Anomalous Dissipation of Energy
The fundamental postulate of Kolonogorov's 1941 theory
the "zereth law of turbulence" is a non-vanishing dissipation
the "zereth law of turbulence" is a non-vanishing dissipation

$$Q_{\mu} + u \cdot \nabla u = -\nabla p + v \Delta u + f$$
 $\forall u = 0$
For dimensions dz_{2}^{2} , the only known a-priori
controlled quantities which are controlled is from
 $Q_{\mu}(\frac{1}{2}|u|^{2}) + \nabla \cdot \left(u(\frac{1}{2}|u|^{2} + p) - v \nabla \frac{1}{2}|u|^{2}\right) = -v |\nabla u|^{2}$
 $+ f \cdot u$
previded the solution is smooth. Thus
 $Q_{\mu}(\frac{1}{2}|u|^{2}) + \nabla \cdot \left(u(\frac{1}{2}|u|^{2} + p) - v \nabla \frac{1}{2}|u|^{2}\right) = -v |\nabla u|^{2}$
 $+ f \cdot u$
previded the solution is smooth. Thus
 $Q_{\mu}(\frac{1}{2}|u|^{2}) + \frac{1}{2}|u|^{2} dx = -v \int |\nabla u|^{2} dx + \int f \cdot u dx$
 $= \int \frac{1}{2}|u|^{2} dx = -v \int |\nabla u|^{2} dx + \int f \cdot u dx$
 $= \int \frac{1}{2}|u|^{2} dx = -v \int |\nabla u|^{2} dx + \int f \cdot u dx$
 $= \int \frac{1}{2}|u|^{2} dx = -v \int |\nabla u|^{2} dx + \int f \cdot u dx$
 $= \int \frac{1}{2}|u|^{2} dx = -v \int |\nabla u|^{2} dx + \int f \cdot u dx$
 $= \int \frac{1}{2}|u|^{2} dx = -v \int |\nabla u|^{2} dx + \int f \cdot u dx$
 $= \int \frac{1}{2}|u|^{2} dx = -v \int |\nabla u|^{2} dx + \int \frac{1}{2}|u|^{2} dx + \int \frac{1}{2}$

what is known is the equality (Dichan-Robert, 2000)

$$\partial_{1} \left(\frac{1}{2} | \frac{y}{4} |^{2} \right) + \nabla \cdot \left(\frac{y}{4} \left(\frac{|\frac{y}{4}|^{2}}{2} + p \right) - v \nabla \frac{|\frac{y}{4}|^{2}}{2} \right) = -v |\nabla u|^{2} - DEu^{2}$$

+ vi.f

where the (r,t) - distribution DEN] is defined by a weak form of the Kurmon-Howarth - Monin velation:

$$\mathcal{D}[u](x,t) = \lim_{\substack{\ell \to 0 \\ l \to 0}} \frac{1}{4} \int \nabla \phi_{\ell}(x) \cdot \int u(x,t) \left| \int_{r} u(x,t) \right|^{2} dr$$

$$\mathbb{T}^{d}$$

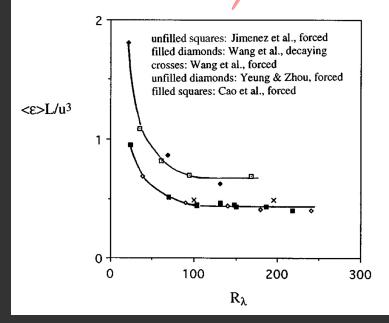
$$\mathcal{T}^{d}$$

$$\mathcal$$

D&R show the distributional limit of $U_{t,x}$ objects is independent of the choice of ϕ . Moreover, it is non-negative. It is a <u>measure</u>! Assume $u^{v} \stackrel{1}{\rightarrow} u$. Then, we have a 4/5th law:

Sreenivasan,

1998



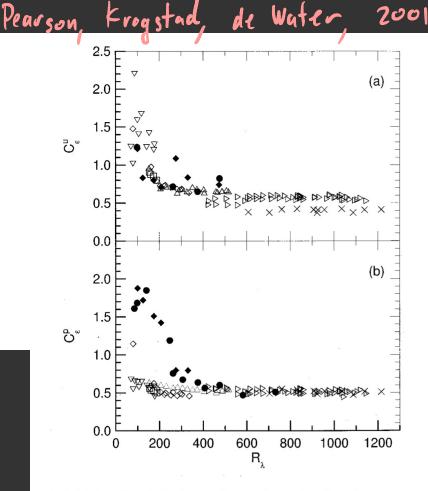
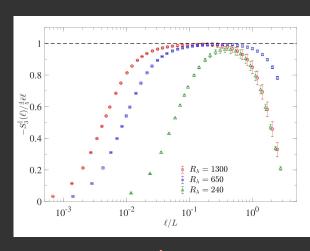
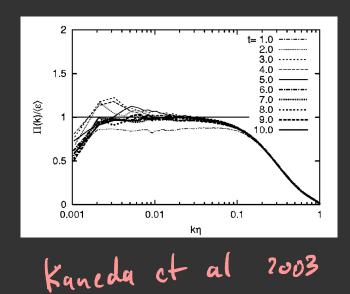


FIG. 1. Normalized dissipation rate for a number of shear flows. Details as found in this work and Refs. 14–16. (a) C_{ϵ}^{u} [Eq. (3)]; (b) C_{ϵ}^{p} [Eq. (4)]. \Box , circular disk, $154 \leq R_{\lambda} \leq 188$; ∇ , pipe, $70 \leq R_{\lambda} \leq 178$; \diamond , normal plate, 79 $\leq R_{\lambda} \leq 335$; \triangle , NORMAN grid, $174 \leq R_{\lambda} \leq 516$; \times NORMAN grid (slight mean shear, $dU/dy \approx dU/dy|_{max}/2$), $607 \leq R_{\lambda} \leq 1217$; \triangleright , NORMAN grid (zero mean shear), $425 \leq R_{\lambda} \leq 1120$; \bullet , "active" grid Refs. 14, 15, $100 \leq R_{\lambda} \leq 731$; \bullet , "active" grid, with L_{u} estimated by Ref. 16. For Ref. 14 data, we estimate $L_{p} \approx 0.1$ m and for Ref. 15 data we estimate $L_{p} \approx 0.225$ m.



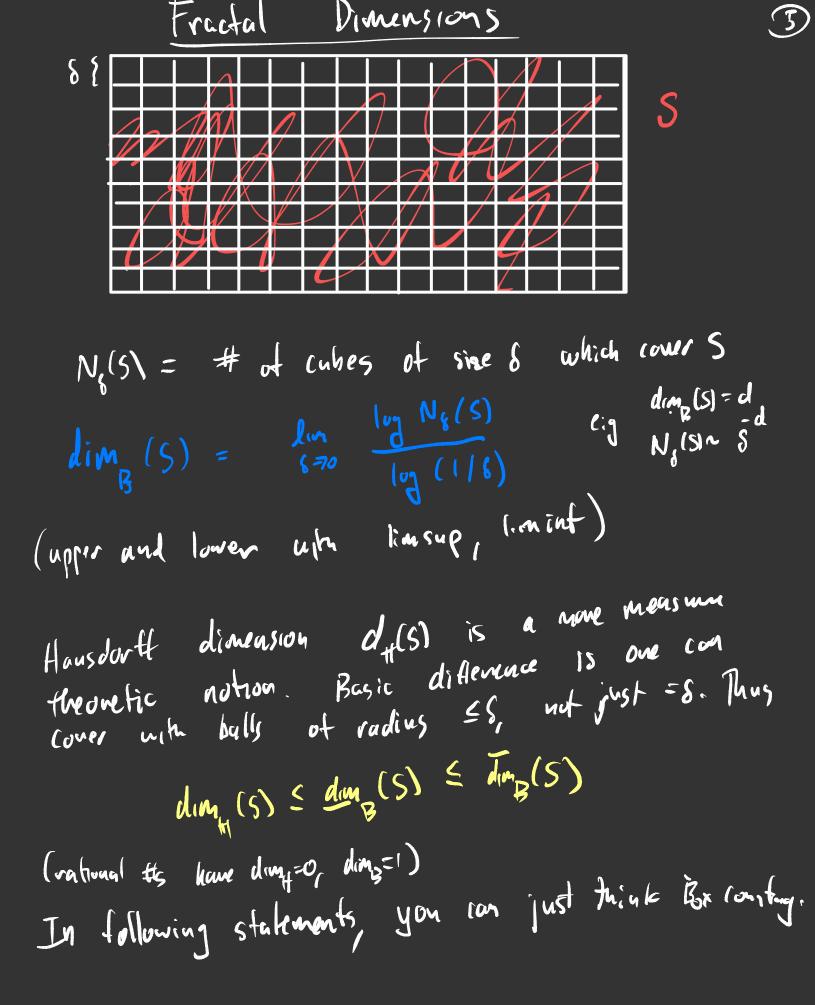
4/5th Law:



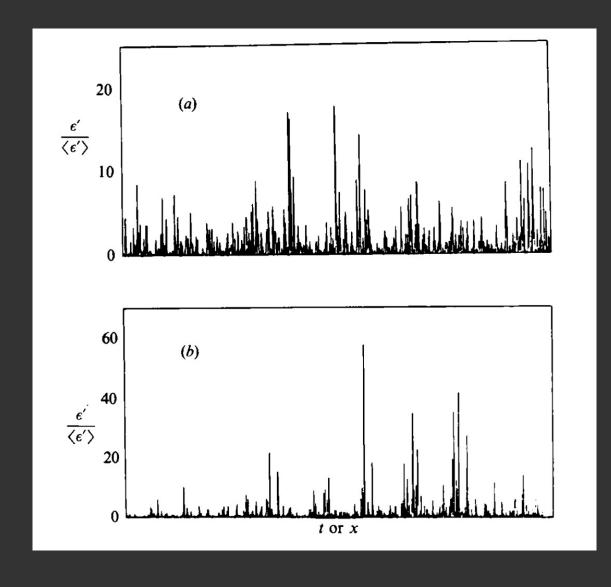
Iyra et al, 2010.

General Anomalous Dissipation Measures
All take the form
$$\nabla \cdot V = -D$$

positive measure
Incompositive Euler from NS $u^{U \rightarrow U}$
 $\nabla = \left(\frac{1}{2}|u|^{L}, \left(\frac{1}{2}+P\right)^{U}\right)$ $D = \int_{-\infty}^{\infty} v (Pu)^{2}$
 $T = \left(\frac{1}{2}|u|^{L}, \left(\frac{1}{2}+P\right)^{U}\right)$ $D = \int_{-\infty}^{\infty} v (Pu)^{2}$
 $T = \left(\frac{1}{2}|u|^{L}, \left(\frac{1}{2}+P\right)^{U}\right)$ $D = \int_{-\infty}^{\infty} v (Pu)^{2}$
 $T = \left(\frac{1}{2}|u|^{L}, \left(\frac{1}{2}+P\right)^{U}\right)$ $D = \int_{-\infty}^{\infty} v (Pu)^{2}$
 $T = \left(\frac{1}{2}|u|^{L}, \left(\frac{1}{2}+P\right)^{U}\right)$ $D = \int_{-\infty}^{\infty} v (Pu)^{2}$
 $T = \left(\frac{1}{2}|u|^{L}, u|^{L}, \frac{1}{2}|u|^{L}\right)$
 $T = \left(\frac{1}{2}|u|^{L}, u|^{L}, \frac{1}{2}|u|^{L}\right)$
 $T = \left(\frac{1}{2}|u|^{L}, u|^{L}, \frac{1}{2}|u|^{L}\right)$
 $T = \left(\frac{1}{2}|u|^{L}, \frac{1}{2}|u|^{L}\right)$
 $T = \left(\frac{1}{2}|u|^{L}\right)$
 $T = \left($



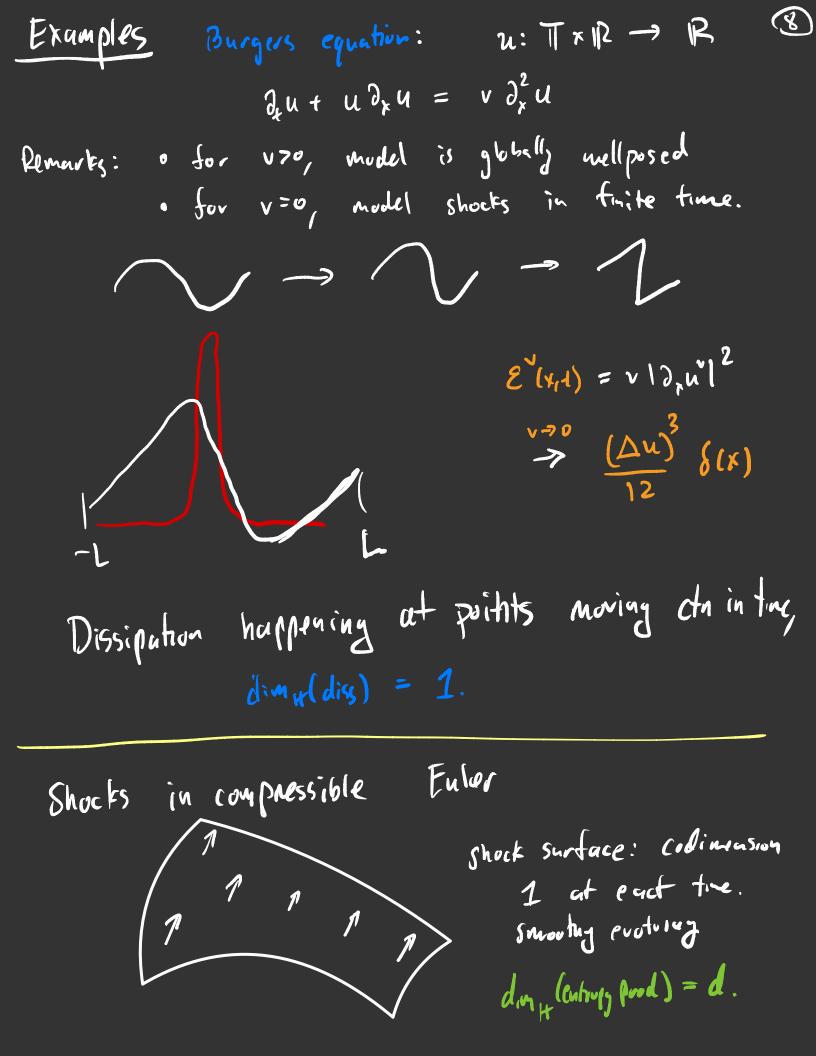
Meneveau & 1991 Sreenivusua



The estimate that $dim_p(dissipation) \approx 3.87$ $dim_p(dissipation) \approx 4.87$ Occurring on a fractul set! Any restrictions?

Theorem: Bounded weak solutions of any
of those equations, on domains SIGN
which produce entropy anomalously, have
$$dim_{H}(Spt P) \neq d$$
.
It spine-time

 \mathcal{D}



ł

Idea of proof.

Assure
$$\mu = \operatorname{div} V$$
 is a locally positive measure.
Fix x e IP and let χ_{s} be cutoff localising
to $B_{g}(x)$ s.t. $\chi_{g} \equiv 1$ on $B_{g}(x)$ and $(\nabla \chi_{g} \mid \xi \in S)$.
 $\mu (B_{g}(x)) \leq \int_{T} \chi_{g}(x) d\mu = -\int_{T} V \cdot P \chi_{g}(x) dx$
 $posurous P^{d}$
 $f(x) = \|V\|_{P} (\xi_{g}) (\int_{T} |\nabla \chi_{g}|^{q})^{\prime q} q = \frac{P}{P^{-1}}$
 $\leq W_{V} (28) \int_{T} dP_{P}^{-1} - 1$

Thank -you!

Obtaining boundary dissipation measure 0 Let $S = \mathcal{N} \times (O_i T)$ to closed set O Consider CC(S) (normed space with suprom) O Consider sequence of functionals on (°CS) given by integral of dissipation (indexed by v), times any test function $\phi \in (\stackrel{o}{c}(s))$ (all this $F_{v}[\phi] = \int \int \phi v |\nabla u|^2 dx dt$. e this functional belongs to dual of C°(S). Ender with weak-* topology · Having dissipation bounded in l'space-time gives that Fu is a bounded sequence ot functionals on the dual. Banach - Alaogly implies subsequence converging to a function F belonging to some doel. · Since along Bog Fis positive, It is positive. Ang Riezs on C((5) => J pas meusure prons 5.7. $F(4) = \int \psi d\mu$.