On the development of shocks and cusps

T. Buckmaster S. Shkoller V. Vicol

Theodore D. Drivus Stony Brook University

Compressible Euler System $P: \mathbb{R}^{d} \times \mathbb{R} \to \mathbb{R}_{t}, \quad u: \mathbb{R}^{d} \times \mathbb{R} \to \mathbb{R}^{d}, \quad E: \mathbb{R}^{d} \times \mathbb{R} \to \mathbb{R}_{t}$ $\partial_t \rho + div(u\rho) = 0$ Muss: $\partial_t(pu) + div(puou + pI) = 0$ momentum: $\partial_t E + div((p+E)u) = 0$ energy: is decomposed The energy $E = \frac{1}{2} \beta |u|^2 + \frac{1}{2} \delta |u|^2 + \frac{1}{2$ This system is closed by declaring the internal energy is related to the prossure $e = \frac{1}{\delta - 1} P$, $\eta = \frac{C_p}{C_v} = \frac{1}{2} \frac{1}{\delta - 1} \frac{1}{$ This is the ideal gas law: PV = nRT, $P = \frac{n}{V}$ R=Cp-CV, e=CygT. Thus $P = (C_p - C_v) P^T = (C_p - 1) e = (y - 1) e.$

Z Define the entropy (per unit mass) $S(p,e) = \log\left(\frac{p}{pr}\right)$ Remarkably for classical solutions $\partial_{t}S + u \cdot \nabla S = O.$ Then the entropy satisfies the conservation law ∂_t(ps) + ∇. (psu) = 0 and 70 for nonided find modes As long as the solution (P,U,E) remains Smooth, it can be replaced by the system WARNING: not right $\partial_t \beta + \nabla \cdot (\beta u) = 0$ after shocks! $\partial_{t}(u) + \nabla \cdot (fuou + pI) = 0$ this is what is implicity done $\partial_{t}(\rho s) + \nabla \cdot (\rho s u) = 0$ when popugating isentropic Shot.

with pressure function $P(p,s) = p^{\gamma}e^{s}$

De Theorem (Buckmoster, D., Shkoller, Vicol, 2021) 3 From 1 smooth initial conditions at f=0 isentropic isentropic O There Forms a Hölderian preshock at some ty 70 where USEC'3. • The blowup enjoys a fractional series exprasion $\int_{B} (x_1 \mathcal{U}_{X}(x)) = C_0 + C_1 X^{1/3} + C_2 X^{2/3} + C_3 X + \mathcal{O}(x^{1/3})$ After the preshect, the solution is continued as an entropy producing shock with properties • Shock front Ex=ylt)? along which $[Iu]] \sim (t-t_*)^{1/2} [Ip]] \sim (t-t_*)^{1/2} [IS]] \sim (t-t_*)^{3/2}$ for U, Ex= y2(x) 3, has · A characteristic surface P, P, SEC^{3/2} cusp whereas heC² weak contact • A characteristic surface of $\mu - C_r = Y_r(r)$ has $P_r \cap C^{3/2} \cap P_r$, S=0 and $P \in C^2$. weak raredaction

Previous works (in brief)

· Landou and Lifshitz asserted existence ot weak singularities, no examples. Id hyperbolic conservation laws (scalar and systems) have a long history.
 See Defermos (2010). These methods allow to continue solutions past singulanty but do not give detailed structural information. o Majda (1983) evolves a preexisting shock. · Lebaud (1994) did first study of this for a reduced 10 model (isentropic), but did not investigate (usps. Follow up), Chen & Dong, Kong (2001, 2002), Christodedon-Lischach (2013) · Christodoulou Studies irrotational development outside symmetry completely. Discourd Cusps but not the right "rump conditions and this physics.

Y

Shock formation
Let
$$C = \sqrt{\partial V/\partial p}$$
 be the speed of sound
In troduce Piemann Variables:
 $\omega := u + \frac{1}{\alpha}C$, $z := u - \frac{1}{\alpha}C$, $\alpha := \frac{V-1}{2}$
Then the system for (p, u, S) is equivalent to
 $\frac{1}{2}\omega + \frac{1}{2}\partial_{x}\omega = \frac{\alpha}{8\pi}(\omega - z)^{2}\partial_{x}S$
 $\frac{1}{2}z + \frac{1}{2}\partial_{x}z = \frac{\alpha}{8\pi}(\omega - z)^{2}\partial_{x}S$
 $\frac{1}{2}z + \frac{1}{2}\partial_{x}z = \frac{\alpha}{8\pi}(\omega - z)^{2}\partial_{x}S$
where $\frac{1}{3} = u + C$, $\frac{1}{2} = u$, $\frac{1}{2} = u - C$
Priginal system is recoverd by
 $u = u(\omega_{1}z_{1}S)$ $g = g(\omega_{1}z_{1}S)$ $E = E(\omega_{1}z_{1}S)$
If $s_{0} = constant$, $S(t) = const.$ Thus if $z=0$, $2t0 = 0$
i.e. Then $u + C = \frac{1+\alpha}{2}\omega$ and set $\frac{1+\alpha}{2}$
 $\frac{1}{2}\omega + \omega \partial_{x}\omega = 0$

Burgers equation

$$\frac{\partial_{t} w + w \partial_{t} w = 0}{\psi_{t=0}} \quad \text{the } 1 \quad \text{the }$$

Typical
$$w(x) = -x + x^{3}$$

situation:
 $w_{0}^{(1)}(x) = -1 + 3x^{2}$
 $x_{x} = 0, \quad w_{0}^{(1)}(x_{x}) = -1, \quad w_{0}^{(1)}(x_{x}) = 0, \quad w_{0}^{(1)}(x_{x}) = 670$
 $generic in that it is stable under C^{3} perturbation.$
Blow p occurs at time $t_{x} = -w_{0}^{(1)}(v)^{2} = 1$.
 $Porch \quad \eta(t_{x}) = (1-t)x + tx^{3}$
Consider $(x|<1. Since \quad w(x,1) = w_{0}(\eta(t_{1}x))$
and $\eta(t_{1}x) = x^{3}, \quad \eta(t_{1}x) = x^{1/3} = sgn(w) |x|^{1/3}.$
Thus $w(x,1) = w_{0}(x^{1/3}) = -x^{1/3} + x \int_{vorto.}^{vorto} to the expect precisely $C^{1/3}$ casps to $[Ct_{1}, 07]$
we should expect precisely $C^{1/3}$ casps to $[Ct_{1}, 07]$
Affise from generic initial conditions! $[BSV, 10, 21]$
NOTE: $W_{0} = -x + x^{10}$ gives $C^{1/3}$ casp for any 1372 .
Can be should, but not generic.$

Life after the first singularity

classically away from the shock front and weakly across, to conserve mass, momentum and total energy. motion 5 ot Shock front: ZC Rax (T, T2] orientable hypersurface time U, g, EU, g, E $u, g^{\dagger}, E^{\dagger}$ $Z = \{ X = y(t) \}$ spacetine normal : (-y(t),1) spuce across the shock, the solution jumps $[[g]] = g^{-} - g^{+}, \dots g^{+} = g_{yt}$ in a way consistent with mass, momentum, energy cons.

Note if

$$\begin{aligned} \partial_{t} g + \partial_{x} f &= 0 , \quad f = gu \\ \frac{d}{dt} \int_{T} g \, dx &= \frac{d}{dt} \int_{T} g \, dx + \frac{d}{dt} \int_{T} g \, dx \\ T &= \int_{-T} g(t) (g - g^{+}) + \int_{T} \partial_{t} g \, dx \\ &= g'(t) (g - g^{+}) + \int_{T} \partial_{x} f \, dx - \int_{T} \partial_{x} f \, dx \\ &= g'(t) [Ig]] - \int_{T} \partial_{x} f \, dx - \int_{T} \partial_{x} f \, dx \end{aligned}$$

9

speed of shock

determined

to fir one

of these.

Other two?

 $= \operatorname{ym}[[p]] - [[f]] = 0$

Thus we arrive at the following conditions

Mass :	ý(t) [[g7] = [[gu]]
momentum:	ý(t) [[pu]] = [[pu ² +p]]
lnergy:	\dot{y} [f] = [[(p +E) u]]

Rankine - Hugoniot conditions

Deterministic development: Lax entropy conditions⁽¹⁾

$$a_{t} + u a_{t} = (1, u+c) \cdot \nabla_{t,x}$$

 $a_{t} + u a_{t} = (1, u) \cdot \nabla_{t,x}$
 $a_{t} + u a_{t} = (1, u) \cdot \nabla_{t,x}$
 $a_{t} + u a_{t} = (1, u-c) \cdot \nabla_{t,x}$
 $a_{t} + (u-c) a_{t} = (1, u-c) \cdot \nabla_{t,x}$
 $P_{teall} \quad \hat{n} = (-\hat{y}(m, 2) \text{ is shock spectime normal}$
 $y(t) = kt$
 $\leq = g \times -t\kappa = c_{t}$
 $n = (-\kappa, 1)$
 $n \cdot (1, u^{t} - c^{t}) < c_{t}$
 $n \cdot (1, u^{t}) < c_{t}$
 $n \cdot (1, u^{t} - c^{t}) < c_{t}$
 $n \cdot (1, u^{t}) < c_{t}$
 $n \cdot (1, u^{t} + c^{t}) > c_{t}$
 $d_{t} \int g S dx 7 c \Leftrightarrow f S I J > c_{t}$
Theorem: For Weak shocks, Lax \Leftrightarrow Physical entropy

Mass:
$$\dot{y}(t) [f g7] = [f gu T] \leftarrow$$

momentum: $\dot{y}(t) [f gu] = [f gu^2 + pT]$
(nergy: $\dot{y}(t) [f gu] = [f (p + E) uT] \leftarrow$
Recall the Ditaman variable system:
 $\partial_t \omega + (u + r) \partial_x \omega = \frac{\alpha}{86} (\omega - 2)^2 \partial_x S$
 $\partial_t S + u \partial_x S = 0$
 $\partial_t Z + (u - c) \partial_x Z = \frac{\alpha}{86} (\omega - 2)^2 \partial_x S$
holds to either side of the shock.
 $[f gu] I = [f (p + E) uT] [f] \implies E_1 (w, w, s, s, s, z, z, z) = 0$
 $[f (u)] I = [f (p + E) uT] [f] \implies E_1 (w, w, s, s, s, z, z, z) = 0$
Regard $w_1^{\pm} s_1^{\pm} z^{\pm}$ as given, solve coupled 6th
order polynomicd system for S and Z.

We express

$$\langle \langle w \rangle = \frac{w + w^{\dagger}}{2}, \quad [\tilde{t} w] = w - w^{\dagger}$$

 $\overline{(12)}$

Lemma: there exists exactly one red root
consistent with entropy production. Morrower, if
$$|\overline{UUJ}| \leq 1$$

 $[\overline{Z}]] = -C_{1}(T_{1} \ll W)_{1}Z_{1})$ $[\overline{UUJ}]^{3} + O([\overline{UUJ}]^{5})$
 $[\overline{S}]] = C_{1}(T_{1} \ll W)_{1}Z_{1})$ $[\overline{UUJ}]^{3} + O([\overline{UUJ}]^{5})$
 $[\overline{S}]] = C_{1}(T_{1} \ll W)_{1}Z_{1})$ $[\overline{UUJ}]^{3} + O([\overline{UUJ}]^{5})$
 $\overline{J} = C_{1}(T_{1} \ll W)_{1}Z_{1})$ $+ O([\overline{UUJ}]^{2})$
 $\underline{J} = C_{1}(T_{1} \ll W)_{2}Z_{1})$ $+ O([\overline{UUJ}]^{2})$
 $\underline{J} = C_{1}(T_{1} \ll W)_{2}Z_{1})$ $+ O([\overline{UUJ}]^{2})$

$$\partial_t w + \left(\left(\frac{1+\alpha}{2}\right)w + \left(\frac{1-\alpha}{2}\right)z\right)\partial_x w = \frac{\alpha}{8\pi} \left(u-z\right)^2 \partial_x S$$

Assuming time is short so $|\overline{II} w \overline{II}| \ll 1$ and thus $|\overline{Z}| \ll 1$ and $|\overline{S}| \ll 1$ so

$$\partial_t w + \left(w + \frac{smol}{env}\right)\partial_x w = \left(\begin{array}{c} snall entropic\\ everwork \right) = K - b x^{1/3} + \left(\begin{array}{c} small error\\ 1x < x \end{array}\right)$$

 $[c_{SJ}] \sim - [c_{SJ}] \sim [c_{SJ}]^{3}$ find Thus Since 5,2~t/g= Dumain flacace Domun of E [[w]]~ t "2 5=0,7=0 5=0,2=0 shock front serves as cauchy hyperservace for entropy and Z in the domain of influence of the shock. of type Initial data on 3x = kt3 $Z_{0}(x), S_{0}(x) = \begin{cases} S & 0 & x \leq 0 \\ C & x^{3/2} & x = kt \end{cases}$ singularity at X=0. Cusp

For short times, mar x=0 $(u+c) \approx k$, $u \approx k$ $h^{\dagger}C \approx \left(\frac{1-c}{1+v}\right)$ $\gamma_2(t, x) = x + \lambda_2 t$ Flows $\gamma_2(t,x) = x + \frac{1}{2}t$ $\eta_{1}(t_{1}x) = x + \lambda_{1}t$ $0 < \lambda_1 < \lambda_2 < \lambda_3$

 $X < y_2(x)$ $5(t_1x) \sim \begin{cases} 0 \\ (x-y_2(t))^{1/2} \end{cases}$ $y_{M} \leq x \leq z_{H}$ *પામ <×*

But $\partial_{x}S$ acts as a form which is integrated along transversal characteristics Guin in regularity! $2(a + y_{2}(t), t) - z_{o}(a + (\lambda_{2} - \lambda_{1}) +)$ $\approx \frac{\pi}{\sqrt{5}}\int^{t}(\sigma z_{s})(a + (\lambda_{2} - \lambda_{1})t + \lambda_{1}\tau, \tau)d\tau$ $\approx c \int_{t}^{t}(y_{1} - \lambda_{1}(t - \tau))^{2}dt \sim a^{3/2}$

Thus, 2 and w both make \tilde{C}^{2} (18) Cusp sinjularities along \$x=gelt}3. $S \in C^{3/2}$, $Z \in C^{3/2}$, $W \in C^{3/2}$ Misaculously, there is a cancellation in the quantity $U=\frac{1}{2}(\omega+2)$ which makes UECZ (actually should be 512) Uses "good unknowns" $q_w = \partial_x \omega - \eta c \partial_x S$ $q_z = \partial_x 2 - \eta c \partial_x S$. Thus we call this a weak contact discontinuity Since the velocity is Slightly smoother than density & pressure.

Across
$$2t = y_1(t)^3$$
 a similar
planomenon happens for 2,
 $Z(x,t) \approx C_2^3 (x-y_1(t))^{3/2}$ $y_1(t) < x \ll y_2(t)$
However, here ontropy is vanishing, so
 $2 \in C_2^{3/2}$, $w \in C_2^{3/2}$, $S = 0$
Miraculo-sly, the pressure again shoother
 $P \in C_2^2$
hus we call this a unsate ranebaction univer

HANK- Jou

real story...

2D Azimutal shock development