On the development of shocks and cusps
joint work:
T. Buckmaster
S. Sukoller
V. Viol

Theodore D. Drives Stony Brook University

Compressible Euler System

$$
\rho: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}_{t}, \quad u: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}, \quad E: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}_{t}
$$

mass: $\quad \partial_{t} \rho+\operatorname{div}(u \rho)=0$
momentum: $\quad \partial_{q}(\rho u)+\operatorname{div}(\rho u \otimes u+p I)=0$
energy: $\quad \partial_{t} E+\operatorname{div}((p+E) u)=0$
The energy is decomposed

$$
E=\underset{\substack{2 \\ \text { kinetic }}}{\frac{1}{2}|u|^{2}+e \tau_{\text {internal }}}
$$

This system is closed by declaring the internal energy is related to the pressure $e=\frac{1}{\gamma-1} P, \quad \gamma_{=}=\frac{C_{P}}{c_{v}}>0$: adiabatic index
This is the ideal gas law: $p V=n R T, \rho=\frac{n}{V}$ $R=C_{p}-C_{V}, \quad e=C_{V} \rho T$. Thus

$$
P=\left(c_{p}-c_{v}\right) \rho^{\top}=\left(\frac{c_{p}}{C_{v}}-1\right) e=(\gamma-1) e .
$$

Define the entropy (per unit mass)

$$
S(\rho, e)=\log \left(\frac{P}{\rho^{\gamma}}\right)
$$

Remarkably, for classical solutions

$$
\partial_{t} \delta+u \cdot \nabla \delta=0
$$

Then the entropy satisfies the conservation law

$$
\partial_{f}(\rho s)+\nabla \cdot(\rho \delta u)=0 \text { and } 70 \text { for nonidadl } \quad \text { fluid model }
$$

As long as the solution (ρ, u, E) remains smooth, it can be replaced by the system

$$
\begin{aligned}
& \partial_{t} \rho+\nabla \cdot(\rho u)=0 \\
& \partial_{t}(\rho u)+\nabla \cdot(\rho u \otimes u+p I)=0 \\
& \partial_{t}(\rho s)+\nabla \cdot(\rho s u)=0
\end{aligned}
$$

WARNING: not right after shacks! this is what is simplicity cove isentropic scats.
with pressure function $P(\rho, s)=\rho^{\gamma} e^{s}$
(10) Theovem (Buctmaster, D., Shroller, Vicol, 2021)

From open set smooth initial conditions ${ }_{10}$ at $t=0$ isentrofic

- Theve forms a Hölderian posshoct at some $t_{*}>0$ where $u_{\mu}, \rho_{x} \in C^{1 / 3}$.
- The blowup eajoys a fructional seres expiasion

$$
P_{0}(x) u_{2}(x)=c_{0}+c_{1} x^{1 / 3}+c_{2} x^{2 / 3}+c_{3} x+\theta^{(x / 2)}
$$

Affer the proshocts, the solution is continued as an eatropy producing shock with popeeties

- Shock front $\{x=y(t)\}$ along which
$[[u]] \sim\left(t-t_{x}\right)^{1 / 2} \quad[[\rho]] \sim\left(t-t_{x}\right)^{1 / 2} \quad[[S]] \sim\left(t-t_{x}\right)^{3 / 2}$
- A characterstce surface for $u,\left\{x=y_{2}(t)\right\}$, has $p, \rho, S \in C^{3 / 2}$ cusp whereas $u \in C^{2}$
- A cherathristac sutace of $\left.u-c, \xi_{x}=y_{1}(t)\right\}$ has $\rho_{1} a \in c^{3 / 2}$ casp, $\delta=0$ and $p \in c^{2}$.

Previous works (in brief)

- Landau and Lifshitz asserted existence of weak singularities, no examples.
- Id hyperbolic consenation laws (Scalar and systems) have a long history. See Pafermos (earn). These methods allow to continue solutions past simgulanty bat do not give detailed structural itfouction.
- Majda (1983) evolves a preexisting shack.
- Lebaud (1994) did first study of this for a reduced 10 model (isentropic), but did not investigate cusps. Follow ups,

- Christodontocent studies ierotational development outside symmetry completely. Discowed cusps, but ad the right jump cations and thus physics.

Shock formation
Let $c=\sqrt{\partial P / \partial \rho}$ be the speed of sound Introduce Riemann variables:

$$
w:=u+\frac{1}{\alpha} c, \quad z:=u-\frac{1}{\alpha} c, \quad \alpha:=\frac{\gamma-1}{2}
$$

Then the system for (ρ, u, s) is equivalent to

$$
\begin{aligned}
& \partial_{t} \omega+\lambda_{3} \partial_{x} \omega=\frac{\alpha}{8 \gamma}(\omega-z)^{2} \partial_{x} S \\
& \partial_{t} S+\lambda_{2} \partial_{x} S=0 \\
& \partial_{t} z+\lambda_{1} \partial_{x} z=\frac{\alpha}{8 \gamma}(\omega-z)^{2} \partial_{x} S
\end{aligned}
$$

where $\lambda_{3}=u+c$,

$$
\lambda_{1}=u-c
$$

Original system is recovered by

$$
u=u(\omega, z, s) \quad \rho=\rho(\omega, z, s) \quad E=E(\omega, z, s)
$$

If $S_{0}=$ constant, $S(t)=$ const. Thus if $z_{0}=0,2(t)=0$ ie. Then $u+c=\frac{1+\alpha}{2} \omega$ and set $\frac{1+\alpha}{2}=1$ \int_{5}^{2}

$$
\partial_{t} \omega+\omega \partial_{r} \omega=0
$$ by chard fine

Burgers equation

$$
\begin{array}{r}
\partial_{t} \omega+\omega \partial_{t} \omega=0 \\
\left.\omega\right|_{t=0}=\omega_{0}
\end{array}
$$

Let η be characteristics

$$
\frac{d}{d t} \eta(t, x)=\omega(\eta(t, x), t), \quad \eta_{0}(x)=x
$$

Then $\frac{d}{d t} \omega(\eta(f, r), t)=0$ so $\omega\left(\eta((x), t)=\omega_{0}(x)\right.$ and thus $\eta(f, x)=x+t \omega_{0}(x)$

Since $\omega_{R}=\partial_{r} \omega$ satisfies

$$
\partial_{t} \omega_{x}+\omega \partial_{x} \omega_{x}=-\omega_{x}^{2}
$$

$$
\omega_{x}(\eta(x, x), t)=\frac{\omega_{0}^{\prime}(x)}{1+t \omega_{0}^{\prime}(x)}
$$

First singularity emerges from label x_{*} at which $\omega_{0}^{\prime}\left(x_{x}\right)$ is most negative. Time of blowup is $t_{*}=1 /-\omega_{0}^{\prime}\left(x_{*}\right)$.

Typical

$$
\begin{aligned}
& \omega_{0}(x)=-x+x^{3} \\
& w_{0}^{\prime}(x)=-1+3 x^{2}
\end{aligned}
$$

situation:

$$
x_{x}=0, \quad \omega_{0}^{\prime}\left(x_{x}\right)=-1, \quad \omega_{0}^{\prime \prime}\left(x_{x}\right)=0, \quad \omega_{0}^{\prime \prime \prime}\left(x_{x}\right)=6>0
$$

generic in that it is stable under C^{3} perturbation.
Blowup occurs at time $t_{*}=1 / \omega_{0}^{\prime}(t)=1$.
React $\eta(1-x)=(1-t) x+t x^{3}$
Consider $\left(x \mid<1\right.$. Since $\omega(x, 1)=\omega_{0}(\eta(1, x))$ and $\eta(1, x)=x^{3}, \quad \eta(1, x)=x^{1 / 3}=\operatorname{sgn}(x)|x|^{1 / 3}$.
Thus $\omega(x, 1)=\omega_{0}\left(x^{1 / 3}\right)=-x^{1 / 3}+x \int_{\text {cosses to }}$
 be a dialog bat still a home o.
we should expect precisely $C^{1 / 3}$ cusps to $[$ chr 07$]$ arise from generic initial conditions! $[B S V, 20,21]$
NoTe: $\omega_{0}=-x+x^{n}$ gives $C^{1 / n}$ cusp for ag $n \geqslant 2$. Can br smooth, but not generic.

Life after the first singularity
... shock forms, the equations hold classically away from the shock front and weakly across, to conserve mass, momentum and total energy.

Shock front: $\sum c \mathbb{P}^{d} \times\left(T_{1}, T_{2}\right]$ orientable hypersurfece

$$
\Sigma=\{x=y(t)\}
$$

spacetime nome

$$
:(-\dot{y}(t), 1)
$$

across the shock, the solution jumps

$$
[[\rho]]=\rho^{-}-\rho^{t}, \ldots \rho^{1}=\left.\rho\right|_{y t}
$$

in a way consistent with mass, momentum, energy cons.

Note if

$$
\begin{aligned}
& \partial_{t} \rho+\partial_{x} f=0, \quad f=\rho u \\
& \frac{d}{d t} \int_{\pi} \rho d x=\frac{d}{d t} \int_{-\pi}^{y(t)} \rho d x+\frac{d}{d t} \int_{y(t)}^{\pi} \rho d x \\
&=\dot{y}(t)\left(\rho^{-}-\rho^{+}\right)+\int_{\pi} \partial_{t} \rho d x \\
&=\dot{y}(t)[\lceil\rho]]-\int_{-\pi}^{y(t)} \partial_{x} f d x-\int_{y(t)}^{\pi} \partial_{t} f d x \\
&=\dot{y}(t)[[\rho]]-[[f]]=0
\end{aligned}
$$

Thus we arrive at the following conditions
mass: $\quad \dot{y}(t)[[\rho]]=[[\rho u]]$
speed of shock determined to fir one of these. Oh ur tho?

Rankine - Hugoniot conditions

Deterministic development: Lax entropy conditions (10)

$$
\left\{\begin{array}{l}
\partial_{t}+u-\partial_{x}=(1, u+c) \cdot \nabla_{t, x} \\
\partial_{t}+u \partial_{x}=(1, u) \cdot \nabla_{t, x} \\
\partial_{t}+(u-c) \partial_{x}=(1, u-c) \cdot \nabla_{t, x}
\end{array}>(-\dot{y}+t, t)\right.
$$

Recall $\hat{y}=(-\dot{y}(t), 1)$ is shock spacetime normal

$$
\begin{aligned}
& y(t)=k t \\
& \Sigma=\{x-t k=0\} \\
& n=(-k, 1)
\end{aligned}
$$

$$
\begin{aligned}
& n \cdot\left(1, u^{+}-c^{+}\right)<0, n \cdot\left(1, u^{+}\right)<0, \\
& n \cdot\left(1, u^{-}-c^{-}\right)<0, n \cdot\left(1, u^{-}\right)<0,
\end{aligned}
$$

Physical entropy conditions:

$$
\frac{d}{d t} \int_{\pi} \rho S d x>0 \Leftrightarrow[\lceil S \rrbracket \gg 0
$$

Theorem: For weak shocks, lax \Leftrightarrow physical entipy

Recall the Riemann variable system:

$$
\begin{aligned}
& \partial_{t} \omega+\quad \partial_{x} \omega=\frac{\alpha}{8 \gamma}(\omega-z)^{2} \partial_{x} S \\
& \partial_{t} S+u \partial_{x} S=0 \\
& \partial_{t} z+(u-c) \partial_{x} z=\frac{\alpha}{8 \gamma}(\omega-z)^{2} \partial_{x} S
\end{aligned}
$$

holds to either side of the shock.

$$
\begin{array}{r}
{[[\rho u]]^{2}=\left[\left[\left[\rho u^{2}+p\right]\right][[\rho]]\right.} \\
{[[(u n]][[E]]=[[(p+E) u \rrbracket][[\rho]]}
\end{array} \Longleftrightarrow \begin{aligned}
& E_{1}\left(\omega^{-}, \omega^{+}, s^{-}, s^{+}, z^{-}, z^{+}\right)=0 \\
& E_{1}\left(\omega^{-}, \omega^{+}, s^{-}, s^{+}, z^{-}, z^{+}\right)=0
\end{aligned}
$$

Regard $\omega^{ \pm}, s^{+}, z^{+}$as given, solve coupleal 6 th order polynomid system for S^{-}and z^{-}.

We express

$$
\left.\langle\omega\rangle\rangle=\frac{\omega^{-}+\omega^{\dagger}}{2}, \quad[\omega \omega]\right]=\omega^{-}-\omega^{\dagger}
$$

Lemmai there exists exactly one Ned root

$$
\begin{aligned}
& \left.[[z]]=-c_{z}\left(\gamma_{1},\langle\omega\rangle\right\rangle, z_{+}\right)[[\omega)]_{3}^{3}+\theta\left([[\nu)]^{5}\right) \\
& \left.[s]]=c_{s}\left(r_{1}\langle\omega\rangle\right\rangle, z_{+}\right)[[\omega)]^{3}+\theta\left([[\nu)]^{5}\right) \\
& \dot{y}=\underbrace{\left.C_{\zeta}(\gamma,\langle\omega\rangle\rangle, z_{+}\right)}_{(1, \psi \pi) k}+\dot{\theta}\left([\omega,]^{2}\right) \\
& \left(\frac{1+\pi}{2}\right) K<\text { speed ot sound at } t=0, k=0
\end{aligned}
$$

Recall

$$
\partial_{\ell} \omega+\left(\left(\frac{1+\alpha}{2}\right) \omega+\left(\frac{1-\alpha}{2}\right) z\right) \partial_{x} \omega=\frac{\alpha}{8 \gamma}(\omega-z)^{2} \partial_{x} S
$$

Assuming time is short so $|[\tilde{[} \omega]| \mid<1$ and thus $|z| \ll 1$ and $|s| \ll 1$ so

$$
\begin{aligned}
& \partial_{t} \omega+(\omega+\underset{\text { solar }}{\text { ste }}) \partial_{k} \omega=\binom{\text { small entropicic }}{\text { eviror }} \\
& \omega_{0}(x)=k-b x^{1 / 3}+\binom{\sin \left(\mathbb{C l} e^{\prime v o r}\right)}{|x|<1}
\end{aligned}
$$

Thus, for short trave we say

$$
\omega(t, x) \approx \omega_{B}(t, x)=\omega_{0}\left(\eta^{-1}(t, x)\right)
$$

where

$$
\begin{aligned}
\eta\left(\omega_{1} x\right) & =x+t w_{0}(x) \\
& \approx x+t\left(k-b x^{1 / 3}\right)+\cdots
\end{aligned}
$$

QUESTlow: Which labels $x^{ \pm}(t)$ fall into the shock at time $t>0$?

We look for a such that $X_{t}(a)=y(t)$, at shat. Recall:

$$
y(t)=k t+\left(\begin{array}{lll}
\text { s mall crave } \\
\text { for } & H 1 \ll 1
\end{array}\right)
$$

Then $X^{I}(e)$ solve $x^{\frac{1}{2}}(t)=\left(\frac{1+d x}{2}\right) t b x^{1}(t)^{1 / 3}$, than

$$
x^{ \pm}(t)= \pm(b t)^{3 / 2} \sim t^{3 / 2}
$$

Thus

$$
[[\omega]]=w_{0}(\bar{a})-w_{0}\left(b^{t}\right) \approx 2 b(b t)^{1 / 2} \sim t^{1 / 2}
$$

Thus, since $[[s]] \sim-[[z]] \sim[[\omega)]^{3}$, we find (14)

Shock front serves as cauchy nypersurface for entropy and z in the domain of influence of the shock.

Initial data on $\{x=k=t\}$ of type

$$
z_{0}(x), S_{0}(x)=\left\{\begin{array}{cc}
0 & x \leqslant 0 \\
c x^{3 / 2} & x=k t
\end{array}\right.
$$

Cusp singularity at $x=0$.

$$
\begin{aligned}
& \partial_{t} \omega+(u+c) \partial_{x} \omega=\frac{\alpha}{8 r}(\omega-z)^{2} \partial_{x} S \\
& \partial_{t} S+u \partial_{x} S=0 \\
& \partial_{t} z+(u-c) \partial_{x} z=\frac{\alpha}{8 r}(\omega-z)^{2} \partial_{x} S
\end{aligned}
$$

For short trans, mar $x=0$

$$
(u+c) \approx k, \quad u \approx \frac{k}{1+d}, \quad u+c \approx\left(\frac{1-\alpha}{1+k}\right) k .
$$

Flows $\quad \eta_{3}(t, x)=x+\lambda_{3} t$

$$
\begin{aligned}
& \eta_{2}(t, x)=x+\lambda_{2} t \\
& \eta_{1}(t, x)=x+\lambda_{1} t
\end{aligned}
$$

$$
0<\lambda_{1}<\lambda_{2}<\lambda_{3}
$$

Since entropy is transported: $\partial_{k} s+\lambda_{2} \lambda_{k} s=0$.

$C^{3 / 2}$ cusp in entropy propagates with the fluid velocity from the preshock.

$$
\begin{aligned}
& \partial_{t} \omega+(u+c) \partial_{x} \omega=\frac{\alpha}{8 \gamma}(\omega-z)^{2} \partial_{x} S C_{\text {naively }}^{C_{1 / 2}} \\
& \partial_{t} z+(u-c) \partial_{x} z=\frac{\alpha}{8 \gamma}(\omega-z)^{2} \partial_{x} S \quad \text { across } y_{2}(t)
\end{aligned}
$$

But $\partial_{x} S$ acts as a fore e which is integrated along transversal characteristics Gain ia regularity!

$$
\begin{aligned}
z\left(a+y_{2}(t), t\right) & -z_{0}\left(a+\left(\lambda_{2}-\lambda_{1} t\right)\right. \\
& \approx \frac{\alpha}{\sqrt{r}} \int_{0}^{t}\left(\sigma^{2} s\right)\left(a+\left(\lambda_{2}-\lambda_{1}\right) t+\lambda_{1} \tau, \tau\right) d \tau \\
& \approx c \int_{t+\frac{a}{\lambda_{2}-\lambda_{1}}}^{t}\left(y-\lambda_{1}(t-\tau)\right)^{1 / 2} d \tau \sim a^{3 / 2}
\end{aligned}
$$

Thus, z and w both make $c^{3 / 2}$ cusp singularities along $\left\{x=y_{2}(t)\right\}$.

$$
S \in C^{3 / 2}, z \in C^{3 / 2}, \quad w \in C^{3 / 2}
$$

Miraculously, thor is a cancellation in the quantity $u=\frac{1}{2}(\omega+z)$ which makes $u \in C^{2} \quad$ (actually should be $C^{5 / 2}$)
uses "good unknowns"

$$
q_{w}=\partial_{x} \omega-\gamma c \partial_{x} s \quad q_{z}=\partial_{y} z-\gamma c \partial_{y} s .
$$

Thus we call this a weak contact discontinuity, since the velocity is slightly smoother than density it pressure.

Across $\left.\xi_{t}=y_{1}(t)\right\}$ a similar phenomenon happens for z,

$$
z(x, t) \approx c \begin{cases}0 & x<y_{1}(t) \\ \left(x-y_{1}(t)\right)^{3 / 2} & y_{1}(t)<x \ll y_{2}(t)\end{cases}
$$

However, here entropy is vanishing, so

$$
z \in C^{3 / 2}, w \in C^{3 / 2}, \quad S=0
$$

Miraculously, the pressure again smoothen

$$
P \in C^{2}
$$

Thus we call this a weak ravedaction wave.

real story...

2D Azimuthal shock development

