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D'Alembert's Paradox : in an irrotational Euler Flow,
-

the dray force on a body moving
with constant

velocity relative to the fluid is zero !

↑

planes cannot fly in an Irritational Euler flow"

---- -m- wi

# -es---
-

Eulerian picture Reality
Solution : One must take into account friction forces

between adjacent molecules
,
i
.

e
. viscosityL

C . L . Navier (1822) and G. Stokes (1845) derived a

model for this under the assumption that the shear

stress is proportional to the symmetric part of the gradient:

fu + x . Xu = -Xp + vDu + f
X . u = 0

· the parameter vo is the kinematic viscosity of the fluid

o the function f(x
,
t) is an external body force.

· widely accepted model ofNewtonian fluid flow
S arising 17

&

the joint limit of small Knudsen number and Much numbers

Kinetic energy.
is dissipated. IUTH luiosiz

= - ofgonaxd =g



Non-dimensionalization (physical laws hold independent of unit)
· U : characteristic velocity of the flow , e.g rms/f(1)"?
· L : characteristic length in

the flow
,

e .g
. domain size or

period

Note
,
all the terms in NS have units of acceleration

Non-dimentionaling not 4/0
,
X- */L

,

+ + Her

qu + u .Xu = - Xp + zDu
X . u = 0

the non-dimentional number

n. Xn

Re= -

Du

is the Reynolds number. It measures relative strength
of mertal forces (nonlinearity) and viscous forces :

· bacteria Re = 105

· blood flow Re = 102
5

· MLB pitch Re = 10
*

· wake of blue whale Re = 10
12

a make of Boeing 747
Re = 10

·

Note : in experiments , one often uses the taylor-scale Re

Rey =,=
R

fixul?

Typically Rey Re.



Van Karman

Vortex street
behind cylinder . Re = 105

Van Dyke (1982)

Frisch (1995)

Wake behind
two cylnders

Re = 240
Frisch (1995)

Wake behind
two clnders

Frisch (1995) Re = 1800

Homogeneous
turbulence
behind grid.

Re = 2300
Frisch (1995)



WhathappenaRobota
then> * strongly .

Moreover EV = OCV) .

· If classical solution does not exist because eith

- finite fine singularity
- U-> U. = rough data

fr -> F = rough forcing
Then assuming qu23 cmp in 12 thenis
- /

a weak solution of Euler

V4(
, 29)+ (non; dirP =0

(n ; x4)0
32

Evidence : Se) = Fe(nc +e-ul



Being aweak solution,momentumisonea seed not
In fact, assuming 53 cap in B

,

from

Gzi) + dir((+ pr) n=D) = -vIDu =:-gV

we deduce LHS to Calderon-Zyymand
3/2

↓ ↑-p in L

& (2(nk) + dir()+ P)u)

Thus
,
in the sense of distributions

,

we have

5 -> [[u] := G (2nk) + dir(+ P)n)

If (2
,

9) 70
,

we say
anomalous dissipation.

occurs

Thus
,
with could bea dissipative Enter solution

5) IncaR-EuceR = -YSsin co .

Butthereisanother way to compute enersanaa



Sreenivasan
,
1998

Pearson
,

Krogstad,
de Water

&

(2001)



&

Energytransfer through scale

course-grainingTe(X) = ) Gerl nextridr,

Geri = e
"

Gle)
Gx0(6 = 1 G( =G(X)

suppG -B,(0)

Ete + X . Enerte) = -Xpe-D : Fe (, n)

X Tell ,u) := Joule - Tete Regulas

Energy balance in scales<1 :

&(1) + dir ((ie + Pe) Fe + neTe) = - Telat

#[n] = -Die
:Fe(,4) energy fix through scale



·Ireality of cascade: One can show that

energy flux ITe[n]
has contributions pumanly from a band of

scales [l-5
,
l+B] usingLittlewood - Paley

Eyink 2005
/

Constantin -Cheskidov - Friedlander-Shugdkay , 2008



We wish to study the limit 150.
23/2> neEu

, Get p stronglyNove that
, since

we L,
Since

Fi(x) - u(X =Gelr (ucxer)-u(x) do
l ->0

Moreover llie-ully - will Sally -
0

[1, 4) = Lucule - neve
= ((u - u,(x))(n - yex)]

G

where <F), = StirGridr. Thus

11 me tel ,willy - I/Tep11FellBe-lulplouli - 0
Thus
,

&(1) + dir ((ie + Pe) me + nete)
-> G(k) + dir(+ P)u) =- Th]

So Tein] = Din]
= mertal dissipation
Duchon-Robert 100

-

Thus we obtan an

invisid formula PvIXuE= [[n] = DIn] = eThin]
for S



Evidence of balance

Tui= Din]]
Lettingo:he be the test

function
,

we obtain

D)[n]=Gr ·ShYdz
l

letting 611-
Diz] =em &

S

Kolmogorov- law: Selsu] --

Further manipulation shows

(Eyink , Norack)

P[]=do

Kolmogorov- law: Ine]v



S[n] =-do
ne B for

ps,

iff GueL ⑮

11Sully
> (e) (1913)

Note : Sp(e) = 11Bulli
THEOREM : (Eyak 1992

,
Constantin - E-Titi 1994)

Let u + 1310 ,5; B
** /")) 1 (CO,T; ( ( +9)

with 57
,

then

E ) Inex,tidy = 2)Moldy Attit#d



Flexible side of Onsager's Conjectur

THEOREM (Iselt, 2018 , Buckmaster
- De Cellis-Szekelyhid-Vical 19

Let e : 50
,
T] -> IR be a strictly positive smooth function.

For any delo,) ,
there exists a weak solution

ne <
<
(50
,
57 x #3) of the Euler equations wit

StlucyeRdx = e(t) H + + [0,T]

long history : Schefter 1993
I
Shirelman 1997, 2000,

De Lellis-Szekelyhidi 2009-2011
,

2012,

Buckmaster-DeLellis-Szekelykidi 2013
,
2014

Built off ideas of Nash-kniper Theorem and

Gromov's n-principle. Buckmaster-Vical 2020( De Lellis-Szekelyhidi ,zoll'met)
Ideas : Inverse Renormalization group

(Frisch
-

a Stages So
,

S
, ...,

Sq, . adding
ever smaller motions (2-> 2+...+ +. - )

En + D · Ineui) = -XPe + X . Fesll
G 99 2

T = Tou- 0

ik . Y
whereie=Pete Y() and 1:= 29

Must show Fea - O
as a
-> 0.



Remarks :· Because the equation for subsolutions
-

is highly underconstrained
,
it is

subsolate
easy to construct them .

↓ · An iteration process reintroduces
oscillations certurbations

weak solution high-wave number S I

highfreg designed to cancel low frequencies
(B.M.N .Y 21

of old stress.

oscillations
introduce. Difficulty lies In controlling error
stresses terms a Accomplished by judicious
in passing

to

-I choice of building blocks
.weak (m)

ooscellations introduced in highly non-unique

way => infinitely many solutions.

· solutions are "monofractal" in that the velocity
has just one exponent h , which can bes

-

Sust quite) .

They have "Kolmogorow-like spectra

· Notable recent exception ? Buckmaster-Masmoudi-Novak-Vical,
21

solutions with >by derivative In 22 but <1

derivative in B constructed . Towards More Malistic flows!

· High degree of non-uniqueness! Dissipative Euler solutions
do not provide a predictive theory alone. Must consider viscosity



Wrinkle : no anomoly without boundary in steady state?

THEOREM : (Drivas-Eyenk 2018) if Em300 and & 10,1],

1willDR·
↑
&

&

MATHEMATICALGOAL
dissipative (1) There is data Noth

,
TTO and 250 st.

anomaly T S

JSulDuPdxd+ > E
o T

weak

compactness (83 The family &i 300 is compact and

along subsequences converge to weak Euler

Oniaged (3) These Euler solutions exhibit constant

Conjecture mean flux < Ii)) = E and live in 13 Bs%

Moreover, this behavior should be genera (stistically stationary



Note that the assumptionwe But is overkill,3
,
%

as only a piece of the increment appears,
and the flux is not corsive

S[n] =-do
Thus

,

if the singularity set of a weak solution

und B is structured
,

dissipation may be impossible?

Example: RegulatVortexshe
,

a
a smooth

away from a

codimension-1 surface 3
.
Let I be an arbitrary surface

ut z F7 XMensure then

suppl d-1~ p(z) =Set-vi
. n d

1 of : Jedy =
Sediuv = -SviD = -Svx-FreeB-

-SvindA"-JvindASad
z



DXx, (1 , u)
= 0 (1 mass)

Y

① Xx+ (n , you
+pl) (d momental

& Pxe · (M,
Gitp)n) =

- Din] (energy)

From D & D
,

we deduce (with n = (ne
, nx)

D' [u . ny] = so: utny = z. nx =: Un

① [un] + In Un + pay] =

From, dolting with my gives

②" [P] = 0 (contact discontinuity)
whenceAl becomes

[n] (nn +m) = 0

Either Unth0 or not
.
If Unth+O then Inj=0,

S D(I) =0 . If Unthe : 0
,
energy gius

- D(z) = [i]n + Emin] = [ii] (n + +) =0

Thus D(2) = 0 for every surface I . E Diuj = 0 .



This result is due to Shuydkoy , and crucially
uses incompressibility. Note that such a

vortex sheet lives In Bay exactly !
Indeed

,
BV113G Be sharply since

I us . + e) -allyn (e) & Hullp =
X

then
, by interpolation,

1) us . + e) -us , /l
,ple)"P for all psl .

Thus
,

these solutions are "critical"
, yet conservative.

IPLuT(FSiGer ·Glide) - we pull p
I l

L

De Rosa & Inversi made a beautiful observation:

Therem : If ne BUIL
*

is a weak solution
,

the

it conserves energy

To do so

,
they exploited freedom in G

,
and Alberties

Lemona



Theory-olmogorov 1941

For l, 1 L , if E=SdEIA
-

Ein]Most
-

·z = limithe yo zerothaa

homogeneity

CETuldO
Integrating in space-time

do dydt =End t
"no intermintity = C1)Etu]dx

Thus
,
prediction :

= (p(2343

Se = <et(((33)
*

and
=Ce



Sel = (e) ·zang E Cp 192.33
*

I

Connection with Kolmogorov Spectra

s 23rds law E - 53 law

E(k) =Elk-ip luc

By Wiener-Khinchin theorem

S(e)-e E ECH-ECstl
2/3

S = 13 E(k) ~35/3 S(e)~(2l)

Recall ↳ is the Onsager exponent , which is
maximal regularity consistent with anomalous dissipation.



AndasRemark and Intermittency
Landon :
1942 The rate of energy dissipation is intermittent.

I . e
.,
it is spokally/ temporally intono eneous.S

Menereau & 1991
Sreenivasua

Namely , sin] can be a wild measure, giving supported
on lowe-dimensional sets... We should expect

Pyj][n] P exte <>(e)
9p>0

0 d -

Thus 3p should not be a constant multiple ofp:

S( = <(et) · z)*Te
, any

= Sp 11 (.33)
* (e)
*

P

dimensional

so that S,"sel rep where Ep = -33p . @ analysis

K41 : unique scaling so sale) Independent of Largescale L.



Conflating Spices with Spel

Spiel =< 1SY- edp

2 =
KH1 : 3, = 4/3

000a
pure
cannot sustain

o

dissipation
11111111

P

This phenomenon ofregularity depending on
Moment is a manifestation ofIntermittency.

Physicist's Goal : predict 3D
I

Mathematicians Goal : constrainGp constructions
T

I

⑪hatabout(370 => 2
,
-413 Fp>/3 .

E ?



Numerical & Experimental Evidence

Iyer et al . 2020 Chen et al 2005

(5 ,p)
-3) s. P

Frisch
1995

Models :

· log-normal : 3p =* -Ep(p-3) , M
= 0 .25 Kolmogorrz

· 8-model : 3p = E + B-D) (1-3) , D= 2
.
8 Frischeful

1978

· log-Poisson : 3p= + 2(1-14) She-Leveque 1994

a= 0.. 185·
mean-field : 3p=+1 b = 0 .475 Yakhot 2001

c = 0 .0275

NEED : mathematical framework to impose constrants



AIM: Provide loerbounds on the dimension of
- the support set for anomalous dissipation

All take the form M . TT =D Radon

X = (8+,0x:t
↑

positive messure

a Incompressible Enher from NS 4 - 1
2

= (Im,( +pu),
D=u

a TransportedSculars 10" C
28 + n .10 = kDo

[5 = (e) ,
D=DOR

· Compressible Euler

Ge + X . (en) = 0

FuEX · (guou
+ P1) = 0

2 X . KE)n) = o

# = (s
,
us)

,

D = Pict Dissipation



FractalDimensions

·
&

Ng(s) = # of cubes of size 8 which covers

dim (S) = d
· B d

dim(s) = IMs) lig Nilse

supper and lower with limsup ,
lomint). Equir.

it"(se) I gar , Focu = dim (5)

dimension dy(s) is a more measure

Hausdorff is one can

theoretic notion. Basic difference

cover with balls of radius
-S
,

not just =8 . Thus

him
,
(s) Am(s)

< Timp(s)#

Crational #s have dimpto, dim=1)

In following statements
,
you can just think Box counting

.



Examples Burgers equation : u : TTXIR -> IR

qu + uGyu = va

Remarks :& for 120
,
model is globally wellposed

· for v =0

,
model shocks in finite time.

n + 1 + 1

I
1

E
E(x

,+) = v 18xuY2US(Xx
L

-sitogaitsmovingit
,

is

shock surface : codimension
↑

1 at eact time.

↑ M smoothy evotring
↑ ↑

T

dimplentropy prod) = d.



Example :

Constructions : (P . Elgindi - Eyer-Terrs ()

F int => we
iD

*

D
"
Don

+ =0 +
=1

20 +h .DO = DO "SkOd 170
O

All the dissipation is happening
at one time.

Similar constructions for
Navier-Stokes ,

12th dim)

(Brae-Dehellis,
Brue-Columbo-Creppa-Dehellis-Sorella)

In all cuses ; our
result shows that at time -1,

dissipation is full measure
In space :

dimp (diss) =
d

Recent construction of(Avastrong-Vicol 2023)

dimp(diss) = d + 1



IncompressibleTurbulence : Menereau & 1991Sreenivasaa

/Experiments)

They estimate that

dimp (dissipation)
= 3

.

87

occurring on a
fractal set ! Any restrictions ?

Implications ?



Theorem : Bounded weak solutions of
any↑

of those equations , on domains & IRA

which produce entropy anomalously, have

dim (Sptp)
d.

↑ space-time

Remark : various previous examples Show this

theorem is sharp.

↳ Burgers, Scalar constructions, comp shocks

Remark. Theorem holds assoming no P· then

dimp(sptD(z, d+ 1 -
Also

,
if no py there are results which can

optimize with non isotropic Hausdorff measure.



C

Theorem :(Frostman) : Let m
be a pos Borel measure

on R
&XIR

.

Let S
,
30 and assume

* (x
,HESptM,

and any
8-10
,
So), - w/s) S o t .

M (B,
(x,+) =

w(s)8

Then M
is abs-cont writ . As

If w/s) is a modulus, M
/A) =0 for any surel set

A stHS(A)·
E .g . Since ip noutrical plspty to

dimp(Sp+ M) 7 S .

um
- -
-

- Y-

-

"j'suppSg

Fix x Id and let &gbe cutoff localizing

to Byx) 3%o XE1 on Byx) and /Highest

↑ (By(4)(E SaXgd
= - SXXA

=(Iv()((328)(
= w(25) jdf-

Y

=> dim(SptM)-1



Now
,
we wish to bound Sp assuming knowledge of U:

Theorem : Let me Ext be a weak solution of Enter
,

-

whose dissipation measure is supported on a

spacetime Set s with dimp) = U .

For all petso,

Sit neLPBO if hol so

1- Id
Note : if Udt , then Op < / . V p > 3 · Intermittency !

codimIn terms of Ep
, 3- k= d++

3
data

:1SPIos
=> bound with Menereau & 1991

r= 2
.85 . Agrees with Sreenivasa !



To prove this
result
,
we use a new representation ofDiis

ema: Let ne Exp be a
weak Euler soluter . Then

l l 2
-DIuT = DE + divQ + C

where It = E + me . X

El=
-

Q = (1 + P-) (n-n
2
= - (n - Me)dir te + (n -u)@(+u) : The

Another consequence :

Theorem : The anomalous dissipation measure satisfies

- 1+ (d+1)
E = g (Br(xe) -> r

In particular, if (Ildedt (ET for apo

then Sp1-1(d+-



Effectsof walls
,
and additives

Nguyen,
Farge ,
Schneider ,
2011

· bounded domains : Bardos-Titi (2018)
,
Drivaz-Nyhyen (2013)

He Bo, (Interior ↓
of (Y ,

1] P 2(1-0)

--> dist(ar ~u

#11/11/11/11X velocity equivontimous

2 Kolmogoron
length

v
= % = v

&/" BL . Theory maks contact
Basins .

~
vEstions: Identify physical mechanism the suppress-this behavior

. Drag reduction ! Engineering

Polymen : Drivas-La, 2019 # polymer included only at walls

↑

F only near very specialRough walls : Mikelic
, Tiger flows:



#>Burgers:
a casesya

%++1 +1
XtT
,

+EIR

Theorem (Singularity) : there does not exist a

global-in-time continuous weak solution
.

roof: a First, if is a zero u(Xz) =0/S

Elinhac
and a point of continuity, then it
remains a zero.

Indeed
,

Y
=
= u(Xy

,
+) = 40 => Xy() =a +tuox)

for points of continuity (see Dafermos 2006)

i a all continuous functions of zero mean (wlola
have at least two zeros

,
a
,
bett Moal= hols=0

2 zeros
· Let4t(P) Sit [ab] suppo, El
· IntroduceAux. Men

= iA?
- Blows up !
Asoe A38

Izero ! A
=Ifund, Man! atsomea



Indeed, the1
Lokhlow sawtooth solution is

- L-X10

u(x,+)
= E -XL
E

which has a jump discontinuity
,
and dissipates:

I

EMIp=SEdx =E)
g

Anomalous dissipadon ! If Due= n-ut=
3

< ) =-
This matches E = vin * as vto. In fact !

An exact viscous solution is
available.

v

next = [[X - > tanh (e)]
Whence :

E(x
,+) = v10= sech(

1N ~O S(x
↳

-L

-L ↳



-Intermitteas live 14 !

~

I = ((L nBY)
: "i : "I

Since 201 BV 1 BYp , 3
&

pil
.

P

shocks live at the Onsager-critical theshold.

They are also intermittent. n =3

<enX = it) (nxx +e - u(x)/dy
- L

= -e)+(%)P 0 < p < /
~ cus

"

& ⑫ py/

E + nex
= viiu+ oix do

~

Mathematical Dream : E-Khanin-Mucel-Sinai (1997
,
2000

Unique invariant Measure Mo supported on entropic shocks,
realized Mr -Mo · displays AD & Intermittency

Review : Bec-Khanin "Burgers Turbulence" 2007



-
~nnection

between intermittency and lower dimensional dissipation
-

Recall 3

< E7= and Specul
"14T "Intermittency

=>Du- < 27"3 ↓
-()

↳ correction

Thus Sple)-(e)
* (E)

In fact
,

we can "devine this via
due -law:

ETu] = 3S,)
,

SeinT = ES = 24()
L

↑
-L -(P)

=(
In fact

, starting fromNot ?, 7) dissipative

weak solution of Burgers in BVALP. In particularAI/P
u(t) = Bp ,3 Xpx1

If noth? immediatly u() + Balt)



.'

Source of self-regularization : finite Flux !
-

~ v ~Consider visions Burgers : 2 + uuy = v u

Theorem : Let 9. : /R-IR have Lipshitz derivative.

Goldman- &

Gosien-Otto,
151) Let E be the primative of 4

and) be the primadre of XY'CA .

Then we have 2J2) P(8m) + 2
, Jetu] + ReTTIGU] = -v4"Hu (oxdu

where Jetu] = u(x+e)e(en) - E(u) - 28xP(fn)

TIGu]= (Su) - E(Sen)

p - 2

Application : let pis3,CAIR and $(X =XX(X) .
Then

E(x)=XP and E = (p-1) &(A) ·

If <= , we have

Fudd=dude-f
O

- "ulloxbuddea Cu
·



Burgers is a toy model for incompressable turbulence.

But compressible turbulence in the highly compressive
( dominated...

regime
is Shock

Contours of Ip) for increasing
Mach number

,
and compressive comp

(Donzis - John 19)

In fact
, they numerically show

- whe S:



Casestudy : Scalar transport
Let of 1R"xI

"
-> IR satify

204 + u . X0"= Dok

T . u = 0

% = O. Jody = o
/

Here
,

o"represents temperature or dye being
stired

-

by the reloly U. Scalanenergy is dissipated :

Sodx = -So
Even though the the velocity field

does not feature

in this balance
,
it is crutally important

to the process

D
Xo" to

Velocity acts to filiment the scalar, causing
·

grow and contribute more to dissipation

Anomalous
Dissipation

: T) Hodd+ , X0

Druzis-Sreeni (2005)



Advection of
scalar by
smooth velocity
fieldt Mixing

Scalar advected by rough Navier-Stokes

and by the Kraichnan model

=> Anomalous Dissipation
-



Now
,
due to the apriori 13 bound

/

10All 110. 11 /0

we have OK-O to a weak solution of

weak- 1
*

20 + div(n0) = 0 .

Energy balance holds as soon as 3043 cmp
in

(202) + dir (n) =
- Dut0]

where

Dato]=
DOPR

and also

PaToT = timSEO
S

Note
,
if nec of B ,

then

ID
.
1071
!
- e

x + 20 - 1

=> f> is conservative



Ouknow(1949) & Goresin (1951) Theory

turbulent velocity "n + 2
>"de 10

, 17

gives rise to "OC8" with 6 :E &

I
THEOREM : (Drivas , Elgiudi , Eyer, Jeony ,

2020)
/

-

Fix To
,

d, 2
,
2 + 10, 1) & Et There exist

a divergence-free velocity field

ne L'([0,T] ; (4)=such that we have

Krippa-Sumbo

Dadd+ x40 - Sorella ,
'23)

Moreous
,#+ 1 C where= D

Needs modification again due to Intermittency !



Kraichnau Model
-

Gaussian Random Field

(u(y ,Hy =
0

↑ (x-x113to-Y
(lu(x ,+)

- u(xy+/(2) E f(t -t) S B(x -X/12 (x-Y(xE

Roughly , no c in space.

Kraichnau
Navier-
Stokes
↳

↑



2-

& Ot + dur XOt = k DO dt 3 = 22 luEC

Kraichean , Balkovsky, Fallovich, &Studied extensively ( Bernard- Gamedzks - Kupsenan/ Chertkov1 Le Jan Raimond
,
E
, Vanden Eijden (

Vergaysola, Lebedem
1
FouXou

Theorem : (Rowan23) : There exists a crust ((d)
-

such that & (0 , 1) :

# lot e
+ Poolp &70

for all GoeE , Moreover, it happens conti
in. time.

(P-Galeati-Pappaletteral

Theorem : (P-Galeati-Pappaletteral
Forall I

2

whithvanishinddiffernconta=I-

!EIOH)p-adt > 101 =
Mechanism.

regularization #DTOT aMSEO do
by coersive flux

Allows for " zp = p(1-a)- + N

intermittency ! /Bernard-Gamedaks-Kupenan , 1989)



f)
= (X()

-Xt "Surcoof Dissipation
· X+ (b)

dg = b1dt+ W++ dB/Cetan 1965

t

f
.

= |a-b)
- closedequationra!

· when Gaussian field is lipshitz ,

then 9:0 is an absorbing point
for the

diffusion=>

Unique particle trajectories

· When Holder eig. 3=:

19 = +W
the process It

is

instantaneously reflecting
-

at-p=0

Le-Jan Raimond

12002, 2004

Non-uniqueness of trajectories!



Connection between Anomalous dissipation of passive
Scalar and non-uniques of particle trajectories
-

( Bernard-Gamedzki-Kupenan, 1989)

LetueLPty Got and let of be uniques of

X. U=0

204 + n .X0k = kDok

Recall that we say anomalous dissipation occurs if

limit STRodetOn
Equivalently : Limit llAlpC llFl2

Theorem (D- Eyenk 117
,
Rowan23) Suppose the passive

scalar driven by a exhibite anomalous dissipation.

Then
,

the integral curves ofa (backwards in fire

are non-unique for a positive measure set of initial.conditions

Fluctiation
Dissipation-relation : KIOdedt =var(o(Xil
Proof : We will show that I final data Of
-

such that 20 + 4 . DO = 0 has non-unique

o(t) = Of positive solutions

This will imply the statement by Ambrosio's

superposition principle.



Idea of superposition principle : Given a non-negative solution

20 +h .Do
=0 we aim to produce a path measure

Favre average with a mollifier supported everywhere :

G + X . (Jete) = *= (o)e/Fe

Here be is smooth
,

since Fe0 . Then

19,(c) Payda ESaa

dul = 0 : Se
The measure

Lipshite
curredcanbeshowntogiveErmasta
-

Assome anomalous dissipation
Thus we have

two distinct

I non-neg
solutionsin O=D

=> tradistincseems+ T non-unighness
Now sole on trai =

2"+ n . DE" = -kDk in" = Of 2



Richardson (1926) : < N . (H) - Xc(t11) ~G(E)t3

Toy understanding : K41 velocity Senecael's

Y3
=x =(s(x) = 16xY= [BoR+at] - zE3

ga

Spontaneous- Stochastity :
Bernard

, Gawedzki-Kupsenan (1998) ...

Gamdaki-Vergassola (2000) - -

Fynk 12006 ... (

Drivas-Mailybaer , Drivas-Mailybaer-Ruibekas
(2018, 2020

ALSO IN SPACE OF VELOCITIES ! Kraichuan-Leith

Kolmogorov Arnold-Khesin
1950-1959
seminar



(Bantkampt-Drivas-Laleson-Wilek (2)



grangianFormulae for Dissipation Anomaly
&↳k between Lagrangian reversibility & Anomalous Dissipation

THEOREM : (Drivas
,
2019) Let u + PloTiC3) be a

weak Euler solution. Then

him 11IPET=(ix) --I+0 i-iii
: TheXi , s

l-0

where

Note : Din] = Ein] To in 3d

DTUT = - [In]CO In 2d
,
small-scale forced

time1 Da 3D S 2D

OR

Si 3
Uses vigorous resion of of-Mann-Gawediki relation ,
noted by Jucha et al (2014) to link with irreversibility.

Heuristic understanding : inelastic collision

<m va = E (v,+V2) V
V/2

↳ ·
M D
->
Tue Imp2 Im (2)
①

M *KE = Y · Imv2 yo



Scaling laws for Lagrangian helocity
X(= V (t

,a) Vital = U(X+ (9) ,4)

Landau -Lifshitz Prediction :

Sy(a) : = V(t++, a) - v(t,a) (et)"



Theoven (P. Isett
. 25') Let UeLIC be a

weak solution of Euler. For each a it,
consider way solution of

afX(a) = u(Xy(y,t)
Xo(a) = a

Thn XC
.

Thus Ye

&mark : If d= / (k41 value),
then F = 12 (Landan)

Iroof : Let us introduce trajectories in the

source-grained field :

i Xi = The (XEal ,i a
X() = a ·

a

We shall estimate :

1+++1
-Y)) = M - Yea

+ (% + +
() - Ten (a)

We assure deto , Ye]. Others similar.
+ (( - Yy())



Double Holder regularity of p
2

Letze
+ -

[P]pc = [u]
L

M) - YP() = =J [RPe + - . Te](X,( ,5) as

t

1 tInt = ( ·F

Next
,
we find IE1-X19)/nle

*/e
.

Indeed :

t

(XI() - Xy(a)) = S(u(X, (1) - u(X,(),s)/ds
O

>S (X) - ne (X,c))ds

+ / (X, (a) - u(Xs()))ds
t 2

-
> IDels)(X-X,(a)ds + [n]

J> ed[X,1 - X,(d + 1

Gronwall's inequality gives the result.



Finally, we must contend with two terms of form

(( - Y(a))
= (n(X1 , x) - u(Xy ,t)

(ne (X ,
+) - u(X ,t))

tt[o
, te]

+ (n(Xy ,+) - u(Xe,t))

- Inicate" + IXE-X=1]
↓ eat/te

Thus
,
combining the above results.

1x
+ +
1) -Ym))-F [1 + ext/ + ed

+t)/]-
Thus

,
provided t=o andSte= h, we find

↑
arbitrary , could have labelled at

any time
T

.

(1) - Yo)- h = Xt1 Holder

at t= 0 .

Arbitrariness ofE provs paths are Hilder put
E



Questions :
Is them a Lagrangian analogue

D
of Onsager's conjecture in Ca?

Namely,
if all trajectories of a weak solution

12t
of Enler are LaCt
,

does this imply conservation)

Note : Loc regularity of all trajectories
does not imply any regularity

of Eulerian

nector field (think shear Flows).

& Is there a Besor analogue of

the trajectory regularity theorem ?
X

Namely can one show if he By ,X

1it-X+1(p + +
I

t
,
a

or
,
at least a uniform bound along approximations?



Thank you !!




