Emergence of order in fluid motion
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“When a continuous medium is deprived of its phys-
ical properties (elasticity, thermal and electrical con-
ductivity, and so on) its property of occupying a def-
inite position in space remains, as do elementary in-
teractions through the mutual pressure of its parts,
due to Aristotle’s principle that it is impossible for
two bodies to occupy the same space. It is amazing
that it is these elementary interactions that cause the
most complicated effects, including turbulence.”

— V. I. Yudovich [33]

deal fluids are perhaps the most basic of physical
media; their defining property is that they “oc-
cupy space” and are otherwise free. Although the
equations of motion were derived by Euler in 1757
[17], fluids have been on the minds of thinkers for
millennia [1] and exhibit some of the most complex
behavior in the observable world. Turbulence, for
example, was considered by R. Feynman to be the
last great problem of classical physics [18].

Fluids in the world around us typically occupy ei-
ther three-dimensional volumes or are (effectively)
confined to two-dimensional surfaces. While most
everyday experiences with fluid phenomena are
three dimensional, many geophysical and astro-
physical systems such as oceanic currents, large-
scale weather patterns, and planetary atmospheres
are, to good approximation, two-dimensional. Fluid
behavior is highly sensitive to the dimension! In two
dimensions there is a trend towards order, with vor-
tices emerging and merging into super structures
(see Figure 1), shedding light on the formation and
persistence of phenomena such as the jet stream
and hurricanes. Three-dimensional fluids are, by
contrast, marked by chaotic, turbulent behaviors
with few coherent features, if any [20]. In this ar-
ticle, we aim to convey some mathematical results
on the behavior of fluids in two dimensions.

Definition of fluid motion

Like nearly all natural systems, the Euler equations
arise from a principle of least action. Namely, an
ideal fluid move from place to place in order to mini-
mize expended energy, while maintaining occupied
volume. This perspective was first enunciated by
Lagrange in 1755, and has a beautiful underlying
geometric nature. In his seminal work, Arnold [2]
interpreted ideal fluid motion as geodesic flow on
the group of volume-preserving diffeomorphisms. In
a sense, fluids move along the “great arcs” of the
manifold of all possible rearrangements of space.
We begin with a quick derivation of this result for
ideal (incompressible and inviscid) fluids by analogy
with finite dimensional systems.

The viewpoint is as follows: consider first a col-
lection of N particles of unit mass moving in d-
dimensional Euclidean space R?. This system can be
thought of as the motion of a single particle moving
in the higher dimensional space RV*4 = R x ... xR?,
the Cartesian product configuration space. If no ex-
ternal forces are present, according to Newton's law
of motion the curve traced out by this “particle” is
a straight line. Newton's law in turn follows from
Hamilton's principle, a primal axiom of mechanics,
which states that the system moves in a way to ex-
tremize its ‘action’ (kinetic energy less potential en-
ergy). In the case above, where the particles don't
interact and are devoid of all physical properties, the
action is solely the kinetic energy. This makes clear
why the motion is, in fact, a geodesic on RV*¢ en-
dowed with the Euclidean (kinetic energy) metric.

Now, suppose that this particle is not free to move
everywhere in space, but is rather forced to re-
main on some surface or submanifold of the space
S C RN*4  For example, the bob of a pendulum
is forced to live on a circle on the plane, and the
double pendulum to a two-dimensional torus in four-
dimensional configuration space. How then does



the particle move? According to Hamilton's princi-
ple, subject to the aforementioned constraints, one
arrives at d’Alembert’s principle for the position of
the particle X; : R — R¥*4 gt time t € R:

(1) X, L Tx,S,
(2) X, €8.

Here T, S is the tangent space to S at the point X;.
That is, the acceleration is orthogonal to the con-
straint. Such constrained particles follow nothing
but geodesic curves on the embedded surface S, en-
dowed with the induced Euclidean metric.

Now for the fluid. It is thought of as infinitely many
particles (N = oo) experiencing a force between
them produced by the constraint that volumes are
neither expanded nor contracted. The state of the
system is described then as a mapping of some fluid
domain M C R to itself, namely X;(a) : Rx M — M,
where a € M serves as a continuum label for the par-
ticle. The configuration space S, thought of as “sur-
face” in L?(M;R?), namely L? mappings of M — R,
is the set of diffeomorphisms preserving volume:

S={X;: M =R : X;(a) € M,
detVX,(a) =1foralla € M}.

That is, S = SDiff(M). The tangent space to S at a
“point” X € SDiff(M) is formally

TxS={uoX : u:R? = RY
div u = 0, u tangent to the boundary of M }.

According to the Helmholtz-Hodge decomposition,
the normal space (orthogonal complement of T'x S
with respect to the L2, kinetic energy, metric), is

(TxS)t ={VpoX : p:RY = R}.

Thus, from d’'Alembert’s principle (1)—(2) we arrive
at (Lagrangian form of) the Euler equations:

(3) Xi = —Vpio Xy,
(4) detVX; =1.

That is, ideal fluid flow moves along geodesics on
the “submanifold” of volume preserving diffeomor-
phisms. This perspective is that of V. I. Arnold [2, 3],
and gives a clear illustration of the principle under-
lying V. I. Yudovich's quote. In the above, we have
ignored the important issues associated to regular-
ity of the mappings, which is required to give precise
geometric meaning [15]. It is, in any case, probably
better to say we have defined ideal fluid motion in
the above discussion rather than derived it.

In the above discussion, we have described the state
of the fluid through its configurations, with X,(a)
representing the velocity at time ¢ of a particle that
started at position a € M at time 0. It is very use-
ful to change perspective slightly and consider the
velocity of whatever particle now occupies a fixed
point x € M at time t. Introducing this velocity field
u:Rx M — RY via u(t,z) == X, (X, (z)), we arrive
at the Eulerian form of the Euler equations:

(5) O+ u-Vu=—Vp,
(6) V- -u=0,
(7) u-nloap =0,

supplied with initial data ug. The unknown func-
tion p, named the pressure, is a Lagrange multiplier
which enforces the condition X, € SDiff(M) at ev-
ery instant ¢t € R or, in terms of the velocity vector
field, that © remain divergence-free (6). This Euler-
ian formulation of the equations of motion can be
interpreted in regimes that are too irregular for our
definition to apply. This is the case for turbulence,
which is a singular regime of rough and tumble flow.

We will refer to the situation where the velocity
field is differentiable, so that all terms in the equa-
tions (5)—(7) make naive sense, as a non-turbulent
regime. It is a regime in which the Euler equations
give a definite prediction for the motion of the fluid.
Being variational in nature (arising due to Hamil-
ton's principle), this regime is subject to the conser-
vation laws implied by continuous symmetries via
Noether's theorem [26, 3]. Specifically, time transia-
tion invariance implies energy conservation:

1

E[u(t)] = E[ug] where E[u] := 3 |u(z)[*dx

M
while particle relabelling symmetry implies conser-
vation of circulation (Kelvin's theorem):

K, [u(t)] = Ke[uo] where Kp[u] := fr w-dl
for any rectifiable loop I' C M. By Stokes' theorem,
this line integral is equivalent to the flux of the curl
of the velocity vector field u, the vorticity w, through
any co-moving bounding surface. Letting the loop
become infinitesimal about any given point x € M,
with arbitrary orientation, we deduce that the vor-
ticity itself is transported. In two dimensions one
can identify the vorticity with a scalar field w = V' -4



where V1 = (—0;,0;) and in three dimensions with
a vector field w = V x u. These are transported by u:

(8) d=2:
(9) d=3:

When M has trivial homology, these equations form
a closed description of two and three-dimensional
fluid motion upon specifying the initial vorticity
w|t=p = wo and the non-local Biot-Savart law for re-
covering the velocity field u = curl 'w. It is a clas-
sical result of Lichtenstein and Gunther dating from
near the turn of the century that if the vorticity is ini-
tially regular enough, say C* (M) for any non-integer
a > 0, then there exists a unique solution remaining
in that class for some (possibly short) period of time.

Ow +u-Vw =0,
Ow +u-Vw=w-Vu.

This local existence is dimension-independent.
However, the vectorial nature of the vorticity caus-
ing the presence of the right-hand-side in (9) is the
source of great differences between two and three
dimensional fluid motion. The most basic manifes-
tation of this discrepancy occurs for the question of
long time existence. Indeed, the celebrated result
of Beale-Kato-Majda [5] says a classical solution can
persist if and only if the maximum vorticity is un-
der control in a time-integrated sense (namely be
in L1(0,T; L>(M))). How does this result differenti-
ate between two and three-dimensions? The Euler
equation in two-dimensions (8) says that the vortic-
ity is transported along particle (Lagrangian) trajec-
tories, namely

w(t) =woo X1, X, = u(Xy,t), Xo =1id.
Since u is divergence-free, the configuration X; is
an area-preserving diffeomorphism. It therefore fol-

lows that all vorticity values, as well as any integral

moment of it (called Casimirs), are conserved:
It[w(t)] = Ifjwo] where I¢[w] ::/ f(w(x))dx
M

for any continuous f : R — R. Uniform-in-time
boundedness of the vorticity follows and conse-
quently, in two-dimensions global existence holds:

For any non-integer o > 0 and all wg € C*(M) there
is a unique solution w € C*(R x M) with w|;—¢ = wp.

On the other hand, in three dimensions we now
know by the work of Elgindi [16] that a finite time
singularity occurs. Namely,

There exists an o > 0, an wy € C*(R?) and a T, > 0
such that w(T.) ceases to be in L'(0,T,; L>°(R?)).

In summary, with global existence in two-
dimensions known, all the dynamical systems ques-
tions about long term behavior become admissible.
In three dimensions, an entirely different approach
is evidently called for.

Emergence of order

Understanding the long term dynamics of flu-
ids in two-dimensions is fundamental to weather
prediction, climate science and astrophysics. A
rather mysterious feature is observed at long times:
the fluid forms coherent structures (hurricanes, jet
streams, etc). See Figure 1 for an example on the
two-torus of vortex merging leading to the formation
of a vortex dipole pair.

Figure 1. Vorticity in two-dimensions; emergence of a dipole over time from simulation [9, 6] and a pair of hurricanes.



There are many natural questions that arise. By
which mechanism do coherent structures form?
What is their shape? How many are there? Math-
ematically, it is surprising that these structures
emerge since there is formally no friction mechanism
in the Euler equations that could allow relaxation to-
wards special states. In fact, the equations take the
form of a time reversible, infinite dimensional Hamil-
tonian system. In finite dimensions, such reduction
of complexity is forbidden by Poincaré recurrence.

The answer to this puzzle lies in the infinite dimen-
sional nature of the Euler system. This feature al-
lows a hidden inviscid damping facilitated by mixing
of vorticity at long time. Singularities, the (infinitely)
long term effect of mixing of vorticity, enable infor-
mation to “exit” the system — ever finer filamenta-
tion generates a mille feuille of singularities that, in
turn, average out inconsequential detail.

Yudovich [31] opened the door to studying long time
dynamics by proving that Euler equations define a
compact dynamical system on the phase space

X :={we L®M) : [[w|lpe@r <1}

endowed with the weak-x topology, recalling that
the definition of weak-* convergence for a sequence
is convergence upon integrating against arbitrary
L'(M) functions. Indeed, the Euler equations (8)
have a unique solution in X for all time ¢t € R and
the solution map S; : X — X is weak-* continuous.
Ast — o0, since w(t) = S;(wo) satisfies ||w(t)| Lo (ar) =
llwoll o< (a1), We have weak-+ convergence

w(t;) N along subsequences t; — oo.

Weak-x limits w can forget oscillations, leaving be-
hind only a coarse-grained representative of the vor-

ticity. Denoting the weak-* closure in L>° (M) by ( -)*,
for any wy € X we introduce the Omega limit set

Qi (wo) == () {Se(wo). t = 5} -
s>0
This set collects all the weak-* limits (e.g. all possi-
ble ‘coarsened’ persistent motions) as t — oo along
the solution w(t) = S¢(wp) passing through wy € X.
For a more global view, a (weak-*) attractor for the
2D Euler equations is naturally defined [9]

QLX) = | 9 (wo).
wo€X
The ultimate goal is to understand 2, (X): what

kind of motions can survive indefinitely? This is

a toy model for understanding the sorts of spots
and stripes that might appear in the atmosphere of
Jupiter or Saturn, and what type of weather patterns
in Earth’s atmosphere are long lived.

We take a moment to discuss what is observed
from numerical simulations and physical observa-
tions about Q2 (X). From generic initial data, large
scale coherent structures emerge through vortex
mergers over time. The formation and persistence
of these features is a manifestation of the inverse
energy cascade first postulated by Kraichnan [21].
These observations show that a great deal of diver-
sity is lost over time — there is an apparent ‘contrac-
tion' in phase space as a decrease in entropy caus-
ing the trend towards order. This phenomenon de-
mands explanation from first principles. By what
mechanism can information be lost? While energy
and all Casimirs are conserved at finite time, weak-x*
limits @ € Q4 (wo) have the same energy as the initial
data but may forget their initial Casimirs. Indeed, by
lower-semicontinuity of I(-) for convex f, the only
information remembered is the inequality

[;(@) <liminflf(w(t;)) =If(wg) for any convex f.
71— 00

We define mixing of vorticity by strict loss:

Definition We say that an Euler solution w(t) mixes
if there exists a weak-* limit @ € Q4 (wp) such that
I;(@) < If(wp) for some strictly convex function f.

Figure 2. Perfect mixing (long time convergence to its
space average) of a dye by a random velocity field [6].



Mixing is the mechanism by which“information”
can be lost at long time. See Figure 2 for an extreme
manifestation of this effect for randomly stirred dye.
Notice the sharpening of the interfaces over time.
Such perfect mixing is not possible for the vorticity
of an ideal fluid since long time limits cannot lose
energy — this is why some coherent features must
remain. The following conjecture of Sverak [30] and
Shnirelman [29] formalizes the intimate relation be-
tween mixing and long time behavior in Euler:

Conjecture (Irreversibility and Entropy Decrease)

(a) From generic data wy € L°° (M), the vorticity
field mixes at infinite time.

(b) For any initial data wy € L>®°(M), the Omega
limit set 4 (wg) consists of vorticities fields
that generate Euler solutions which do not
mix at infinite time, i.e.

0, (X) = {vorticities that ‘‘do not mix” as t — co}.

Figure 3. Due to finite-time reversibility, Euler preserves
X. However the limit set 4 (X) is conjectured to be a
sparse subset of X due to long-time irreversibility. [9]

Some known examples of non-mixing Euler solu-
tions in the attractor {2, (X) are stationary, time peri-
odic, quasiperiodic and chaotic states. According to
the Conjecture, these represent a ‘sparse’ set in the
entire X phase space (see Figure 3). As such, the
Conjecture gives a notion of the perceived entropy
decrease at long time — a “second law of thermody-
namics” for ideal fluids.

We remark that, even if the conjecture were estab-
lished, it tells very little about the shape of long time
states. There are, however, some informed guesses.
In his celebrated 1949 paper, Lars Onsager proposed
a statistical approach based on large but finite di-
mensional approximations to predict specific most
likely configurations of the flow. These ended up
being a class of stable steady configurations (iso-
lated vortices or jets) of fluid, see Figure 4. Note
that stable steady states conform to the symmetries

of space on which the fluid flows [7, 14]. This partly
explains why hurricanes and cyclones are near cir-
cular, and Jovian jets are nearly zonal. Similarly,
Shnirelman [27] (see also [8]) proved that if energy
preservation were the only limiting factor to mixing
of vorticity then stable steady states would emerge
at long times. Both results suggest that large scale
features should emerge from general data, but both
are a step removed from the true dynamics.
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Figure 4. Steady, stable fluid flows in a channel [3].

For Euler itself, very little is understood about the
set Q4 (wg) for nearly any wy. Currently it is even un-
known if O, (X) # X! The only setting where more
can be understood is nearby stable steady states.
In fact, nearby certain stable steady states on the
channel, Bedrossian and Masmoudi successfully es-
tablished some form of the conjecture, at least as it
applies to data which are close in (essentially) the
analytic topology [4]. They were able to prove invis-
cid damping (a fluid analogue of Landau damping)
of perturbations towards (another) steady state via
mixing. However such perturbations form a meager
set in the natural phase space X.

Towards the full conjecture, it makes sense to es-
tablish some weaker features implied by the con-
jectured mixing. For example, mixing requires cre-
ation of small scales in the vorticity, which results
from the stretching and folding of vortex lines by
It can be measured,
for example, by norm growth in stronger topologies
(say C®). Yudovich enunciated a conjecture in the
direction of genericity of this phenomenon [34, 23]:

coherent velocity structures.

Conjecture “There is a ‘substantial set’ of inviscid
incompressible flows whose vorticity gradients grow
without bound. At least this set is dense enough to
provide the loss of smoothness for some arbitrarily
small disturbance of every steady flow.”

Norm growth, although weaker than mixing, al-
ready represents a qualitative expression of irre-
versibility for the Euler equations [28]. By now there
are many examples of growth of voriticity gradients



for specific Euler solutions (See [24, 19, 9]), but they
are typically not stable under general perturbations
and are thus may be non-generic. Recent work with
T. Elgindi and I-J. Jeong establishes Yudovich’s con-
jecture nearby stable steady states on annuli (Fig 4):

Theorem [10] Let M be an annular surface and w, be
a stable steady state. Then, for any o > 0 there exists
€ > 0 such that the set of initial data
t «
{wo € C¥(M) : sup 7“60( e = oo}
>1  [t]*

is dense in {w € C*(M) : [|w — willcer) < €}

This theorem follows from a strong understanding of
the stability of qualitative properties such as twist-
ing of the corresponding flowmaps. Of course, one
would like to promote this norm growth to mixing.

Returning to the question of how the flow actually
looks at long time, through careful numerics, Modin
and Viviani [22] claim that the “typical” element of
0,4 (X) is a localized vortex blob moving like a point-
vortex (a singular vortex carrying the same net cir-
culation). Moreover, the number of such blobs typi-
cally coincides with the largest number of point vor-
tices for which the motion is integrable. This claim
represents a major refinement of the previous Con-
jecture saying that not only is Q. (X) meagre, but
also the elements take specific shape (possibly re-
moving some exceptional cases). Potentially being
the “ghost” behind long term limits, these observa-
tions motivate the study of point and singular vortex
dynamics as a proxy for coherent structures [11]. If
M is the torus or the disk, these are dipole pairs.
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With D. Glukhovskiy and B. Khesin, we show that
dipoles effectively follow geodesics away from solid
boundaries [12] and behave at the boundary like a
modified billiard system in which the “billiard ball”
travels along the boundary for some distance de-
pending on the incidence angle before reflecting,
while preserving the billiard rule of equality of the
angles of incidence and reflection [13]. See Figure 5.

Figure 5. Billiard-like motion of dipole pairs on disk. [13]

In the end one thing seems certain: the world of
ideal fluids, simple as they are to define, appears to
be unimaginably rich!
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