Mathematical Aspects of Turbulence

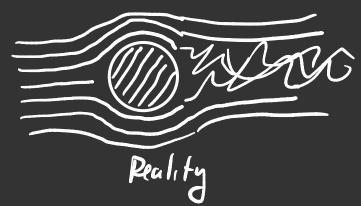
Outline: Lecture 3: Phenomenology and
Muthematics of Pully developed
turbulence

Theodore D. Drivas

Stony Brook University

D'Alembert's Pavadox: in an irretational Euler Flow,
the dray force on a body moving with constant
velocity relative to the fluid is zero!

" planes connet fly in an worthhonel Euler flow"



Solution: One must take into account friction forces between adjacent molecules, i.e. Viscosity

C.L. Navier (1822) and G. Stokes (1845) derived a model for this under the assumption that the Shear stress is proportional to the symmetric part of the gradients

$$J_{t}u + u \cdot \nabla u = -\nabla p + v \Delta u + f$$

$$\nabla \cdot u = 0$$

- · the parameter voo is the kinematic viscosity of the fluid
- the function f(x+) is an external body force.
 - widely accepted model of Newtonian fluid flow avising in the joint limit of small Knadsen number and Mach number

Kinetic energy:
$$\frac{1}{2} |u'(t)|_{2}^{2} = -\sqrt{|u(u)|_{2}^{2}} = -\sqrt{|u(u)|_{2}^{2}} = -\sqrt{|u(u)|_{2}^{2}}$$
ir dissipated

Non-dimensionalization (physical laws hold independent of units)

· U: characteristic velocity of the flow, e.g. rms (\$1412)\frac{1}{2}.

· L: characteristic length in the flow, e.g. domain size or period 2

Note, all the terms in NS have units at acceleration 13. Non-dimentionalizing ups u/v, x > x/l, + > t/L/v

$$\eta_{t}u + u \cdot \nabla u = -\nabla p + \frac{1}{22} \Delta u$$

 $\nabla \cdot u = 0$

The non-dimentional number

$$Re = \frac{UL}{v} \sim \frac{u \cdot \nabla u}{v \Delta u}$$

is the Reynolds number. It measures relative strength of merhal forces (nonlinearity) and viscous forces:

• buetrna Re≈ 10⁻³

• blood flow Re ≈ 10²

. MLB pitch Re ≈ 105

Re = 103 o wake of blue whale

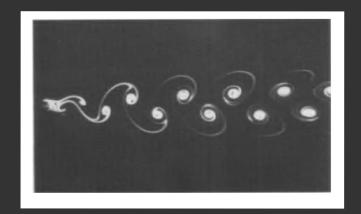
Re = 1012 a woke at Boeing 747

Note: in experiments, one other uses the Taylor-scale Re $R_{e_{\lambda}} = \frac{U\lambda}{v} , \quad \lambda^{2} = \frac{f_{141}^{2}}{f_{141}^{2}}$ $R_{e_{\lambda}} = \frac{U\lambda}{v} , \quad \lambda^{2} = \frac{f_{141}^{2}}{f_{141}^{2}}$

Typically Rex >> Pe.

Van Karman vortex street behind cylinder.

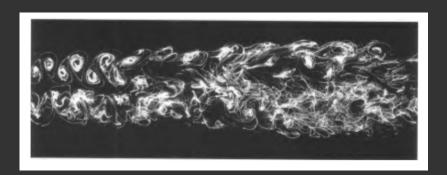
Van Dyke (1932) Frisch (1995)



Re = 105

Wate behind two eyinders

Frisch (19957



Re = 240

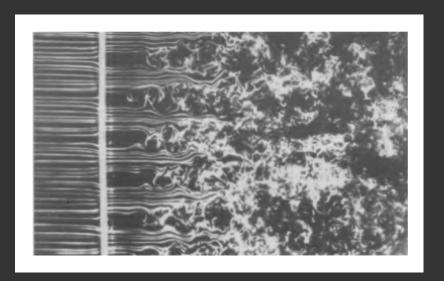
Wate behind two cylinders

Frisch (19957

Re = 1800

Honogeneon)
turbulence
behind grid.

Frisch (19957



Re = 2300

What happens as Re -> 00? (without boundary)

If a classical solution of Euler exists, U_{7} , then $u^{\vee} \rightarrow u_{3}$ strongly. Moreover $\mathcal{E}' = \mathcal{O}(v)$.

• If classical solution does not exist because either - finite time singularity

- 25 - Vo = rough data

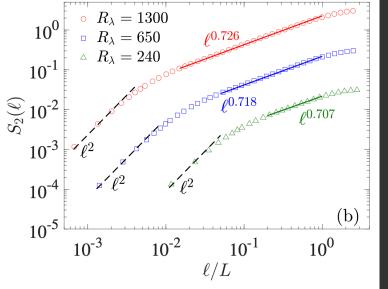
1' -> f = rough forcing

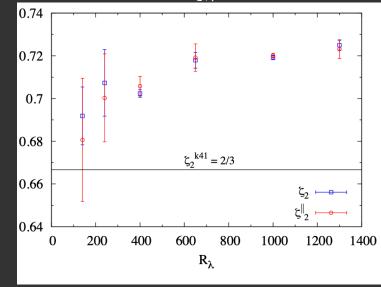
Then assuming zu 3 cmp in L2 then u = u
a weak solution of Euler

(4, 2, 9) + (400) PA) = 0 Y 4 = 0

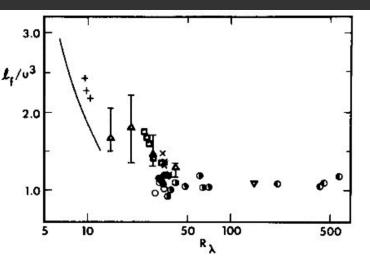
(u; 24) = 0

Evidence: $S(l) = \sup_{|v| \le l} |u(\cdot + l) - u(\cdot)|_{L_{t,r}}^{2} \le l^{3}$

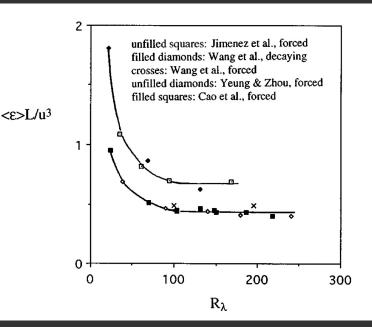




Being a weak solution, momentum is conserved (take \$1-31 on the dumais). But energy need not In fact, assuming Euß comp in 13, from $\partial_{z}\left(\frac{1}{2}|u'|^{2}\right) + di - \left(\left(\frac{|u|}{2} + p'\right)u - v \frac{2u'}{2}\right) = -v \left(\frac{2u'}{2}\right)^{2} = -\varepsilon$ we deduce LHS $\stackrel{\sim}{\rightarrow}$ to (aldron-Zygmand) $\partial_{\xi}\left(\frac{1}{2}|u|^{2}\right) + div\left(\frac{|u|^{2}}{2} + P\right)u$ Thuy, in the sense of distributions, we have $\mathcal{E} \rightarrow \mathcal{E}[u] := \partial_{\xi}(\frac{1}{2}|u|^2) + \operatorname{div}((\frac{|u|^2}{2} + P)u)$ (2, d) 70, we say anomalous dissipation Thus, with could be d dissipative Enter solution $\frac{1}{2} \left| h(t) \right|^2 - \frac{1}{2} \left| h(\omega) \right|^2 = - \left| \int \mathcal{L}[u] < 0 \right|$ any to compute energy bulance But there is another the mak solution.



IG. 1. The quantity eL_f/u^3 for biplane square-mesh grids. All data except are for the initial period of delay, and are explained in Table I. + indite typical data ¹³ in the final period of decay. — corresponds to Eq. (1).



Pearson, Krogstad, de Water, (2001)

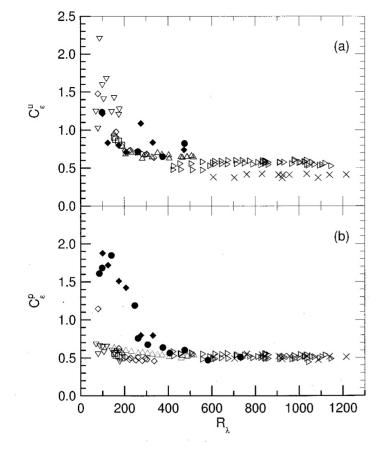
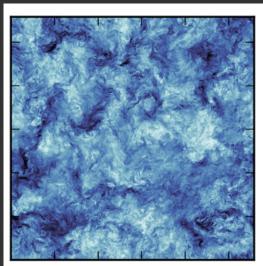
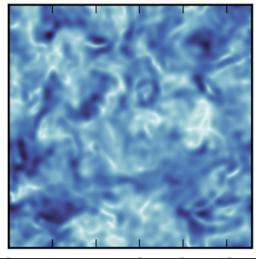


FIG. 1. Normalized dissipation rate for a number of shear flows. Details as found in this work and Refs. 14–16. (a) C^u_{ϵ} [Eq. (3)]; (b) C^p_{ϵ} [Eq. (4)]. \square , circular disk, $154 {\lesssim} R_{\lambda} {\lesssim} 188$; ∇ , pipe, $70 {\lesssim} R_{\lambda} {\lesssim} 178$; \diamondsuit , normal plate, $79 {\lesssim} R_{\lambda} {\lesssim} 335$; \triangle , NORMAN grid, $174 {\lesssim} R_{\lambda} {\lesssim} 516$; \times NORMAN grid (slight mean shear, $dU/dy {\approx} dU/dy|_{\max}/2$), $607 {\lesssim} R_{\lambda} {\lesssim} 1217$; \triangleright , NORMAN grid (zero mean shear), $425 {\lesssim} R_{\lambda} {\lesssim} 1120$; \spadesuit , "active" grid Refs. 14, 15, $100 {\lesssim} R_{\lambda} {\lesssim} 731$; \spadesuit , "active" grid, with L_u estimated by Ref. 16. For Ref. 14 data, we estimate $L_p {\approx} 0.1$ m and for Ref. 15 data we estimate $L_p {\approx} 0.225$ m.

Energy transfer through scale

coarse-graining
$$u_{\ell}(x) = \int G_{\ell}(r) u(x+r) dr$$
,





Energy Balance in scales 7,9:

energy flux Tetus

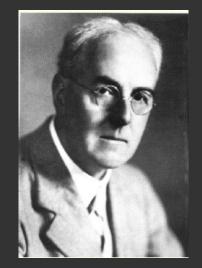
hus contributions primarily from a band of

Scales [R-8, R+A] using little awad - Paley

Egrak, 2005

Constantin - Chestidar - Friedlander - Shud key, 2008

	Injection of energy ε
βI_0 $\beta^2 I_0$ $\beta^2 I_0$	Flux of energy ε
$\beta^3 I_0$ $00000000000000000000000000000000000$	
η	Dissipation of energy ε



Big whirls have little whirls, That feed on their velocity; And little whirls have lesser whirls, And so on to viscosity

We wish to study the limit 170.

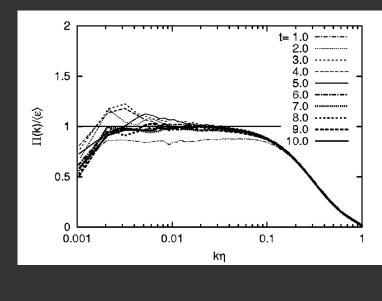
Note that, since we 1 The limit 170.

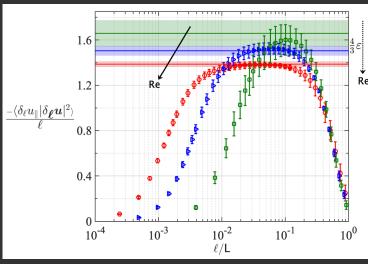
Note that, since we 1 The limit 170.

Note that, since we 1 The limit 170. Since $\overline{u}(x) - u(x) = \int G_{\rho}(x) \left(u(x+r) - u(x)\right) dr$ Movemer | | 1 1 2 5 5 1 1 5 4 1 3 7 0. Tenn = (non) - he one $= \langle (u - u_{i}(x)) \otimes (u - u_{i}(x)) \rangle$ where $\langle f \rangle_{G} = \int_{G} f(x) G(x) dx$. Thus || u, Te(n,u)||, = || ue|| 3 || Te|| 32 | |u| 3 sip (15 4)| 3 70 $\partial_{\ell}\left(\frac{1}{2}|\bar{u}_{\ell}|^{2}\right)+div\left(\left(\frac{1}{2}|\bar{u}_{\ell}|^{2}+\bar{P}_{\ell}\right)\bar{u}_{\ell}+u_{\ell}T_{\ell}\right)$ lim IIII = DIN] & mer tral dissipation
1-30 Puchon-Robert '00 50 Thus we obtain an invisced formula Evidence of balance

Letting $\varphi = \overline{u}_{\ell}$ be the test Function, we obtain

Kolmogoron - 4 Jaw: (Seu-e 15, 112) ~- 4 2





Further manipulation shows (Eyink, Novack)

$$D[r] = -\lim_{l \to 0} \frac{d(d+2)}{l2} \int \frac{\left(\delta_{12} u(r) \cdot 2\right)^{3}}{l} d\sigma(z)$$

 $-S_{3,\parallel}(\ell)$ ℓ 0.75 Re 0.5 0.25 0.00



Lars Onsager (1903-1976)

"It is of some interest to note that in principle, turbulent dissipation as described could take place just as readily without the final assistance by viscosity. In the absence of viscosity, the standard proof of the conservation of energy does not apply, because the velocity field does not remain differentiable! In fact it is possible to show that the velocity field in such "ideal" turbulence cannot obey any LIPSCHITZ condition of the form

(26)
$$|\mathbf{v}(\mathbf{r}'+\mathbf{r})-\mathbf{v}(\mathbf{r}')| < (\text{const.})r^n$$

for any order n greater than 1/3; otherwise the energy is conserved. Of course, under the circumstances, the ordinary formulation of the laws of motion in terms of differential equations becomes inadequate and must be replaced by a more general description...

"Statistical Hydrodynamics" (1949)

$$\sum \left[u \right] = -\lim_{l \to 0} \frac{d(d+2)}{12} \left(\frac{\left(\delta_{l} u(r) \cdot 2 \right)}{l} do(z) \right)$$



THEODEM: (Egink 1992, Constantin-E-Titi 1994)

Let
$$u \in L^3(0,T; B_5^{\sigma,\infty}(\mathbb{T}^a)) \cap C(0,T; L^2(\mathbb{T}^d))$$

with $\sigma 7 / 3$, then

$$\frac{1}{2} \int |u(x,t)|^2 dx = \frac{1}{2} \int |u_0(x)|^2 dx \quad \forall \quad t \in C_1, T$$

$$\mathbb{T}^d$$

Flexible Side of Onsager's Conjectue THEOREM (Iset, 2018, Buckmaster - De Lellis - Szekelyhidi-Vice/ 19) Let e: [0,7] -> IR be a strictly positue smooth function.
For any de(0,1/3), There exists a weak solution HE CX ([0,T] x TT3) of the Euler equations with $\left(\frac{1}{2}|u(r_{i}\epsilon)|^{2}dx = e(t) \quad \forall \quad t \in [0,T]$ Scheffer 1993, Shuirelman 1997, 2000, long history: De Lellis - Szekelyhidi 2009-2011, 2012, Brokmuster- DeLellis-Szekelybridi 2013, 2014 Built off ideas of Nash-Kniper Theorem and Gromov's h-principle. (Buckmaster-Vicel 2020, great)
De Lellis - Szekelyhidi, 2011 reviews!) Ideas: Inverse Renormalization group (Frisch) ever smaller metions (217 -> 21/2 -> ...)

deas: Inverse Renormalization group (Frisch)

o Stages So, S, ..., Se, ... adding ever smaller metions ($2\pi \rightarrow 2\pi \rightarrow ... \rightarrow$

Because the equation der subsolutions is highly underconstrained, it is Remarks: subsolutor easy to construct them. . An iteration process reintroduces high-wavenumber oscillations, perturbations werk column of old stress.

(B.M.N.V 21') high they obullations cutualisted. Petrocalty lies in controlling error structures to terms. Accomplished by judicious in passing to choice of building blocks. in passing to oscillations introduced in highly hon-unique way => infinitely many solutions.

· Solutions are "monotractal" in that the relocity
has just one exponent h, which can be 1/3-.
They have "Kolmoyerov-like spectral (not quite).

- Notable recent exception: Buckmaster-Magnoudi-Novak-Vicol, 21

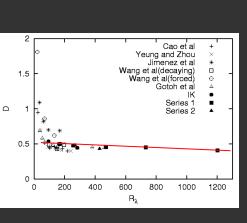
 Solutions with 71/3 derivative in L2 but <1/3

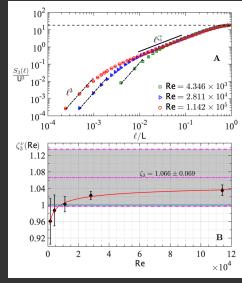
 derivative in L3 constacted. Towards more terlistic flag)
- High degree of non-uniqueness! Dissipative Euler solutory do not provide a predictive theory dione. Must consider viscosity!

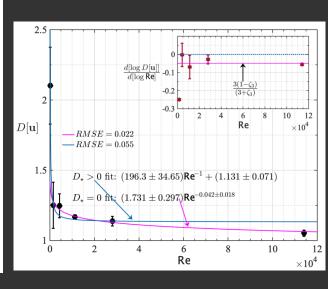
Wrinkle: no anomaly without boundary in stendy state?

THEOREM: (Drivas - Eymk 2018) if
$$\{u^3\}_{70}$$
 and $\sigma \in (0,1]$,

 $\{u^0\}_{70} \parallel u^0\|_{L^2_{\xi} B_3^{7/20}} < \infty \implies \int_{0,1}^{T} |\nabla u^0|^2 dxdf \lesssim V^{\frac{3\sigma-1}{\sigma+1}}$.







MATHEMATICAL GOAL

dissipative (1) There is data usel, Too and 270 s.s.

So | Puil dxdt 7 &

along subsequences converge to weak Euler

man flux (Tia)) = & and live in 13 B3

Moreover, this behavior should be generic (shisheally statement)

Note that the assumption ue B3, x is over till, as only a piece of the increment appears, and the flux is not cresine

$$\sum_{l \to 0} \frac{1}{l^{2}} = -\lim_{l \to 0} \frac{1}{l^{2}} \int_{l}^{\infty} \frac{\left(\delta_{12} u(r) \cdot 2\right)^{3}}{l^{2}} d\sigma(z)$$

Thus, if the singularity set of a weak solution up to B'13t is structured, dissipation may be impossible.

Example: Regular Vortex sheets

Consider v.f. V: R->12 which is smooth away from a

codimension - 1 surface S. Let
$$\overline{Z}$$
 be an arbitrary surface S . Let \overline{Z} be arbitrary surface S . Let \overline{Z} be an arbitrary surface S . Let \overline{Z} be arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrary surface S . Let \overline{Z} be a con arbitrar

Proof: $\int ddy = \int ddv = -\int v \cdot \nabla d = -\int v \cdot \nabla d - \int v \cdot \nabla d$ = Svin9dHd-SvinpdH-+ SQdp.

Z
Z
BUB
B

This result is due to Shuydkoy, and crucially uses incompressibility. Note that such a Vortex sheet lims in $B_{3,\infty}^{1/3}$ exactly! Indeed, BVAL Co Bpp sharply since $\|u(\cdot+\ell)-u(\cdot)\|_{\infty} \leq \|\ell\|_{\infty} \leq C$ then by interpolation, || u(·+e)-u(·)|| p = |e| |P | for all p7/1. De Posa & Inversi made a beautiful observation:

Theorem: It ut BV12 is a weak solution the

To do so they exploited freedom in G, and Alberti's Lemma.

$$-\frac{4}{5} \operatorname{E[u]} \approx \int_{0}^{\infty} \frac{\left(\delta_{12} u(r) \cdot 2\right)^{3}}{\ell} d\sigma(z)$$

$$C_{p} \in [u]^{p/3} \approx \int_{S^{d-1}} \left(\frac{S_{12}u(r)\cdot 2}{\ell^{\gamma_{3}}}\right)^{p} d\sigma(z)$$

humogeneity isatupy

Integrating in space-time

"ho intervibling $\approx C_{p} \left(\int \int \frac{E[u] dxdt}{v} \right)^{\frac{2}{3}}$

$$S(l) = \left\langle \left(\xi_{lz} u(x_l t) \cdot z \right)^p \right\rangle_{x_l \text{ ang}} = C_p \left(\frac{1}{2} \left\langle \xi \right\rangle \right)^3$$

$$= C_p \left(\frac{3}{2} \left\langle \xi \right\rangle \right)^3 = \frac{p}{3}.$$

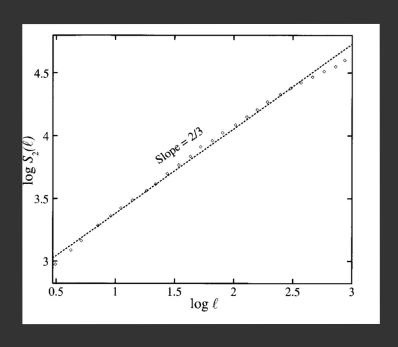
$$S_{2}^{(1)} = \left\langle \left(\xi_{12} u(x_{1} \xi) \cdot \xi \right) \right\rangle_{x_{1}}^{2} = C_{p} \left(1 \langle \xi \rangle \right)^{2/3}$$

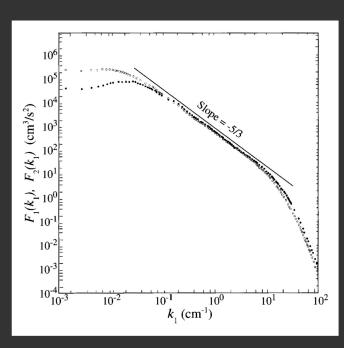
$$Connection with kolonogorov Spectra$$

$$S_{1}^{(2)} = \left\langle \left(\xi_{12} u(x_{1} \xi) \cdot \xi \right) \right\rangle_{x_{1}}^{2/3} = C_{p} \left(1 \langle \xi \rangle \right)^{2/3}$$

$$Connection with kolonogorov Spectra$$

$$S_{1}^{(2)} = \left\langle \left(\xi_{12} u(x_{1} \xi) \cdot \xi \right) \right\rangle_{x_{1}}^{2/3} = C_{p} \left(1 \langle \xi \rangle \right)^{2/3}$$





 $E(k) = \sum_{p \in \mathbb{Z}^d} \delta(k-1p)) |G(k)|^2$

By Wiener-khinchin theorem $5_{2}(e) \sim l^{25} \iff E(k) \sim k^{(25+1)}$

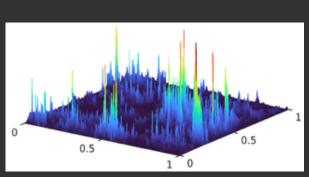
Landau's Remark and Intermittency

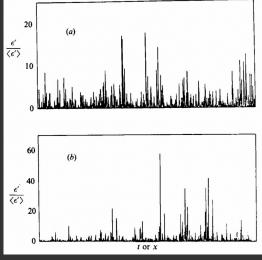
Landan:

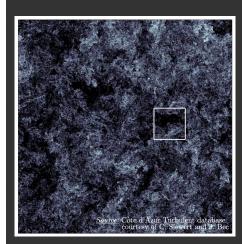
The rate of energy dissipation is intermittent.

1.e., it is spottally / temporally intronogeneous.

Heneveau k 1991 Srecitivusuu







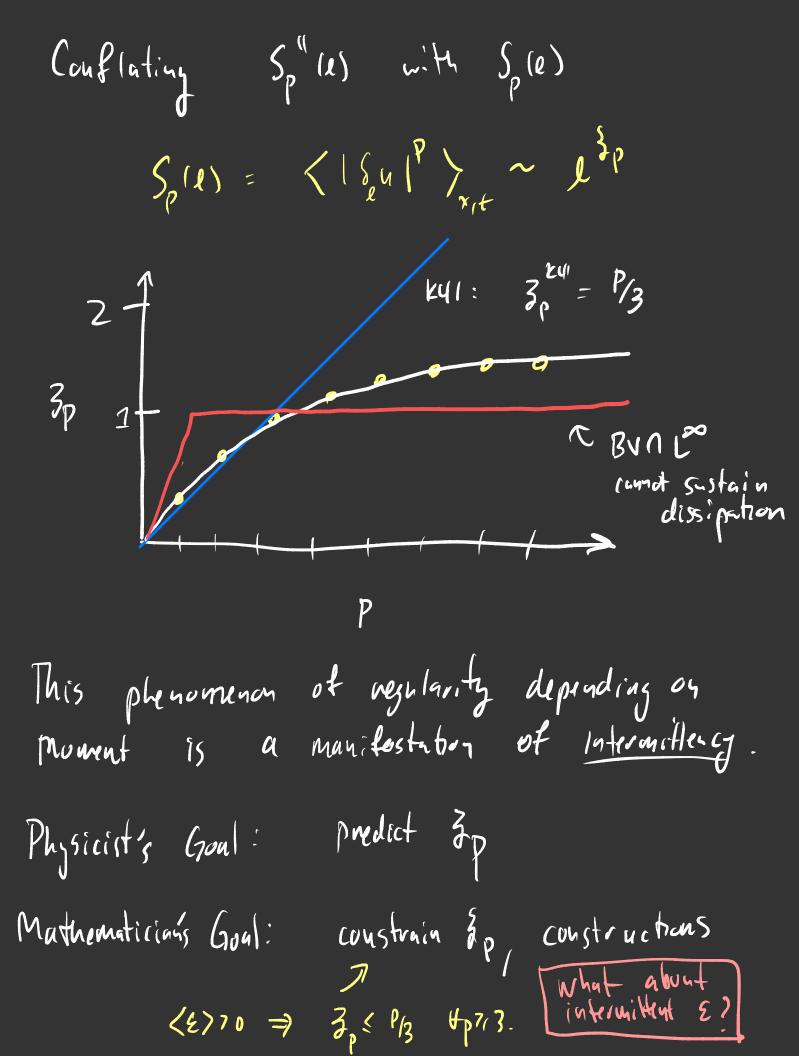
Unnely, Etal can be a wild measure, giving supported on lower dimensional sets... We should expect

$$\iint_{0} \frac{\mathcal{E}[u]^{P} dxdt}{\sqrt{1-\alpha_{P}}} dxdt \sim \frac{\langle \mathcal{E} \rangle^{P}}{\sqrt{1-\alpha_{P}}} \left(\frac{\ell}{1-\alpha_{P}}\right)^{-\alpha_{P}} dxdt$$

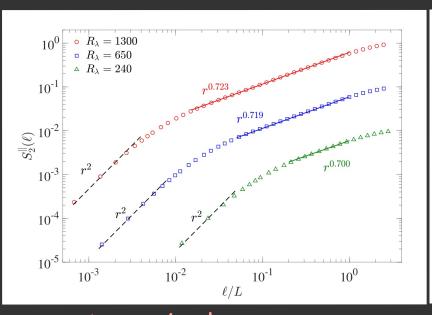
Thus 3p should not be a constant multiple of p.

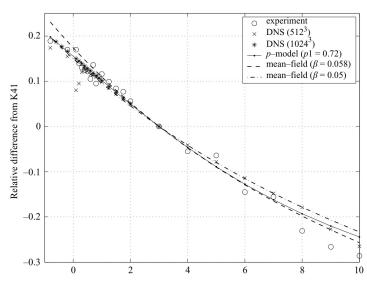
$$S_{p}^{(l)} = \left\langle \left(\delta_{lz} u(x_{l}t) \cdot z \right)^{p} \right\rangle_{x_{l}, ang} \approx C_{p} \left(1 \langle z \rangle \right)^{p/3} \left(\frac{l}{L} \right)^{d}$$

So that $S_p(l) \sim l^3p$ where $3p = \frac{1}{3} - 53p$. I analysis K41: unique sculing so $S_p(l)$ indipendent of largestale L.



Numerical & Experimental Evidence

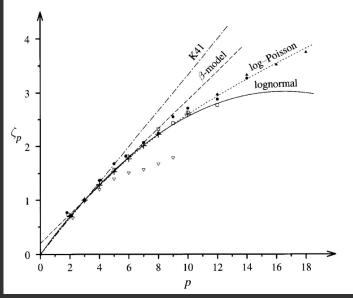




Iger et al.

2020

Frisch 1995



(3,p- 1/3) 2 v.s. p

Mudels:

•
$$\log - \text{hormal}$$
: $3p = \frac{p}{3} - \frac{r}{18}p(p-3)$, $r = 0.25$ Kelneyand

• 8 - model :
$$3p = \frac{p}{3} + (3-D)(1-\frac{p}{3})$$

•
$$\log - \log = 3 = \frac{p}{q} + 2(1-(\frac{2}{3})\frac{p}{3})$$

• mean-field:
$$3p = ap$$
 $a = 0.185$
 $b - cp = 0.475$
 $c = 0.027$

D= 2.8 Frisch et al

She-Leveque 1994

Yakhot 2001

NEED: nathematical transmork to impose constraints.

AIM: Provide lower bounds on the dimension of the support set for anomalous dissipation

All take the form
$$\nabla \cdot \nabla = -D$$
 positive mevime

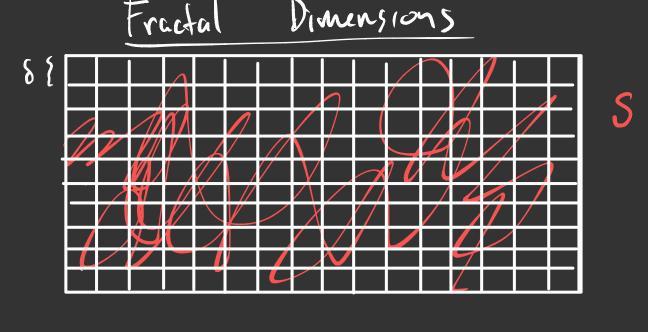
$$\nabla = \left(\frac{1}{2}|u|^2, \left(\frac{|u|^2}{2} + p\right)u\right), \quad \mathcal{D} = \frac{1}{2}|u|^2$$

$$\sqrt{ } = \left(\frac{\theta^2}{2}, u \frac{\theta^2}{2} \right)$$

. Compressible Euler

$$\frac{\partial}{\partial t} \ell + \nabla \cdot (\ell u) = 0$$
 $\frac{\partial}{\partial t} \ell + \nabla \cdot (\ell u) = 0$
 $\frac{\partial}{\partial t} \ell + \nabla \cdot (\ell u) = 0$
 $\frac{\partial}{\partial t} \ell + \nabla \cdot (\ell u) = 0$

$$\sqrt{1} = (5, us)$$
 $D = luy Dissipation$



$$N_s(5) = \# \text{ of cubes of size } \delta \text{ which cover } S$$
 $\lim_{B} (5) = \lim_{\delta \neq 0} \frac{\log N_s(5)}{\log (116)} \quad \text{eig } N_s(5) = d$

(upper and lower with limsup, (in int). Equiv.

 $\mathcal{H}^d(S_\delta) \lesssim \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d^{-1} d^$

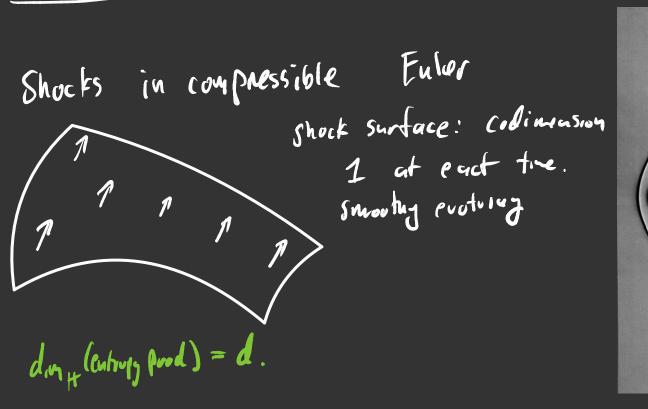
Hausdorff dimension $d_{t}(s)$ is a name measure theoretic notion. Basic difference is one con cover with bulls of radius $\leq s$, not just = s. Thus

dim (5) 5 day (5) 5 dim (5)

(valual the have dim =0, dim =1)

In following statements, you can just think Bx contag.

Examples Burgers equation: u: Tx12 -> R $\partial_x u + u \partial_x u = v \partial_x^2 u$ o for 170, model is globally mellposed Remarks: · for v=0, model shocks in finite time. $\mathcal{E}(x_{r4}) = v 1 \partial_{x} u^{2} v^{-30} \left(\Delta u \right)^{3} \delta(x)$ happening at points moving thain true, Dissipation dim u(dig) = 1. (codimension 1)



Example:

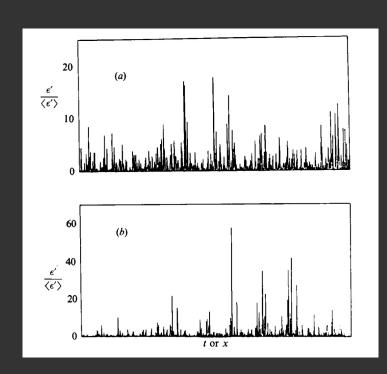
Constructions: (D. Elgindi-Iger-Tears)

Recent construction of (diss) = d

dim (diss) = d

dim (diss) = d +1

Incompressible Turbulence: Meneveau k 1991 Scenivusus (Experiments)





They estimate that

ding (dissipation) ~ 3.87

Occurring on a fractal set!

Any restrictions?

Theorem: Bounded weak solutions of any of those equations, on domains SZERA which produce entropy anomalously, have dim (Spt P) 7 d.

Remark: Various previous examples show this
theorem is sharp.

6 Bayers, Sealor constructions, comp shocks

Remark. Theorem holds assumery u.e. LP. then

dim K (Spt D) 7/ d+1 - P
P-1

Also if u.e. LP LX, there are results which con
optimize with non isotoopic Hausdorff masure.

Thousand: (Footman): Let p be a pos Boul mussume on TPd x IR. Let 6, 70 and assume of (xxx) e Spt M, and any 8 & (0,82), I w(8) s.l.

If w(8) is a bs-cont wint. It?

Then M is abs-cont wint. It?

The w(5) is a modulus, MA = 0 for any Burch set of the se

Fix
$$x \in \mathbb{R}^d$$
 and let χ_s be cutoff bocalising to $B_s(x)$ sit. $\chi_s = 1$ on $B_s(x)$ and $17\chi_s 1 \leq 5$?

$$\mu(B_s(x)) \leq \int_{\mathbb{R}^d} \chi_s(x) d\mu = -\int_{\mathbb{R}^d} V \cdot \mathcal{R}_s(x) d\mu$$

$$\leq \|V\|_{\mathcal{P}(B_{2s})} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} V \cdot \mathcal{R}_s(x) d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 19\chi_s(x) d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb{R}^d} 1 d\mu - \int_{\mathbb{R}^d} 1 d\mu \right) \leq \frac{1}{2} \left(\int_{\mathbb$$

Now, we wish to bound &p assuming knowledge of 8:

Theorem: Let $u \in L_{x,t}^3$ be a weak solution of Euler.

Whose dissipation measure is supported on a spacetime set S with $din_{t}(S) = r$. For all $p \in [3,2]$, S, t. $u \in L_{t}^{p} B_{p,n}^{op}$ if holds $\frac{20p}{1-op} \leq 1 - \frac{p-3}{p} (d+1-r)$

Note: if red+1, then op < 1/3. 4 p = 3. Internally

In terms of 3p, $3 \le \frac{P}{3} - \frac{2k(p-3)P}{9p-2k(p-3)}$ coding k = dH+8

$$\frac{d7}{dp} = \frac{3-2c}{9} = \frac{2y-5}{9}$$

$$|p=3|$$

data: $\frac{d^2p}{dp} \approx 0.303$

bound with

ra 7.75.

Agrees with

Menereau & 1991 Sceeninusan To prove this result, we use a new representation of Dis

Lemmn: Let
$$u \in l_{r,L}^3$$
 be a weak Euler soluber. Then

$$-D[u] = D_t E^l + \operatorname{div} Q^l + C^l$$
where $D_t = \frac{1}{2} + \frac{\overline{n}_t \cdot \overline{\gamma}}{2}$

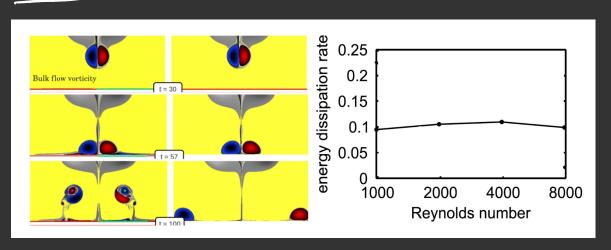
$$E^l = \frac{|u - \overline{u}_t|^2}{2} + P - \overline{P}_t \left(u - \overline{u}_t \right)$$

$$C^l = -|u - \overline{u}_t| \operatorname{div} T_t + (u - \overline{u}_t) O(u - \overline{\eta}) : \overline{\gamma} \overline{\eta}_t$$

Another consequence:

Theorem: The anomalous dissipation mousine satisfies $\frac{2\sigma}{r} = 2\left(B_{r}(x,t)\right) \leq r^{1-\sigma} - 1 + \frac{p-3}{p}\left(d+1\right)$ In particular, if $\left(\frac{1}{2}\right)^{p} dxdt > \left(\frac{1}{2}\right)^{q} dxdt > 0$ then $d_{p} \leq 1 - \frac{p-3}{p}\left(d+1\right) - \frac{2\sigma_{p}}{1-\sigma_{p}}$

Effects of walls and additives



Nguyen, FaryC, Schneidr, 2011

· bounded domains: Bardos-Titi (2018) Driver-Nyhgen (2018)

Te [/3,1]

We Bp (Interior)

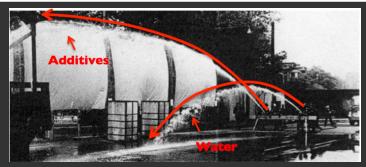
2(1-0)

We locity equivortinous

leading one length

o=1/3 => v3/4 BL. Throng makes contact Blassus.

autity physical mechanism the suppress this behavior. Præg reduction! Engineering



Polymen: Drivas - La 2019 E polymen included only at wells Zough walls: Mikelie, Taiger & only never very special

10 Burgers: a case study $\begin{cases} \int_{t}^{2} u + \int_{x}^{2} (2u^{2}) = 0 \\ u|_{t=0} = u, \qquad \longrightarrow \qquad \longrightarrow \qquad \longrightarrow \qquad \searrow$ Theorem (Singularity): there does not exist a global-in-time continuous weak solution. Proof: & First, if x* is a zero, 2(x=)=0,

Aliahac remains a zero. Indeed, $\dot{X}_{\xi} = U(X_{\xi/\xi}) = V_{\xi} = X_{\xi}(a) = a + t u_{\xi}(a)$ for points of continuity (see Datermos 2006) all continuous functions of zero mean (w.l.o.g)
have at least two zeros, a, bett uo(a)=40(s)=0 · Let de (30/17) s.t. [0,6] = suppl, dx 70.

Introduce ALM= Sult) Qdx. Then 1 zerol $A^2 = (\int_a^2 u^2 dx)^2 = \int_a^2 u^2 dx$ A $A^2 = (\int_a^2 u^2 dx)^2 = \int_a^2 u^2 dx$

Indeed, the khokhlov sawbooth solution is

$$n(x,t) = \begin{cases} \frac{x+L}{t} & -L \leq x \leq 0 \\ \frac{x-L}{t} & 0 \leq x \leq L \end{cases}$$
which has a jump discontiunity, and dissipates:
$$\frac{1}{t} \|u(t)\|_{L^{2}}^{2} = \frac{1}{2L} \int \left(\frac{x-L}{t}\right)^{2} dx = \frac{1}{6} \left(\frac{L}{t}\right)^{2}.$$
Anomalous dissipation | If $\Delta u = u - u^{4} = \frac{2L}{t}$

$$\begin{cases} 2 = -\frac{1}{4} \left(\frac{u}{t}\right)^{2} = \frac{1}{3} \frac{L^{2}}{t^{3}} = \frac{(\Delta u)^{2}}{12t} = \frac{(\Delta u)^{3}}{2^{4}L} > 0.$$
This matches $\delta^{2} = \gamma |u_{x}|^{2}$ as $\gamma \Rightarrow 0$. In fact:
$$An \text{ exact viscous solution is available.}$$

$$V(x,t) = \frac{1}{t} \left[x - L \text{ tanh } \left(\frac{Lx}{2^{4}t}\right)\right]$$
Whence:
$$\delta^{2}(x,t) = v \log_{10} u^{3} = \frac{L^{4}}{4^{4}V^{2}} \text{ sech}^{2} \left(\frac{L^{4}V}{2^{4}V^{2}}\right)$$

$$\delta(x)$$

Interniteucz Entupic snocks live in:

NELD (Lx NBV) Since La 1BV & B/p, 00 P71. shocks live at the Onsager-critical theshold They are also intermettent. $n = \begin{cases} \frac{x+c}{t} & -1 \le x \le 0 \\ \frac{x-c}{t} & 0 \le x \le 1 \end{cases}$ $\langle |\delta_{\ell}u|^{p} \rangle = \frac{1}{2L} \int |u(x+\ell) - u(x)|^{p} dx$ $= \left(1 - \frac{\ell}{2L}\right) \left(\frac{\ell}{t}\right)^{p} + \frac{\ell}{2L}\left(\frac{2L + \ell}{t}\right)^{p}$ $\sim (\Delta u)^{p} \leq \frac{(\ell/L)^{p}}{2L} \qquad 0
<math display="block">p \neq 1$ $p \neq 1$ $p \neq 2$ $p \neq 3$ $p \neq 3$ Putudxu= vyu+ Evixi dut Mathematical Dream: E-khanin-Muzel-Sinci (1997, 2000) Unique invarant masure po supported on entropic shocks, realized Mr-Mo. displays AD & Internitoring. Review: Bec- Khanin "Burgers Turbulence 2007

Perall

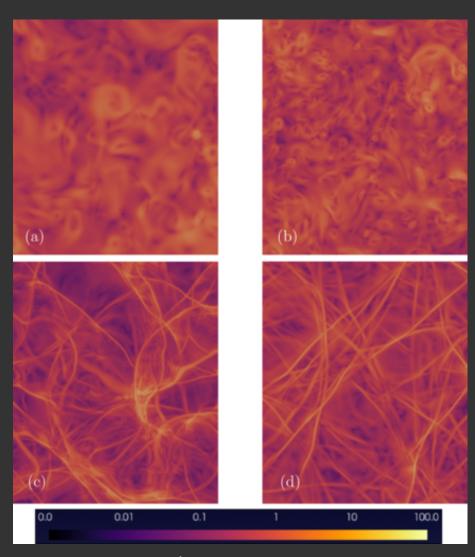
$$\begin{cases}
27 = \frac{\Delta u}{24L} \text{ and } S_{p} = \langle S_{p} u | \frac{P}{2} \rangle \sim \langle \Delta u \rangle^{\frac{p}{2}} \\
\Rightarrow \Delta u \sim \langle \frac{p}{2} \rangle^{\frac{p}{2}} \qquad \langle (\frac{p}{2}) \rangle^{\frac{p}{2}} \qquad \langle (\frac{p}{2}) \rangle^{\frac{p}{2}} \\
\text{Thus } S_{p}(e) \sim (e^{\frac{p}{2}}) \rangle^{\frac{p}{2}} \qquad \langle (\frac{p}{2}) \rangle^{\frac{p}{2}} \\
\text{In } fact we can derive this via the } \frac{1}{5} - |au\rangle : \\
\text{S[u]} = \mathcal{E} S_{p}(e) \qquad \mathcal{E}_{p}[u] = \mathcal{E} S_{p}(e) = \mathcal{E}_{p}^{\frac{p}{2}} \qquad \mathcal$$

In fact, starting from $u_0 \in L^{\infty}$ II dissipative weak solution of Burgers in BVALOS In particular $u(t) \in B_{p,\infty}^{1/p}$ $\forall p \neq 1$ If $u_0 \in L^2$, immediatly $u(t) \in B_{3,\infty}(T)$.

Source of self-regularization: finite flux! Consider viscous Burgers: du + vux = vuxx Theorem: Let q: R-12 have Lipshitz derivative. (Fosien-Otto, 15') Let Its be the primative of 9(2) Then we have and T(x) be the primative of xq'(x). 2 + 4 (& u) + 2, J[u] + 2 T[&u] = -v + 1/(su) (2, su) where $J_{\ell}[u] = u(x+e) \varphi(\xi_{\ell}u) - \widetilde{\Phi}(\xi_{\ell}u) - v_{\ell}\varphi(\xi_{\ell}u)$ $\Pi[\delta_{\mu}u] = \overline{\Phi}(\delta_{\mu}u) - \overline{\Phi}(\delta_{\mu}u)$ Application: let p7/3, dell and P(x) = Xx |x|p-2 Then $\underline{\Phi}(x) = \sum_{p=1}^{\infty} |x|^p \text{ and } \underline{\widehat{\Phi}}(x) = (p-1) \underline{\Phi}(x).$ If $\alpha = \frac{P^{-2}}{P}$, we have $\frac{1}{2} \iint_{0}^{\infty} |\delta_{x}u|^{2} dx dt = \iint_{0}^{\infty} |\rho(\xi_{u})| dx dt - \iint_{0}^{\infty} |\rho(\xi_{u})|^{2} dx dt dt$ $- v \iint_{0}^{\infty} |f|^{2} \int_{0}^{\infty} |\rho''(\xi_{u})|^{2} dx dt dt$ $\int_{0}^{\infty} |f|^{2} \int_{0}^{\infty} |f|^{2} \int_{0}^{\infty} |f|^{2} \int_{0}^{\infty} |f|^{2} dx dt dt$ $\int_{0}^{\infty} |f|^{2} \int_{0}^{\infty} |f|^{2} \int_{0}^{\infty} |f|^{2} \int_{0}^{\infty} |f|^{2} \int_{0}^{\infty} |f|^{2} dx dt dt$

Burgers is a toy model for incompressible turbilence.

But compressible turbulence in the highly compressive regime is shock dominated...



Contours of 17pl for increasing.

Mach number and compressive comp.

(Donzis - John 19)

In fact, they numerically show $\langle z_{comp} \rangle \sim S^2$ where $S = \frac{|U_{comp}|_2}{|U_{sol}|_2}$

Case study: Scalar transport

Let
$$\theta \in \mathbb{R}^{4} \times \mathbb{T}^{d} \rightarrow \mathbb{R}$$
 satisfy

 $\partial_{t}\theta^{k} + u \cdot \nabla \theta^{k} = k \Delta \theta^{k}$
 $\nabla \cdot u = 0$
 $\partial_{t}^{k} = \partial_{t}^{k}$
 $\int \partial_{t}^{k} dx = 0$

Here or represents temperature or due being stirred by the velocity U. Scalar energy is dissipated:

$$\frac{1}{2} \frac{d}{dt} \int |\theta^k|^2 dx = -k \int |\theta^k|^2 dx$$

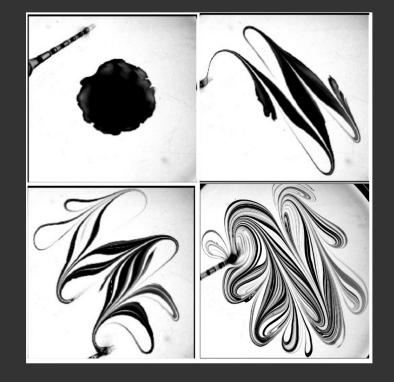
Even though the the velocity field does not feature in this balance, it is crutally comportant to the process

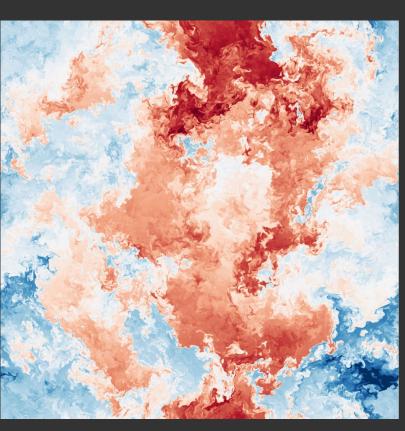
Velocity acts to filiment the scalar, causing Port to grow and contribute more to dissipation.

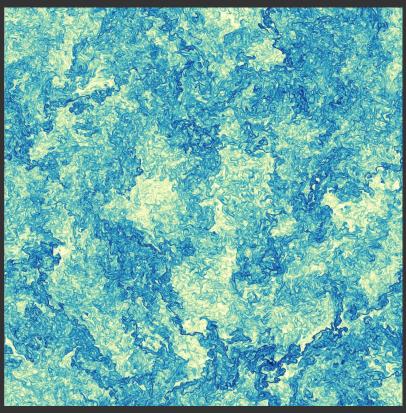
Anomalous: K S | Det | dx dt 7/ x 70

Donzis-Smeni (2005)

Advection of scalar by Smooth velocity field => Mixing







Scalar advected by rough Navier-Stokes and by the Evaichnan model

Anomalous Dissipation

Now, due to the apriori Lo bound, 118 (+) 1/20 5 11 0, 11/20 we have $0^k \rightarrow 0$ to a weak solution of $\partial_{\xi} \theta + div(u\theta) = 0$ Energy balance holds as soon as & & cmp in L2 $\partial_{\xi} \left(\frac{1}{2}\theta^{2}\right) + \text{div} \left(\frac{\theta^{2}}{2}u\right) = -D_{u}[\theta]$ $D_{n}[\theta] = \lim_{k \to \infty} |k| |\nabla \theta^{k}|^{2}$ and also $DuloJ = \lim_{l \to 0} \int_{d-l}^{l} \frac{\delta_{ez}u(x) \cdot z}{l} \left[S_{e}\theta(x) \right]^{2} do(z)$

Note, if $u \in C^{\alpha}$, $\theta \in B_{z,\infty}$, then $|D_{u}[\theta]|_{L^{z}} \lesssim e^{\alpha + 2\theta - 1} \Rightarrow \theta = \theta = \theta = \theta$ is conservative

Obukhov (1949) & Corrsin (1951) Theory

'turbulent' velocity "u & C" & (0,17)
gives rise to "Be C" with $b = \frac{1-\alpha}{2}$

THEODEM: (Drivas, Elgundi, Iger, Jeong, 2020),

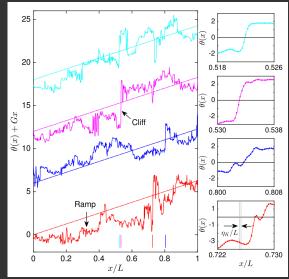
Fix T70, d7,2, x + 10,1) d Bot C. There exist

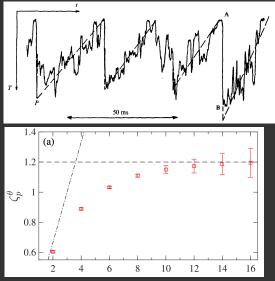
a divergence-free velocity field

UE L'[[0,T]; Cx)

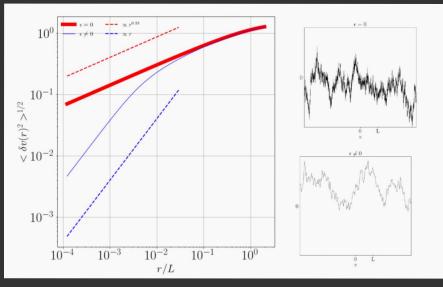
Such that we have $K \iint |\nabla B^{\mu}|^{2} dxdt \, 7 \, \chi \, 70 \qquad (Crippy- (dumbo - Sovella, '23))$ Moveour, $\theta \in L_{t}^{\infty}$ where $\theta = \frac{1-x}{2}$

Needs modification again due to Intermittency!





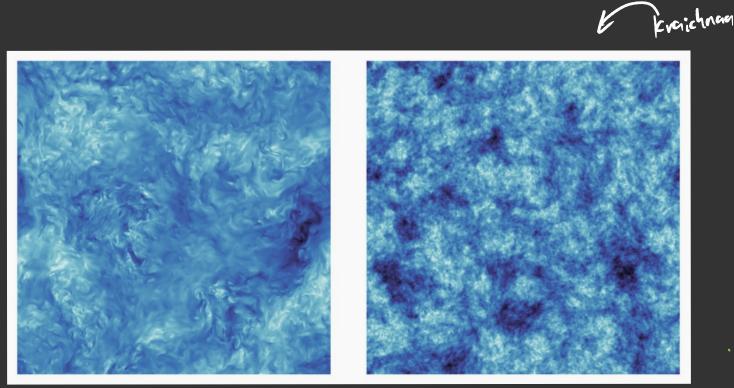
Kraichnan Mudel



Gaussian Random Field (14) = 0

Roughly, LE C3/2 in space.

Navier Stakes



Alt the of the Studied extensively (Bernard - Gomedzki - Kupienning Chertkov Le. Jan Puimond, E, Vanden Eijden Vergassola, Lebeder, Fouxon

Theorem: (Rowan 23): The exists a const C(d) such that \forall de(0|1):

If $|\theta^k|^2 \leq e^{-t/c} ||\theta_0||^2 \qquad \forall t \neq 0$ for all $\theta_0 \in \mathbb{Z}$, Monecure, if happens constraint time.

(D-Galeati-Pappalettern)

Theorem: (P-Galeati-Pappalettern)

For all Box L2 31 vanishind diffeon solution which is dissipative and is such that

Which is dissipative and is such that

SET 10(4) 1 - a dt & 10012

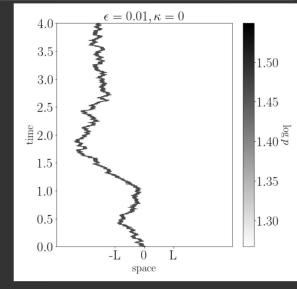
Mechanism.

regularization

by consine flux $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac$

"Source" of Dissipation $\int_{\xi} (a'b) = \left\{ \chi^{\xi}(a) - \chi^{\xi}(b) \right\}$ $\int_{\xi} \chi^{\xi}(a) = \left\{ \chi^{\xi}(a) - \chi^{\xi}(b) \right\}$ $\int_{\xi} \chi^{\xi}(a) = \left\{ \chi^{\xi}(a) - \chi^{\xi}(b) \right\}$ d f = b (f) dt + 120(f) dW + 522 dB (le-Jan 1985) C closed equation for particle separation [P = 1a-b1

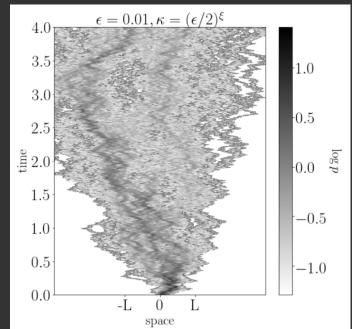
when Gaussian field is lipshitz, then P=0 is an absorbing point for the diffusion => U unique particle trajectories



When Hilder eig 3 = 3;

d g = g is dt + g is dWt + John UBt

The process PL is instantaneously reflecting al-P=0 Le-Jan Parmond (2002, 2004) Non-uniqueness de trajectories



Connection between Anomalors dissipation of passive Scalar and non-uniquenss of particle trajectories (Bernard - Gomedzki - Kuprenan, 1989) Let $u \in L_{t,x}$, $Oo \in L^2$ and let g^k be unique strown $\nabla u = 0$ $\int_{L} e^k + u \cdot \nabla e^k = k \Delta e^k$ Recall that we say anomalous dissipation occurs if liminf st st 170 x Equivalently: liming 1184(1) 112 < 1180112. Theorem (D-Eyink 17, Rowan 23) Suppose the passive scalar driven by u exhibits anomalous dissipation Then the integral curves of 4 (backwords in time) are non-unique for a positive manual set of initial conditions

Fluctication

Designation - relation:

Proof: We will show that I final data By

Such that 20 + 4.00 = 6 has non-unique

B(T) = 0 f positive solutions

This will imply the statement by Arrbrosio's

superposition principle.

Idea of superposition principle: Given a non-negative solution 20 to 20 =0 we sim to produce a path mensure tavre arrage with a mollifier supported everywhere: $\partial_{t} \overline{\partial}_{\ell} + \nabla \cdot (\widetilde{b}_{\ell} \overline{\partial}_{\ell}) = 0$ $\widetilde{b}_{\ell} = (\widetilde{ab}_{\ell}) / \overline{\partial}_{\ell}$ Here be is smooth, since \$\overline{\theta}_{e} 70. Then $(Q, \overline{\theta}_{e})_{i}^{z} = \int_{\mathbb{T}^{d}} \varphi(X_{t}^{i}(\alpha)) \theta_{o}(\alpha) d\alpha =: \int_{\text{parms}} \varphi d\mu_{t}^{i}$ dul = 0. Sil = 0 du The measure du can be shown to give zeu mass to any lipshitz curvel not solving integral term of x = u(x). Assum anomalous dissipation This we have two distinct land 18 mg = Off) = lim Ot(T). non-neg solutions => two dirtuct
path neasurs > non-uniques Now solve on ft[of]

It of k + 11. $\nabla \theta^{k} = -k \Delta \theta^{k}$ All $|\theta^{k}| = |\theta^{k}|$ The solve on ft[of]

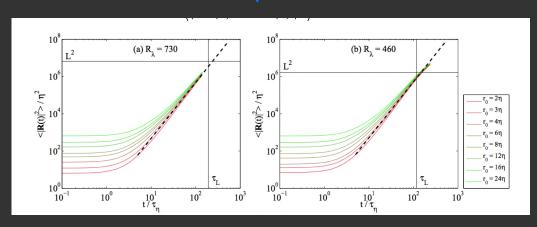
The solve of ft[of]

The solve on ft[of]

The solve on ft[of]

The solve

Richardson (1926): < |x,(+)-x,(+)|2 ~G(E)+



$$\delta \chi = (\epsilon \delta \chi)^{3} \Rightarrow |\delta \chi| = [|\delta \gamma_{0}|^{2/3} + \epsilon^{1/3} + \frac{1}{2}] \sim \epsilon t^{3}$$

$$\Delta x \sim t^{3/2}$$

$$\Delta x (0) \rightarrow 0$$

$$\nu \rightarrow 0$$

$$\times_{0}$$

Sportaneous. Stuchasherty:

Bernard, Gawedzki-kupienan (1998) ...

Gamdiki - Wergassola (2000) ...

Fyink (2006...)

Drivas - Maily baer, Drivas - Maily baer-Raibelas (7018, 2020)

ALSO IN SPACE OF VELOCITIES | Kraichma-Leith

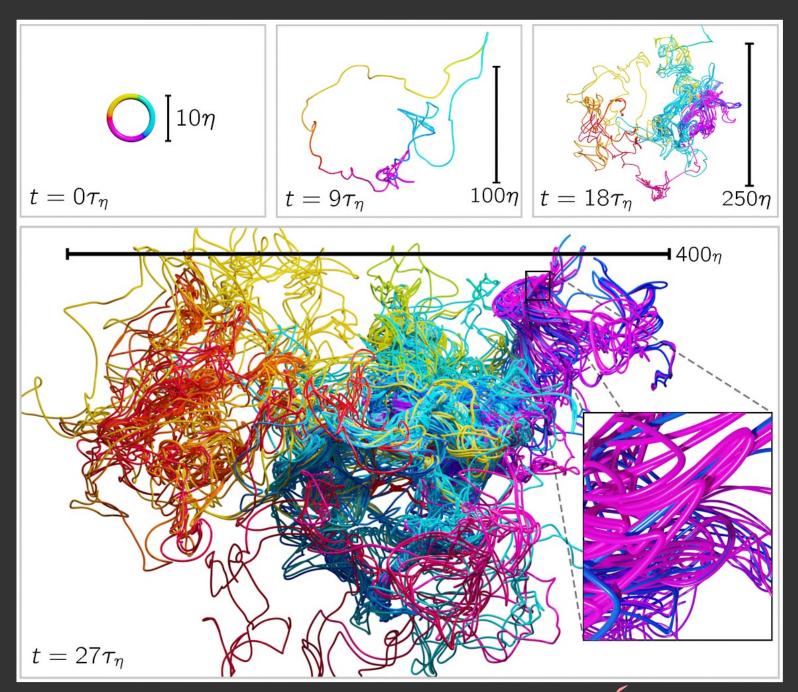
Kolnegorov

1956-1959

Similar

8. Consideration (at least on models) of the conjecture that, in the situation at the end of 5 above, in the limit the dynamical system turns into a random process (the conjecture of the practical impossibility of a long-term weather forecast).

Arnolld- khesin



(Bontkampt-Drivas-Lalescu-Wilczek 22)

Lagrangian Formulae for Dissipation Anomaly

· Link between Lagrangian reversibility & Anomalous Dissipation

THEOREM: (Drives, 2019) Let
$$u \in l^3(0,T; l^3)$$
 be a weak Enlar solution. Then

$$D[u] = \begin{cases} lim \\ lim \\$$

Note:
$$D[u] = E[u] 70$$
 in 3d $D[u] = -I[u] < 0$ in 2d, small-side fund $D[u] = -I[u] < 0$ in 2d $D[u] < 0$ i

Uses regorous version of Ott- Mann- Gamedzti relation, noted by Jucha et al (2019) to lak with uneversibility.

Heuristic understanding: inelastic collision

$$V_{*}=\frac{1}{2}(V_{1}+V_{2})$$
 $V_{*}=\frac{1}{2}(V_{1}+V_{2})$
 $V_{*}=\frac{1}{2}(V_{1}+V_{2})$

AKE = 3 . 1 my2 >0

Let us determine the order of magnitude v_{λ} of the turbulent velocity variation over distances of the order of λ . It must be determined only by ε and, of course, the distance λ itself. † From these two quantities we can form only one having the dimensions of velocity, namely $(\varepsilon \lambda)^{\frac{1}{3}}$. Hence we can say that the relation

$$v_{\lambda} \propto (\varepsilon \lambda)^{\frac{1}{3}}$$
 (33.6)

must hold. We thus find that the velocity variation over a small distance is proportional to the cube root of the distance (Kolmogorov and Obukhov's law). The quantity v_{λ} may also be regarded as the velocity of turbulent eddies whose size is of the order of λ : the variation of the mean velocity over small distances is small compared with the variation of the fluctuating velocity over those distances, and may be neglected.

The relation (33.6) may be obtained in another way by expressing a constant quantity, the dissipation ε , in terms of quantities characterizing the eddies of size λ ; ε must be proportional to the squared gradient of the velocity v_{λ} and to the appropriate turbulent viscosity coefficient $v_{\text{turb},\lambda} \propto v_{\lambda} \lambda$:

$$\varepsilon \propto v_{\text{turb},\lambda} (v_{\lambda}/\lambda)^2 \propto v_{\lambda}^3/\lambda$$

whence we obtain (33.6).

Let us now put the problem somewhat differently, and determine the order of magnitude v_{τ} of the velocity variation at a given point over a time interval τ which is short compared with the time $T \sim l/u$ characterizing the flow as a whole. To do this, we notice that, since there is a net mean flow, any given portion of the fluid is displaced, during the interval τ , over a distance of the order of τu , u being the mean velocity. Hence the portion of fluid which is at a given point at time τ will have been at a distance τu from that point at the initial instant. We can therefore obtain the required quantity v_{τ} by direct substitution of τu for λ in (33.6):

$$v_{\tau} \propto (\varepsilon \tau u)^{\frac{1}{3}}.$$
 (33.7)

The quantity v_{τ} must be distinguished from v_{τ} , the variation in velocity of a portion of fluid as it moves about. This variation can evidently depend only on ε , which determines the local properties of the turbulence, and of course on τ itself. Forming the only combination of ε and τ that has the dimensions of velocity, we obtain

$$v_{\tau}' \propto (\varepsilon \tau)^{\frac{1}{2}}$$
 (33.8)

Unlike the velocity variation at a given point, it is proportional to the square root of τ , not to the cube root. It is easy to see that, for τ small compared with T, v_{τ} is always less than v_{τ} . \ddagger

Landon - Lifshitz Prediction:

 $S_{V(\alpha)} := V(t+T,\alpha) - V(t,\alpha) \sim (\varepsilon \tau)^{1/2}$

Theorem (P. Isett, 25') Let uf L'e Cx be a weak solution of Euler. For each a ETT consider any solution of $\frac{d}{dt}X_{t}(u) = u(X_{t}(u)t)$ $X_o(a) = a$ $X_t \in L_a^\infty C_t^{\frac{1}{1-\alpha}}$. Thus $X_t = L_a^\infty C_t^{\frac{\alpha}{1-\alpha}}$

Remark: If &= 1/3 (kyl value), then $\frac{\alpha}{1-\alpha} = \frac{1}{2}$ (landon)

Proof: Let us introduce trajectories in the course-grained field:

d X la = Ul (X la), t)

X la = a

We shall estimate:

We shall estimate:
$$|X_{t+t}(a) - X_{t}(a)| \leq |X_{t+t}(a) - X_{t}(a)| + |X_{t+t}(a) - X_{t+t}(a)|$$

+ | X (a) - X (a) | We assume LETO, 12]. Others similar.

Let
$$\overline{t_{i}} = \frac{1}{\delta u} = 1$$

Thuble Hölder Agularity of p
 $|P|_{CL} \leq [u]_{CL}$
 $|P$

Finally, we must contend with two terms of form $|\bar{u}_{\ell}(\chi_{\epsilon}^{\ell}, \epsilon) - u(\chi_{\epsilon}, \epsilon)|$ | X = (a) | - X = (a) | $\leq |\bar{u}_{\ell}(X_{\ell}^{\ell},t) - u(X_{\ell}^{\ell},t)|$ telog te] + | u(x(t) - u(xet) | [u]cx[l" + |Xt-Xt|] $\lesssim L^{\alpha} e^{\alpha t/\tau_{\ell}}$

Thus combining the above results.

$$|X_{t+t}(\alpha) - X_{t}(\alpha)| \leq t_{e}^{\frac{d}{1-d}} \left[1 + e^{\alpha t/t_{e}} + e^{x(t+t)/t_{e}}\right]$$

Thus, provided t=0 and T < Te=h, we find arbitrary, could have labelled at any time T.

sup tin |X (a) - X (a) | \langle h => X 15 Hölder at t=0.

of t=0 proms paths are Hölder rout.

Questions'. Is there a lagrangian analogue of Onsager's conjecture in C^{α} ? Namely, if all trajectories of a weak solution of Enter are LaCt, dues this imply conservation? Note: La Ct negularity of all trajectories
does not comply any regularity of Enlevian
nector field (think shear flows).

Es there a Besov analogue of
the trajectory negationity theorem?

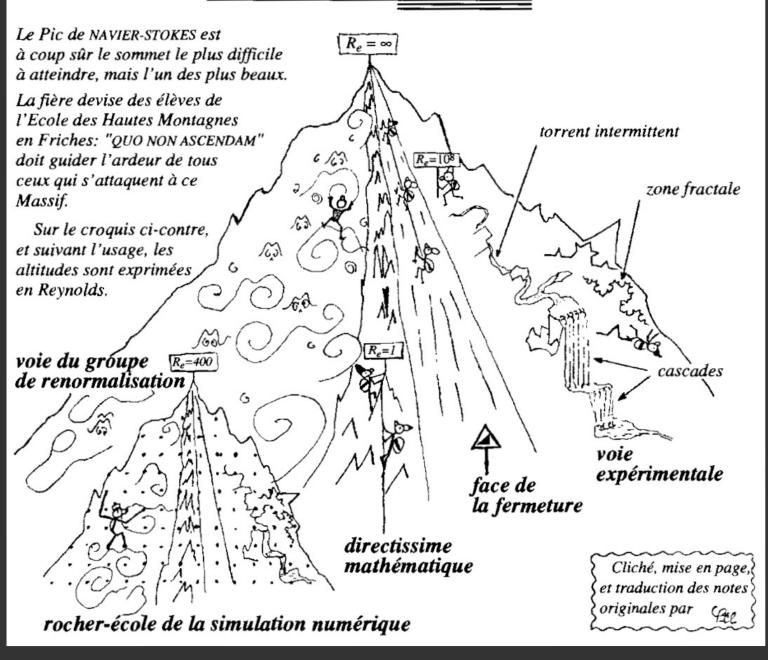
Namely can one show if us B3,00

[X (a) - X (a)] 2 5 Time

or, at least a uniform bound along approximations?

Thank you!

Ascensions du Pic de NAVIER-STOKES



Turbulence is a life force. It is opportunity. Let's love turbulence and use it for change. Lucky Numbers 34, 15, 28, 4, 19, 20