpγ
´1
t pxqq “ vpt, xq, (0.9)

for some v : rt1, t2s ÞÑ XµpMq with vpt1q “ vpt2q “ 0, and vice versa. The proof is
elementary as everything is taken to be smooth:

Lemma 0.1. Fix γ¨ : rt1, t2s ÞÑ DµpMq. The following two statements hold

(1) Fix v : rt1, t2s ÞÑ XµpMq with vpt1q “ vpt2q “ 0. There is a family γε¨ : rt1, t2s ÞÑ
DµpMq for ε P p´1, 1q with γεt1 “ γ1, γεt2 “ γ2 and γ0 “ γ such that (0.9) holds.

(2) Let γε¨ : rt1, t2s ÞÑ DµpMq for ε P p´1, 1q be paths with γεt1 “ γ1, γεt2 “ γ2 and
γ0 “ γ. There exists v : rt1, t2s ÞÑ XµpMq with vpt1q “ vpt2q “ 0 such that (0.9)
holds.

Proof. To establish the first direction, define the family γε¨ : rt1, t2s ÞÑ DµpMq by

d

dε
γεt pxq “ vpt, γεt pxqq, γ0

t pxq “ γtpxq. (0.10)

Since v P XµpMq, by Liouville’s theorem it follows that detp∇γεt pxqq “ 1 and thus
γε P DµpMq for all ε. Note that d

dε
γεt
ˇ

ˇ

t1
“ d

dε
γεt
ˇ

ˇ

t2
“ 0 since v vanishes at those times so

that γεt1 “ γ1, γεt2 “ γ2. According to definition (0.8), it follows (0.9) holds.
In the other direction, define

vεpt, xq :“
`

d
dε
γεt
˘

ppγεt q
´1
pxqq, (0.11)

so that d
dε
γεt pxq “ vεpt, γεt pxqq. Since γεt preserves volume, again by Liouville’s theorem

we have that vε : rt1, t2s ÞÑ XµpMq for all ε P r0, 1q. Moreover vεpt1q “ vεpt2q “ 0 since
d
dε
γεt1 “

d
dε
γεt2 “ 0. With v :“ v0, the claim follows. �

With this in hand, we arrive at the formal variational principle:

Theorem 0.2 (Action principle for perfect fluid motion). Let Φt1 ,Φt2 P

DµpMq be configurations of the fluid at times t1 and t2 with t1 ă t2. A trajectory
Φt : rt1, t2s ÞÑ DµpMq is an perfect fluid flow, i.e. u :“ 9Φt ˝ Φ´1

t satisfies equations
(0.1)–(0.4), if and only if Φ is a critical point of the action A , i.e.

δA rΦst2t1 “ 0, with δΦt1 “ 0, δΦt2 “ 0. (0.12)
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Proof. Compute the first variation

δA rΦst2t1 “

ż t2

t1

ż

M

9Φtpxq ¨ δ 9Φtpxqdxdt

“

ż t2

t1

ż

M

:Φtpxq ¨ δΦtpxqdxdt (using that δΦt1 “ δΦt2 “ 0).

According to Lemma 0.1, δΦtpΦ
´1
t pxqq “ vpx, tq for some divergence-free velocity field v

which satisfies v ¨ n̂|BM “ 0 and vpt1q “ vpt2q “ 0. This in hand, using that Φ´1
t preserves

volume and ΦtpMq “M we write the variation of the action as

δA rΦst2t1 “

ż t2

t1

ż

M

:ΦtpΦ
´1
t pxqq ¨ vpx, tqdxdt. (0.13)

Assume first that δA rΦst2t1 “ 0, namely the action is stationary on Φ under any variation.
By Lemma 0.1(1), the object (0.13) must vanish in particular for vector fields of the
form vpx, tq “ fptqψpxq for f P C80 pt1, t2q and ψ P XµpMq. Thus

0 “

ż t2

t1

fptqgptqdt, gptq :“

ż

M

:ΦtpΦ
´1
t pxqq ¨ ψpxqdx (0.14)

for all ψ P XµpMq, f P C
8
0 pt1, t2q. Since g is continuous in time, we may take f to

approximate g on rt1, t2s to conclude that gptq “ 0 for each t P rt1, t2s (the fundamental
lemma of calculus of variations). We deduce for each t P rt1, t2s that

0 “

ż

M

:ΦtpΦ
´1
t pxqq ¨ ψpxqdxdt, @ψ P XµpMq. (0.15)

The arbitrariness of ψ P XµpMq together with the Hodge decomposition allows us to
conclude the existence of ppt, xq : rt1, t2s ˆM Ñ R such that

:Φtpxq “ ´∇ppt,Φtpxqq, @t P rt1, t2s. (0.16)

Since :Φtpxq “ pBtu`u ¨∇uqpΦtpxq, tq where u “ 9Φt ˝Φ´1
t , we see that (0.16) implies that

u solves Euler. Contrariwise, if u solves the Euler equations then (0.16) holds with p as
the pressure field so that δA rΦst2t1 “ 0 by (0.13) and v P XµpMq. �

Next we show that for short times the Euler flow minimizes the action. This fact
was pointed out by Ebin and Marsden [8, Section 9]. The following version is due to Y.
Brenier in [4, Section 5] or [6, Proposition 3.2].

Theorem 0.3 (Perfect fluid flow minimizes the action for short times).
Let u P C1pr0, T s ˆMq, p P Cpr0, T s;C2

xpMqq. Suppose that T ą 0 is such that

T 2
ď π2

{K (0.17)
with K :“ suptPr0,T s supxPM sup|y|“1 y ¨∇2ppx, tq ¨y. If pu, pq is a solution of the Euler
(0.1)–(0.4) and 9Φt “ upΦt, tq with Φ0 “ id, then

A rΦsT0 ď A rγsT0 (0.18)
among all γ¨ : r0, T s ÞÑ DµpMq with γ0 “ id and γT “ ΦT . If T 2 ă π2{K, equality
holds if and only if γ “ Φ.
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From a geometric standpoint, the pressure gradient is the second fundamental form –
encoding how the submanifold of volume preserving diffeomorphisms DµpMq sits inside
the ambient group of all diffeomorphisms DpMq [13].

Proof. Since pu, pq is an Euler solution, we have :Φtpxq “ ´∇ppΦtpxqq. Note first

A rΦsT0 “ A rγsT0 `

ż T

0

ż

M

9Φtpxq ¨ p 9Φtpxq ´ 9γtpxqqdxdt´A rΦ´ γsT0 . (0.19)

The last two terms are negative for short time. Indeed, by Poincaré’s inequality,†

A rΦ´ γsT0 “
1

2

ż T

0

ż

M

| 9Φtpxq ´ 9γtpxq|
2dxdt ě

π2

2T 2

ż T

0

ż

M

|Φtpxq ´ γtpxq|
2dxdt.

On the other hand, since Φ0pxq “ γ0pxq and ΦT pxq “ γT pxq, we have
ż T

0

ż

M

9Φtpxq ¨ p 9Φtpxq ´ 9γtpxqqdxdt “

ż T

0

ż

M

:Φtpxq ¨ pΦtpxq ´ γtpxqqdxdt

“ ´

ż T

0

ż

M

∇ppΦtpxqq ¨ pΦtpxq ´ γtpxqqdxdt.

Since the pressure is twice differentiable, by Taylor’s theorem we have

ppγtpxqq “ ppΦtpxqq `∇ppΦtpxqq ¨ pΦtpxq ´ γtpxqq

`
1

2
pΦtpxq ´ γtpxqq ¨∇2ppYtpxqq ¨ pΦtpxq ´ γtpxqq,

where Ytpxq is on the chord connecting γtpxq to Φtpxq. Upon integrating, using the fact
that γt and Φt preserve volume, we obtain

´

ż T

0

ż

M

∇ppΦtpxqq ¨ pΦtpxq ´ γtpxqqdxdt

“
1

2

ż T

0

ż

M

pΦtpxq ´ γtpxqq ¨∇2ppYtpxqq ¨ pΦtpxq ´ γtpxqqdxdt.

It follows that
ˇ

ˇ

ˇ

ˇ

ż T

0

ż

M

9Φtpxq ¨ p 9Φtpxq ´ 9γtpxqqdxdt

ˇ

ˇ

ˇ

ˇ

ď
K

2

ż T

0

ż

M

|Φtpxq ´ γtpxq|
2dxdt. (0.20)

Thus we obtain the upper bound

A rΦsT0 ď A rγsT0 `
1

2

ˆ

K ´
π2

T 2

˙
ż T

0

ż

M

|Φtpxq ´ γtpxq|
2dxdt, (0.21)

whence for T ď π2{K we have A rΦsT0 ď A rγsT0 as claimed. If equality holds, then from
(0.21) we deduce

şT

0

ş

M
|Φtpxq ´ γtpxq|

2dxdt “ 0 so that γ “ Φ as claimed. �

Remark 0.4 (Failure to be a minimizer). The condition (0.17) on the time is sharp
in the following senses. Consider the two-dimensional example of solid body rotation, i.e.
upxq “ xK. This is an exact stationary solution of the Euler equations having pressure
ppxq “ 1

2
|x|2 on a disc domain. The corresponding flowmap is Φtpxq “ Rt mod 2πx where

Rθ denotes the (counterclockwise) rotation matrix by angle θ P r0, 2πq about 0. Brenier

†Indeed, consider any absolutely continuous curve f : r0, T s ÞÑ Rd with fp0q “ fpT q “ 0 and with
dfptq{dt P L2pr0, T sq. Using the Fourier series representation of f together with Plancherel’s theorem
we find immediately that }fp¨q}2L2pr0,T sq

ď T 2

π2 }
d
dtfp¨q}

2
L2pr0,T sq

.
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[4] points out that at time T “ π (a half rotation of the disk), there fails to be a unique
minimizer of the action. Indeed, the action does not depend on whether the rotation is
clockwise or counter clockwise, both of which are geodesics connecting these two states.
Note that since ∇2p “ I we have K “ 1. Thus, at exactly this moment, T “ π, the
condition (0.17) is violated illustrating its sharpness. For T ą π, there exists a shorter
path (just rotate clockwise) and thus after this moment, the original fluid flow is not the
minimum of the action any longer. We remark that solid body rotation has a cut point
at T “ π – see [7] for further discussion of this geometric notion. It is also an example of
isochronal flow: one for which the Lagrangian flowmap is time periodic. Geometrically,
this corresponds to Φ being a closed geodesic in DµpMq [16].

Remark 0.5 (Euler as geodesic motion on DµpMq). We now describe V.I. Arnold’s
geometric picture in greater detail. Formally, one can view the space DµpMq as an infinite-
dimensional manifold with the metric inherited from the embedding in L2pM ;Rdq, and
with tangent space made by the divergence-free vector fields tangent to the boundary of
M . We can define the length of a path γ¨ : rt1, t2s ÞÑ DµpMq by the expression

L rγst2t1 :“

ż t2

t1

} 9γtp¨q}L2pMqdt. (0.22)

We formally define the geodesic distance connecting two states γ1, γ2 P DµpMq by

distDµpMqpγ0, γ1q “ inf
γ¨:r0,1sÞÑDµpMq
γp0q“γ0, γp1q“γ1

L rγs10. (0.23)

A geodesic curve Φ¨ : rt1, t2s ÞÑ DµpMq is defined to be one so that for all t1 P R there
exists a τ ą 0 such that if t1 ă t2 ă t1 ` τ then

distDµpMqpΦpt1q,Φpt2qq “ L rΦst2t1 . (0.24)

If additionally the parametrization by t is chosen so that } 9Φtp¨q}L2pMq “ pconst.q, then Φ
minimizes the action (0.6) among all smooth paths connecting Φpt1q and Φpt2q. Indeed
by Schwarz’s inequality, we have A rγst2t1 ě pL rγst2t1q

2{2pt2 ´ t2q with equality if and only
if } 9γtp¨q}L2pMq “ pconst.q. In general, according to Theorem 0.2 perfect fluid motion is a
critical point of both functionals A rγst2t1 and L rγst2t1 . It is, in fact, a geodesic according
to Theorem 0.3, although as we say in Remark 0.4 it need not be the curve of minimal
length for long times.

Figure 1. Depiction of the geometry of fluid motion.
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The above discussion is somewhat formal in that it ignores issues of regularity required
for precise definitions of the variations. To make things more precise, one may consider
the group Ds

µpMq for s ą d{2`1, which is a submanifold of all Hs diffeomorphisms of M ,
see [8]. The L2 exponential map is defined as the solution map of the geodesic equations:
it maps lines through the origin in the tangent space at a given diffeomorphism onto
geodesics in the diffeomorphism group. More precisely, at the identity we set

expid : TidD
s
µ Ñ Ds

µ, expidtu0 “ Φt, t P R (0.25)

where Φt is the unique L2 geodesic (at least for short times) starting from id with velocity
u0. We note that in any spatial dimension, expid is a local diffeomorphism near id and
in two dimensions, it is defined on the whole tangent space. The study of analytical
properties of this map is the subject of the classical work of Ebin and Marsden [8]. This
framework opened up the possibility to ask purely geometric questions about fluid motion,
such as those concerning the existence of conjugate and cut points. See [14, 19, 7]. We
remark also that Arnold’s geometric viewpoint has since been generalized to accommodate
systems such as compressible and quantum fluids, by the inclusion of an appropriate
potential related to material properties of the system. See the recent survey [11].

Remark 0.6 (Two-point fluid problem). The principle of least action suggests the
following ‘infinite dimensional Dirichlet principle’: given two isotopic configurations γ1

and γ2 P Dµ, construct a perfect fluid flow connecting them by identifying the shortest
path between them in the diffeomorphism group (in the L2 metric). From the above
discussion, if such a path exists it is automatically a perfect fluid flow. This problem
was first investigated by Shnirelman [18], where he proved that if d ě 3, this variational
problem does not have minimizers for all pairs of configurations γ1 and γ2. In d “ 2, this
is open even in the following relaxed form:

Open Problem 0.7. Let M Ă R2 be a domain with smooth boundary. Does there
exist perfect fluid flow connecting any two isotopic states γ1, γ2 P DµpMq?

See also [10, Section 4.B]. In particular, it is not known whether the image of the space
of incompressible vector fields in Dµ defined by the L2 exponential map is the whole
group Dµ, i.e. that any such diffeomorphism could be realized as a time-1 value of some
solution of the Euler-Lagrange equation. It is a question of accessibility of the entire
configuration space by perfect fluid flows. If Question 0.7 is answered in the affirmative,
it would represent a hydrodynamical analogue of the Hopf-Rinow theorem for the group
of diffeomorphisms. The difficulty is that this group is not locally compact. However,
Misiolek, and Preston proved that the L2 exponential map is a covering space map on an
open connected component U Ă Ds

µ of the identity whose L2 diameter is infinite, cf. [15].
This is a consequence of the fact that expid is a nonlinear Fredholm map of index zero,
see [9, 20]. An affirmative resolution of Open Question 0.7 (conjectured by Shnirelman
in [18]) would result from showing this connected component is the whole group. We
remark finally that a different but related question is that of finding minimizers (shortest
paths) connecting the states γ1 and γ2. The existence of conjugate and cut points
along geodesics generated by simple steady solutions on M “ T2 having streamfunction
ψpx1, x2q “ sinpnx1q sinpmx2q (Kolmogorov flows) [14, 7] indicate that the minimum may
fail to be achieved at late times (see the numerical study [12]), as was conjectured in [17].
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In view of the fact that classical minimizers of the two-point problem need not always
exist [18], Brenier introduced generalized flows, which are a wider class of (stochastic)
objects over which the variation problem is always solvable [4]. Shnirelman used this
idea to show that any sufficiently long geodesic in Ds

µpMq will contain a local cut point if
dimM “ 3 (a point such that shorter paths can be chosen arbitrarily close to the given
geodesic in the manifold topology).

Acknowledgments. I am grateful to G.Misiołek and A.Shnirelman for insightful
remarks.
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