Mathematical Aspects of Turbulence

Outline: Lectuve 142: Phenomencloyg and Muthematics of fully dewloped 2/3,2/5 turbulence
Lecture 3: Trususition to turbilence and a problien of kolmogerov
Lecture 4: Formation of small sicales in ideal (muistad) fluids

Thedone P. Drivas Story Brout Uniwnity

Detailed Outline:
Lecture 1: - Equations of motion and basic properties

- High Reynolds number behavior, exp. \& numerics
- Kolmogoror 1941 theory

Lecture 2: - Landau's kazan remark \& metermittency

- Onsager's Conjecture and diss.pature weak Euler Solutions.
- Examples of "anomalous dissipation"
- convex integrator constructions
- Burgers
- Passive scalar constructions.

Lecture 3: - Transition to turbintence

- Kolmogorous flow problem.
- Stability of laminar state at "low Re"
- Instability of laminar' state of "hail R_{e} " (Mishulkin \& Sinai)
- Bifurcation to stable secondary flews near onset (Yudovich).
- Long time behavior ot ideal fluids Was laminar states.
- Mirray;instahiity and caficite time quarto (Koch, Nadivashvili)

Transistion (Dynamical proynession) to Turbulence
"A. N. Kolmogorov considered his work on turbulence to be non-mathematical. He wanted to explain observed phenomena from first principles, i.e. from the Navier-Stokes equations. This dream was one of the sources of his interest in the theory of dynamical systems, in which he perceived a set of tools for the description of turbulent chaos." - V.I. Arnol'd [22]

Consider the ODE

$$
\begin{aligned}
\frac{d}{d t} u(t) & =F(u(t)) \\
u(0) & =u_{0}
\end{aligned}
$$

The variable $u=u(t)$ belongs to a linear space H called the phase space and $F: H \rightarrow H$.

Two cases:

- finite dimensional $\quad H=\mathbb{R}^{d}$
- retinite dicuensiond $H=$ a Hilbert space.

20 friends fall into the later category with $H=L_{\sigma}^{2}$ or $H=H_{\sigma}^{\prime}$ (depending on regularity of external force)

$$
\begin{aligned}
& L_{\sigma}^{2}=\left\{u \in l^{2}\left(\mathbb{T}^{2}\right): \nabla \cdot u=0\right\} \\
& H_{\sigma}^{\prime}=\left\{u \in H^{\prime}\left(\mathbb{T}^{2}\right): \nabla \cdot u=0\right\}
\end{aligned}
$$

$$
\frac{d}{d t} u(t)=F(u(t)), \quad u(0)=u_{0}
$$

- We are interested in the $t \rightarrow \infty$ behavior
- Generally $F(u)=F_{\mu}(n)$ for some parameter Long time behavior will depend strongly on μ. The rove of μ will depend on details of system. Here is a schematic of STAGES: (Landau)
(1) For μ small, $\mu<\mu_{1}$, there exists a unique stationary solution $u=u_{1}^{s}$, ie. (*) $\quad F_{\mu}\left(u_{1}{ }^{5}\right)=0$.
This solution is stable and attracts all orbits

$$
u(t) \rightarrow u_{1}^{s} \quad \text { as } t \rightarrow \infty
$$

(2) For larger $\mu_{1}, \mu_{1}<\mu<\mu_{2}$, other solutions of $C \times 1$ appear, $u_{2}^{s}, u_{3}^{5}, \ldots$ and U_{1}^{5} loses stability. We say a bifurcation has occurred at $\mu=\mu_{1}$. The nev solutions are typically stable and each have a basin so $u(t) \rightarrow u_{i}^{\text {s }}$ for some $i=2,3 \ldots$.
(3) When μ is for the increased, $\mu_{2}<\mu<\mu_{3}$, a Hope bifurcation can occur. In this cas the flow doesn't become stationary but rather
where $\phi(t)$ is a time-pervdic solution

$$
\begin{aligned}
& \frac{d}{d t} \phi(t)=F(\phi(t)) \quad t \in \mathbb{R} \\
\phi(t+T) & =\phi(t)
\end{aligned}
$$

Apriovi, the value μ_{2}, solution $\&$ and pernod T are all unknown and al detailed anglysis is required
From this point, we can either a Feigenbanm

(4) Fur larger $\mu, \mu_{3}<\mu<\mu_{4}$ can appear; ie.

$$
u(t)-\phi(t) \rightarrow 0
$$

where $\&$ is a quasiperiodic solution of $\mathrm{b}^{2} \mathrm{~m}^{\infty}$)

$$
\phi(t)=g\left(w_{1}, t, \ldots, \omega_{n} t\right)
$$

where g is periodic with period 2π in each variable and $\omega_{i}=1 / T_{i}$ ane rationally indepradera real numbers.
Flow looks chaotic, bat forcer analysis shows system
(8) For $\mu>\mu_{4}$, the flow is chaotic, a stage when e $u(1)$ looks completely random for all time. Fourier revels a wide-band spectra. One can show

$$
u(t) \rightarrow X \text { as } t \rightarrow 4
$$

in the sense

$$
\operatorname{dist}(u(t), x) \rightarrow 0 \text { os } t \rightarrow \infty
$$

Hen, X is an invariant subspace of H, ie.

$$
S_{f}(x)=x \quad \forall \neq \geqslant 0
$$

where s_{t} is the semigroup of $\dot{u}=F(h)$.
The set X may be extremely complicated (Fractal) with couples greoustry (noon-smooth).

The Kolmogorov Model
Analysis Seminar (1958) "Theory of dynamical systems and hydrodynamic stability".
Consider the motion of a two-dimentional fluid, periodic with period $2 \pi l / d \operatorname{in} x$ and period $2 \pi L$ in y : Fir $\alpha>0, L>0, \gamma>0$ On $\Pi_{\alpha}^{2}:=[0,2 \pi l / d) \times[0,2 \pi l)$, consider

$$
\begin{aligned}
\partial_{t} u+u \cdot \nabla u & =-\nabla p+v \Delta u+\gamma f \\
\nabla \cdot u & =0 \\
\int_{\mathbb{T}_{\alpha}^{2}} u d x d y & =0 \quad 2 \pi L
\end{aligned}
$$

The forcing f is takin to be an eigenfunction of the stokes operator: $A=-\mathbb{P} \Delta$

$$
A f_{\lambda}=\lambda f_{\lambda}
$$

Can be constructed from eigenfanctions of Laplacian $f_{\lambda}=\nabla^{+} q_{\lambda}$ where $-\Delta q_{\lambda}=\lambda q_{\lambda}, \quad \int q_{\lambda}=0$ example

$$
\binom{0}{\sin (\alpha n x)} \quad \text { or }\binom{\sin (m y)}{0} \quad n, m \in \mathbb{N}
$$

А. Н. Колмогоров предложил рассмотреть решение системы

$$
\begin{aligned}
& \frac{D u}{D t}=-\frac{\partial p}{\partial x}+v \Delta u+\gamma \sin y \\
& \frac{D v}{D t}=-\frac{\partial p}{\partial y}+v \Delta v \\
& \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
\end{aligned}
$$

(Arnold and Meshalkin, 1960)
Vorticity equation: $\omega=\nabla^{1} \cdot u=\partial_{1} u_{2}-\partial_{2} u_{1}$

$$
\partial_{t} \omega+u \cdot \nabla \omega=v \Delta \omega-\gamma \lambda q_{\lambda} \Delta q_{\lambda}=\lambda q_{\lambda}
$$

Representing $u=\nabla^{\perp} \psi$ by streamfunction $\psi, \omega=\Delta \psi$

$$
\partial_{t} \Delta \psi+J(\psi, \Delta \psi)=v \Delta^{2} \dot{\psi}-\gamma \lambda q_{\lambda}
$$

$J(a, b)=\nabla^{\perp} a \cdot \nabla b$
Note, this equation admits a laminar solution:

$$
\bar{\psi}=\frac{1}{v \lambda} q_{\lambda}
$$

Since, $v \Delta^{2} \bar{\psi}=\lambda q_{\lambda}, \quad J(\bar{\psi}, \Delta \bar{\psi})=\lambda J(\bar{\psi}, \bar{\psi})=0$.
The velocity corresponding to this solution is

$$
\bar{u}=\frac{1}{v \lambda} f_{\lambda} \stackrel{\substack{\text { tepanple }}}{=} \frac{\gamma}{v}\binom{\sin y}{0}
$$

This laminar flow is the unique steady state when $\mu=\frac{\gamma}{v^{2}}$ is small, and is the global attractor for all data. Exceptional (trivial case): when λ is smallest eigvalue, "gravest node" is unique global attractor for all $\mu>0$!

Real World

Obukhov, "Kolmugarov flow and laborationg scoulation of it" (1985)
Vintual Reality

simulations done on my persoud conputer using publically available code writen by $f=\binom{\cos (5 y)}{0}$

Navid Constantinou

Arnold, "Kulmogorov's hydrodynamic affractors 1991

The flow in this 'Kolmogorov model' is usually supposed to be two-dimensional and the exterior force field has usually the form of the first harmonic. If the Reynolds number is small, the steady laminar flow emerges: its velocity profile has a sinusoidal form. This flow loses its stability as the Reynolds number grows. The Kolmogorov 1958 programme was to study rigorously the bifurcations of the attractors in this system and their dependence on the growing Reynolds number. This programme was partially fulfilled in the work of Mechalkin \& Sinai (1961). As far as I know, the bifurcations in such systems have not been completely understood even now, even in the two-dimensional case and even numerically, using the Galerkin approximation for moderate Reynolds number (but see Nicolaenko \& She 1990).

Upper bounds Kolmoyorov viewed the sequence of bifurcation picture as one possible "rale to turbulence" quasiperiodic flows with 2, then $3,4 \ldots$
(2-tori, 3-tori ... in phase space) appear subsequently
Folmogorov asked if an infinite sequence of such bifurcations could occur within a finite parameter range (as in logistic map picture)
NO: Ladyzheuskaga (1982), Il'yashenko (1983).

$$
\operatorname{dim}_{H} \text { (Attractor) } \approx \frac{1}{\alpha} G^{1 / 2}\left(1+\log \frac{G}{\alpha^{1 / 4}}\right)^{1 / 3}
$$

where $G=\|f\|_{L^{2}} \frac{L^{2}}{v^{2}}$. Constantin - Foias. Team (1988) dependence expected sharp (agree's with Landaus's D.O.F arg)

Arnold, "Kolmogorov's hydrodynamic affractons" 1991
Does the minimum of the Hausdorff dimensions of the attractors grow with Reynolds number for the Navier-Stokes system on a compact two-dimensional manifold (for, say, the Kolmogorov model) ?

Here, we try to build up the picture:
Attractor Dimension

PHASE: I

Theorem: There exists $\mu^{*}=\frac{\gamma}{\gamma_{*}^{2}}$ such that for all $\mu<\mu_{*}$, the laminar solution is the unique stationary solution and attracts all orbits as $t \rightarrow \infty$. If $\lambda=\lambda_{1}$, true for all μ.

PHASE II:
THEOREM: (Yudovich 1465). Let $\alpha \in[0,1)$. Consider Navier-stokes forced by $\gamma \cos y$ with $\gamma>0$ on Π_{a}^{2}. Then, there exists a critical Grashot number $\mu_{*}(\alpha)$ which is a monotonically increasing function of α satisfy'ry

$$
\lim _{\alpha \rightarrow 0} \mu_{\alpha}(\alpha) \rightarrow \sqrt{2}, \lim _{\alpha \rightarrow 1} \mu_{\alpha}(\alpha) \rightarrow \infty .
$$

and is such that the following hold:
(1) If $\mu<\mu_{*}$, the laminar state is inge steady solution in $H^{2}\left(T_{\alpha}^{2}\right)$ and is attractor for all deter
(2) For $\mu>\mu_{*}$, the laminar stile becomes unstable (Masmilkin-Simac (1961))
(3) For $\left|\mu-\mu_{>}\right| \ll 1$, theme exists a two -dimensional manifold of stationny stakes which bi furcate from the laminar state and ane linearly stable.

Yudovich's Bifurcation, and its fate

Elements of the proof:
Step 1: exports nonlinear problem and its lireanzaction as eigenvalue problems on the Herbert space H^{2}

$$
\psi=v \mu(\psi-\cos y) \quad \text { Stationary }
$$

Then the perturbation ϕ satisfies nonlinear equation

$$
\Delta^{2} \phi=\mu \sin y \partial_{x}(\phi+\Delta \psi)+\mu J(\phi, \Delta \phi)
$$

Its linearization reads

$$
\Delta^{2} \phi=\mu \sin y \partial_{x}(\phi+\Delta \phi)
$$

These read $\quad \begin{aligned} & N[\phi]=\frac{1}{\mu} \psi \\ & L[\psi]=\frac{1}{\mu} \psi\end{aligned} \quad$ in $H_{2},(f, g)_{H^{2}}=\int_{\pi_{a}} \Delta t \Delta y$.

Review of Bifurcation Theory
(a) $G[0]=0$
(b) G is compact
(c) G is differentiable at $u=0$ with compact $A=G^{\prime}[0]$.

Consider $\delta=\{(\lambda, u) \in \mathbb{R} \times X: u \neq 0, \lambda u=G[u]\}$
DEF: A bifurcation point λ_{*} is such that any neighborhood of $(\lambda, 0)$ there is a point $(\lambda, n) \in S$

Bifurcation points must be eigenvelung of A by implicit function theorem. Reverse not true bet
THM (Krasnoselstii) Suppose (a) - $1 c\rangle$ hold and that λ_{x} is an eigenvalue of A with odd multiplicity.
Then λ_{λ} is a bifurcation point for $F[u]=\lambda_{n}-G[a]$
Global refinement by Rabinewitz.

- To obtain information about multiplicity ot cigeavalae, we study also adjorat problems and find ecgenfane when same λ and not orthogonal to wrigmal sign function
- (Simplicity in subspece). Consider $\frac{d^{2}}{d x^{2}} h=-\lambda h$

$$
\text { geo }=\text { alg mat }=2
$$

we Mestrict to even and odl subspues to congtruct a simple eigenvalue

- We apply these theorems in the setfing of $x=H_{e}^{2}, H_{0}^{2}, G=N, \quad A=L$.
- To construct eigentunction, nete ary such is a linear cumbination of

$$
\psi_{n}(x, y)=e^{i \alpha n x} \sum_{m \in \mathbb{Z}} c_{m}(\alpha n) e^{i m y}
$$

Then $c_{n}=d_{m} /\left(k^{2}+m^{2}-1\right)$ with $k=\alpha_{n}$ \&
(*) $\quad a_{m} d_{m}+d_{m-1}-d_{m+1}=0$
w.m

$$
a_{m}=\frac{2\left(k^{2}+m^{2}\right)^{2}}{\mu k\left(k^{2}+m^{2}-1\right)} .
$$

one derives chavacteristic cqn:

$$
(* *) \quad F(\mu):=\frac{1}{\left[a_{1}, a_{2}, \cdots\right]}=-\frac{d_{0}}{2}
$$

comverges by
Vai vleck corvergesce theorem and loner bud on an.
μ is a real root of (x) iff $\begin{aligned} & d_{n} \text { solus }(\not \partial *) \\ & d_{n} \neq 0\end{aligned}$

PHASE ∞ : (aspects of it)
Kotrayorou's conjecture move precisely

1992-11. Consider the Navier-Stokes equation (say, on the 2-torus) with external force proportional to the viscosity (Kolmogorov's model). Is it true that, as the viscosity tends to 0 (i.e., the Reynolds number grows), there appear attractors of dimensions increasing with the Reynolds number (and containing no smaller attractors)?

Is it true that, moreover, the minimum dimension of all attractors unboundedly increases with the Reynolds number? was affirmative, but he doubted that so was the answer to the second because of the experiments on delaying loss of stability.
T. There are two Kolmogorov's 1958 conjectures on the behavior of the dimension of minimal attractors (i.e., the attractor which does not contain a smaller attractor) when its Reynolds number R tends to the infinity:
a) weak

$$
\max _{\min A t t r} \operatorname{dim} \min \mathrm{Attr} \rightarrow \infty \quad \text { for } v \rightarrow 0
$$

b) strong

$$
\min _{\min A t t r} \operatorname{dim} \min A t t r \rightarrow \infty \quad \text { for } v \rightarrow 0
$$

(see [1], Ch. I) where v is the (kinematic) viscosity of a current.
THEOREM: (Bubin-Vishit) For $\operatorname{de}(0,1)$ and $\mu>\mu_{>}=\mu_{\infty}(\alpha)$ $2\left\lfloor\frac{1}{\alpha}\right\rfloor \leqslant \operatorname{dim}_{H}$ (Attractor) $\leqslant \frac{1}{\alpha}\left(1+\alpha^{1 / 2} \mu^{2}\right)$.

ォ
dimension of nustable manifold of laminar steady stake.

\# of boxes of side length 2 2π in $2 \pi / a$ by 2π rectangle.

Consider only steady states $\tilde{u}=\frac{v}{8} u, \mu=\frac{\gamma}{v^{2}}$

NS

$$
\begin{aligned}
& \nabla \cdot \tilde{u}=0 \\
& \int_{-2} \tilde{u} d x d y=0
\end{aligned}
$$

THEOREM: Let $\left\{u^{\mu}\right\}_{\mu>0}$ be a family of $H^{2}\left(\pi_{\alpha}^{2}\right)$ steady Solutions of Navierstotes. Then $\frac{v}{\gamma} u^{\mu} \rightarrow u^{\bar{E}}$ strong in H^{\prime} as $\mu \rightarrow \infty$ where $u^{t} \in H^{2}$ solus

$$
\begin{gathered}
u^{E} \cdot \nabla u^{E}=-\nabla p^{E} \\
\nabla \cdot u^{E}=0 \\
\int u^{E} d x d y=0
\end{gathered}
$$

with the additional coustraitit

$$
\lambda_{1}\left\|\nabla u^{E}\right\|_{l^{2}}^{2} \leqslant\left\|\Delta u^{E}\right\|_{L^{2}}^{2} \leqslant \underbrace{\lambda\left\|\nabla u^{\bar{E}}\right\|_{L^{2}}^{2}}
$$

Demark : - to normalize, Kolmogerov suggests $\gamma=V$

- noyewpty: applies to laminar state (Saturates)

$$
\bar{u}=\frac{\partial}{v \lambda} f_{\lambda}
$$

Numerical observation: By following on branch of the bifurcation diagram.

seems to converge to elliptical vortex pattern.
On right: assuming solution is 2 modes and saturates lower bound. Not solution except when $\alpha \rightarrow 1$.

Conjecture: J a sequence of Steady NS solutions with non-trivial but shrinking basin of alfraction as $\mu \rightarrow \infty$. Thus strong kulancyorev would bp false,
A.N. Kolmogorov always emphasized that preservation of stability of a steady flow, even for the infinitely growing Reynolds number, would not contradict hydrodynamical experiments, under the assumption that the basin of the corresponding attractor shrinks fast enough.
Arnold - khesin (1999)

Did act have time to cover

- Miray ;iastanhiltey and rafrimite tram grath
(kooh, Nadivashvili)
- Wanderiny Solations of Euler

$$
\binom{\text { Nadivashoili, Shnicelman }}{\text { khesin-kuksin-Peralta-sales }}
$$

Ascensions du Pic de Navier-Stokes
Le Pic de NAVIER-STOKES est à coup sûr le sommet le plus difficile à atteindre, mais l'un des plus beaux.
La fière devise des élèves de l'Ecole des Hautes Montagnes en Friches: "QUO NON ASCENDAM" doit guider l'ardeur de tous ceux qui s'attaquent à ce Massif.

Sur le croquis ci-contre, et suivant l'usage, les altitudes sont exprimées en Reynolds.

LEMMA: Let $k=\alpha_{n} \in(0,1)$. Then $(* *)$ admits a positive root $\mu_{*}=\mu_{*}(\xi)$ and it has only this one root. If $k>1$, theme is no root.

Lemma: let $\alpha \in(0,1)$. The problems

$$
L[\overline{[} \phi]=\frac{1}{\mu} \phi \quad \hat{L}^{*}[\Phi]=\frac{1}{\mu} \Phi
$$

have exactly $\left[\frac{1}{\alpha}\right\rfloor$ positive (as many negitue) eigenvalues $V \mu$. Each as tunltiplicity two.

THEOREM. There exist exactly $\left\lfloor\frac{1}{\alpha}\right\rfloor$ poritue aciule.s

$$
0<\mu_{\gamma}^{(1)}<\mu_{\nu}^{(2)}<\ldots<\mu_{\infty}^{(n)}<\infty
$$

which are points of bifurcation for NS. Each corresponds to a branch of eigenfunctons
$-\infty>-\mu_{y}^{(m)}>\ldots>-\mu_{\geqslant}^{(2)}>-\mu_{\geqslant}^{(1)}>0$. are also points of bifurcation. The spectrum also contains the intervals:

If m is odd, includes $\left(\mu_{z}^{(a)}, \infty\right)$. Ass reflections.

