Remarks on
Anomalous Dissipation and Intermittency Einstein Chair Lecture, Feb 2021

Theodore D. Drives stony Brook University

We are inkemsted in the turbealent dynamics of slightly viscous flow governed by incompressible NS:

$$
\begin{aligned}
\partial_{t} u+u \cdot \nabla u & =-\nabla p+v \Delta u \\
\nabla \cdot u & =0
\end{aligned}
$$

exhibiting anomalous dissipation

$$
E(0)-E(T)=v \int_{0}^{T}|\nabla u|^{2} d x d t>\varepsilon>0 .
$$

Lars Onsager (1903-1976)
"It is of some interest to note that in principle, turbulent dissipation as described could take place just as readily without the final assistance by viscosity. In the absence of viscosily, the standard proof of the conservation of energy does not apply, because the velocity field does not remain differentiable! In fact it is possible to show that the velocty field in such "ideal" turbulence cannot obey any LIPSCHITZ condiction of the form
(26) $\left|\mathrm{v}\left(\mathrm{r}^{\prime}+\mathrm{r}\right)-\mathrm{v}\left(\mathrm{r}^{\prime}\right)\right|<$ (const.) r^{n}
for any order n greater than 1/3; otherwise the energy is conserved. Of course, under the circumstances, the ordinary formulation of the laws of motion in terms of differential equations becomes inadequate and must be replaced by a more general description...
"Statistical Hydrodynamics" (1949)
Conjecture: Turbulence at small viscosity exhibiting anomalous dissipation is described by singhloo weak solution of Euler

$$
\partial_{x} u+\nabla \cdot(u \otimes u)=-\nabla p
$$

possrsing at most $1 / 3$ of a derivative.

To study energy cascade in weak solutions,

$$
\bar{u}_{l}(x)=\int_{\pi^{d}} G_{l}(r) u(x+v) d r, \quad G_{l}(r)=e^{-d} G\left(\frac{r}{l}\right)
$$

or
$u_{k}(x)=\mathbb{P}_{\leqslant k}[u] \quad$ projection onto low free.

If $u \in L_{x}^{\infty} L_{x}^{2}$, then

$$
\partial_{k} \frac{1}{2}\left|\bar{u}_{e}\right|^{2} \rightarrow \partial_{t} \frac{1}{2}|u|^{2} \quad \text { as } \quad l \rightarrow 0
$$

Since

$$
\left.\left|\int\right| \bar{u}_{c}\right|^{2} \partial \phi d x d t-\int|u|^{2} \partial d d x d t \mid \quad d \in C_{0}^{\infty}
$$

$$
\begin{aligned}
& =\left|\int \bar{u}_{i} \cdot\left(\bar{u}_{l}-u\right) \lambda_{x} \psi+\int u \cdot\left(\bar{u}_{l}-u\right) \not x_{l} \phi\right|
\end{aligned}
$$

course-grained dynamics:

$$
\begin{align*}
\partial_{l} \bar{u}_{l}+\bar{u}_{l} \cdot \nabla \bar{u}_{l} & =-\nabla \bar{p}_{l}-\nabla \cdot \tau_{l}(u, u) \\
u) & \tau_{l}(u, u):=\frac{\bar{u} \theta u}{}-\bar{u}_{l} \otimes \bar{u}_{l} \tag{i}
\end{align*}
$$

Then, the resolved kinetic energy satisfies $A=B$

$$
\begin{gathered}
\frac{1}{2} \partial_{l}|u|_{l}^{2}+\nabla_{0} \cdot\left(\left(\left.\frac{1}{2} \right\rvert\, \bar{u}_{l}^{2}+p_{l}\right) \bar{u}_{l}+\tau_{l}(u, u) \bar{u}\right)=-\prod_{l}[u] \\
\prod_{l}[u]=-\nabla \bar{u}_{l}: \tau_{l}(u, u)
\end{gathered}
$$

Recall, by calderon-2rgninand the ry $s^{-1} \nabla \otimes \nabla$ is a bended operator $l^{p} \rightarrow L^{\rho} \quad p \in(1, \infty)$. Thug $u \in L_{f, r}^{3} \Rightarrow P=\Delta^{-1} \cap \theta(u \theta u)$ $t l_{l+x}^{3 / 2}$
Theorem (Duchom- Robert 2000): If $u \in l^{3}\left(0, T ; l^{3}\right)$, then

$$
\begin{aligned}
-\Pi[u] & =-\lim _{l \rightarrow 0} \prod_{\ell}[u] \\
& =\frac{1}{2} \partial_{f}|u|^{2}+\nabla \cdot\left(\left(\frac{1}{2}|u|^{2}+p\right) u\right)
\end{aligned}
$$

in the sense of distributions
Remark: One can show also that with

$$
D_{e}[u]=\frac{1}{4 l} \int_{\pi^{d}}(\nabla G)_{e}(r) \cdot \delta_{r} u\left|\delta_{r} u\right|^{2}
$$

that
in the sense of distributions.

Theorem: (Constantia - E. Tit; 1994$)$ If $u \in L^{3}\left(0, T, L^{3}\right)$ and $\int_{0}^{T}\left\|\delta_{l} u\right\|_{l^{3}}^{3} d x \leqslant C|l|^{1+}$ "third ot a derivative $\mid n l^{+}$; then $\Pi_{[u]} \equiv 0$. No anomalous dissipation.

Plot: $D_{l}[u]=\frac{1}{4 u \mid} \int_{\pi^{d}}(\nabla G)_{l}(v) \cdot \delta_{r} u\left|\delta_{r} u\right|^{2}$
Thus $\int_{0}^{T}\left|D_{l}[u]\right|_{l^{\prime}} d t \leqslant|\nabla G| l_{l} \frac{\left|\delta_{l} u\right|^{3}}{|l|} l^{3} \rightarrow 0$.
Remark: $u \in B_{P}^{s_{1}^{\infty}}$ means $u \in l^{P}$ and $\sup _{\operatorname{LQ} \mid 70} \frac{1}{|R|^{s}}\left|s_{l} u\right|_{l^{p}}<\infty$.

$$
u \in l^{3}\left(0, T ; B_{p}^{s, \infty}\left(\pi^{d}\right)\right) \quad s>1 / 3 .
$$

Remark: what is required for the theorem is

$$
u \in L_{t, x}^{3} \text { and } \lim _{|Q| \rightarrow 0} \int_{0}^{5}\left\|\delta_{l} u\right\|_{l^{3}}^{3} d t \rightarrow 0
$$

This is the sharpest criterion known for conservatem.

$$
u \in L^{3}\left(0, T \cdot B_{3}^{1 / 3, c_{0}((N)}\left(\pi^{d}\right)\right)
$$

critical Onsager space.

$$
u \in l^{p},\left\|\delta_{R} u\right\|_{L^{p}}^{p} \Leftarrow|l|^{\beta} p<u \in l^{p}\left(0, T ; B_{p}^{3 p / p, \infty}\right)
$$

Landan:
1942 the rake of energy dissination is inteomitiat. I.e., it is spathally/temporally intionogeneous.

Thus $3 p$ should not be a constant mullyple of p. i.e. $n \notin l^{p}\left(0,7 ; B_{p}^{1 / 3, \infty}\right)$.

Meneveau K 1991 Sreenivasan

Sumagate:

$$
\varepsilon^{\prime}=\left(\frac{d u_{i}}{d t}\right)^{2}
$$

Frisch

$$
1995
$$

Dennis (yesterday)
THEOREM: ($\mathrm{se}_{\mathrm{e}} \mathrm{A}, 2018$): Let u be a weak solution of Enter of class $u \in L^{P}\left(0, T ; B_{p}^{1 / 3, \infty}\right)$ for some $p \geqslant 3$. i.e., u has a $1 / 3$ derivative in l^{P}, then the distribution $\Pi[u]$

$$
-\Pi i u\}=\frac{1}{2} \partial_{1}|u|^{2}+\nabla \cdot\left(\left(\frac{1}{2}|u|^{2}+p\right) u\right)
$$

is a (signed) measure. If, furthermore $p>3$, then this measure is absolutely continuous with respect to the Lebesgue measure and its Radon-Nitodym derivative is of class $\Pi_{[u]} \in L_{t, x}^{P / 3}$.
Thus, if u has $1 / 3$ derivation e in $l^{p} \quad p>3$, then the energy dissipation would need to take place on a full measure set.

This, in accord with Landau's remark, would contradict experimental evidence of intermittent dissipation. Rigorous version of Landau's objection!

Best experimental measurements suggest disippution takes place on of set of Houssutdimension $D<3$ Menevean \& Sresiivasan 1991

Remark: Proof does not give absolute continuity in the case of $p=3$. Indeed, inviscid Purges $u \in L_{\forall}^{\infty}\left(L_{x}^{\infty} \cap B V_{x}\right)$
$L^{\infty} \cap B V \leq B_{p, 1}^{1 / p, \infty} \quad p \geqslant 1$. and the dissipation taters place P at just the shock locations (not absolutely continuous).

Proof: Recall that

$$
\begin{aligned}
-\Pi[u] & =\frac{1}{2} \partial_{l}|u|^{2}+\nabla \cdot\left(\left(\frac{1}{2}|u|^{2}+p\right) u\right) \\
& =\lim _{l \rightarrow 0} \nabla \bar{u}_{l}: \tau_{l}(u, u)
\end{aligned}
$$

where $\tau_{l}(u, u)=\overline{(u \otimes u)_{l}}-\bar{u}_{l} \theta \bar{u}_{l}$
and

$$
\bar{f}_{l}=G_{l} * f \quad G_{l}^{(v)}=\frac{1}{l} \& G(r / l)
$$

Thus, by Holders inequality with $\frac{3}{p}=\frac{1}{p}+\frac{2}{p}$

$$
\begin{aligned}
\left|\prod_{\rho}\right|_{l_{l, x}^{p / 3}} & \leqslant\left|\nabla \bar{u}_{2}\right|_{l_{l, \gamma}^{p}}|\tau|_{l_{t, \gamma}^{p / 3}} \\
& \curvearrowright\left(e^{1 / 3-1} \quad|u|_{l_{t}^{p} B_{3}^{1 / 3, \infty}}\right)\left(e^{2 / 3}|u|_{l_{k}^{p} B_{3}^{1 / 3, \infty}}^{2}\right) \\
& \curvearrowright|u|_{l_{k}^{3} B_{3}^{1 / 3, \infty}} .
\end{aligned}
$$

Consequently, the sequence $\left\{\pi_{\ell}[u\}_{l>0}\right.$ is uniformly bounded in $l_{t, r}^{\rho / 3}$ independent of $l>0$.
 is a Radon measure. Move explicitly by (x) and Holder (with the chamateristic function of k as a factor), for any compact k and any test $\phi \in C_{0}^{2}(E)$:

Monomer, amen $p>3$, the measure Ting is absolutely continuous with density function
This follows from the duality characterization of L^{P}. Namely, if $q \in(1, \infty)$ is the dual exponent

$$
\frac{1}{q}+\frac{3}{p}=1
$$

we have

$$
\left|\langle\phi, \pi[u]\rangle_{\left.D_{(}^{\prime}(0, \Gamma] \times T^{d}\right)}\right| \leqslant c|\phi|_{L_{1, t}}|u|_{L_{t}^{p} B_{3}^{1 / 3, \infty}}^{3} .
$$

By density of test functions in l^{2}, we have that Min] is in dual of $l_{t, S}^{q}$, which is $l_{t, r}^{P / 3}$.

Question: Can this argument be quantified: If the dissipation is supported on a set of (tunsdorff dimension D_{1} must $u \notin l^{D} B_{p}^{\sigma_{p}}$ satisfy for some $\bar{\sigma}=\bar{\sigma}(D)$ that

$$
\sigma_{p} \leqslant \bar{\sigma}(D)<1 / 3 \text { for } p>3
$$

In fact, the information on the support of the dissipation can be used to get information on the Singular support of x.

THEOREN (IStH, 2018) Let u be any weak solution of Euler in the class $u \in l_{f}^{P} B_{p}^{13, \infty}$ for some $p>3$ that does not conserve energy. Then u must be singular on a subset of spacetime with strictly positive $(d+1)$-dimensional lebesgue manure.

This shows the necessary complexity of singularities
in the onsager endpoint class. Corollary: Any solution with loweo-dionensicional $P>3$ singularity which does not conserve cannes be $l_{t}^{P} B_{P}^{1 / 3, \infty}$. Consistent with all available evidence!

LEMMA: Let u be a weak solution of Euler in the class $l_{d, x}^{3}$. Thin the distribution π rat

$$
-\Pi_{i u]}=\frac{1}{2} \partial_{t}|u|^{2}+\nabla \cdot\left(\left(\frac{1}{2}|u|^{2}+p\right) u\right)
$$

has support contained in the singular support of u relative to the critical space $L_{f}^{3} B_{3}^{1 / 3,} C_{0}$. N)

DEF: The singular support of u metetive to class of dist. X is the complement of those points $q=(t, \lambda)$ for which \exists an open neighborhood O_{q} of q on which u is represented by a generalized function
of the class X.

Recall:

$$
|u|_{B_{p}^{1 / 3, \infty}}:=|u|_{l^{p}}+\operatorname{sun}_{\ln \langle 1} \frac{\ln \mid \cdot+v)-u(v) \mid}{|v|^{1 / 3}} i^{p}
$$

and $B_{p}^{1 / 3,} c_{0}(\mathbb{N})$ is the class ot all distributions set.

$$
\lim _{\mid n \rightarrow 0} \frac{\ln (\cdot+n)-n(\cdot) \mid}{|n|^{1 / 3}}=0 .
$$

- The singular support of u relative to $l_{t}^{p} B_{p}^{1 / 3}, c_{0}(\mathbb{N})$ is a subset of the usual singular support of u as a distribution.

Proof of Theorem assuming Lemma:
Let $u \in l_{t_{1, r}}^{3}$ a weak solution of Euler such that $e(t)=\frac{1}{2} \int(u(x, t))^{2} d x$ is not constant.
Then the distribution Ten]:

$$
-\Pi_{i u]}=\frac{1}{2} \partial_{1}|u|^{2}+\nabla \cdot\left(\left(\frac{1}{2}|u|^{2}+p\right) u\right)
$$

is well defined, and is nontrivial (not 2 eos dist).
For a solution of class $u \in B_{e}^{p} B_{p}^{1 / 3, \infty}$ with $p>3$, we have that Then] is of class $L_{t x}^{P / 3}$.
Thus, for Tin] to be nou-zeso, the support of Tiu] as a distribution must occupy a closed set with positive lebesynge measum.
Since the non-trivial support of Π [in $]$ gives a lower bound for singular support of n as a distribution, this concludes the prot.

Proot of Lemma:
Let $u \in l_{b, f}^{3}$ be a weak Enter solution, so that $p \in l_{t, x}^{3 / 2}$. Let
The complement of the S.S. Relative to $l_{t}^{3} B_{3}^{1 / 3, c_{0}}$.
That is, 7 an, user necghherhood of θ sat.
$u \in L_{t}^{3} B_{3}^{1 / 3, c_{0}}(\theta)$. Let $\phi \in C_{0}^{\infty}(\theta)$
Then by $\left.-\prod_{i u}\right\}=\lim _{l \rightarrow 0} \nabla \bar{u}_{l}: \tau_{l}(u, u)$

$$
\left\langle\phi_{1}-\pi[u]\right\rangle_{D}=\lim _{l \rightarrow 0} \int \phi \nabla \bar{u}_{l}: \tau_{l}(u, n) d x d t
$$

where, by assumption, $L_{t}^{3} B_{3}^{1 / 3, c_{0}}(\sigma)$. Note:

 Moreover, are. t one has that $n\left(t_{i}^{3}\right) \in B_{3}^{1 / 3,} c_{0}$ belongs to clesnam of C^{∞} in $B_{3}^{1 r_{3}, 0}$ norm. For each such $f / \operatorname{limemsep}_{l \rightarrow 0} l^{1-1 / 3}\left|\nabla \bar{u}_{2}\right|_{l^{3}} \rightarrow 0$. Combined with $\left.\left|\tau_{l}\right| y, u\right)\left.\right|_{\rho_{2}} \leq C|e|^{2 / 3}$, we have $(x)=0$ by dominated convergence theorem

