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Consider the Navier-Stokes equations on

M Ms
-

B

S

n= ! I
qu + n" . Du = - XpV+

vDUY in M

7-n = 0 in M

n. = O on 2M

n . I = I onG

n/t= o = No in M

Motion is generated by moving the solid

walls
, possibly in a non-uniform way .-

⑪



Consider the simplest situation

rotation
uniform

T M = disk or Radius &

· S
*

- I In 2rx 3qu + n . Du = YpV + vDur

7-n = 0 in EvR3

n = 0
ou Ev =R3

nV . E = IwoR ou Sr = R3

V +- 23

Theorem : For any initial
data No

,
UH->Us Iwoxt.

-

↑
In W

independent
fact
, I/U(- Usb1l

,
n
= 11 4o-4sb I

ex,ut
of V.

Roof : Let W = n"-Uss Then

fW + Us -DN+w-D4s
+W-Dw = - Dg+vDw wom= 0

#
But I !) DUss = Wo(Y) . Thus W . Dis

=

w

=> =--IwII-vx , llwE .

Xi Ir
I



Thus
,
we have theATurbulence :

uniform
rotation uniform

rotation

- + -> ⑱- all No
y
-

This is analogous to Marchioro's result on #2

forced by 7
= (* 5) (eig. the gravest model .

Experiments by Diane Henderson
,
Penn State .

Question : What if the imposed ship is

non-constant
,
or the domain is

not perfectly circular?

⑬



Generally, one would expect time dependence to

never disappear entirely In these settings. However

therewexist stationary states
,

which will

likely spe the large scale features of the flow .

Experiments by Diane Henderson
,
Penn State .

special case : the stale of constant vorticity :
My

Ux = 151]
,

km=Y

--⑳This is a stationary e
solution of Navier-Stokes Lum
for

every v,,
0 . Thus

,
if taken as initial data and

--

if forced by it's slip velocity , the solution is forene-S

It



Theorem : (Prandt 1904 & Batchelor 1956)
-

Let M be simply connected . Suppose He is

an Euler solation In M with a single stagnation

point . Let S43 be a family of steady
Navier . Stokes solutions . If n"ty , say

inc then

He-Wolly for some wo

That is
, he must have constant vorticity within M

.

⑤



Theorem : (Prandt 1904 & Batchelor 1956)
-

Let M be simply connected . Suppose He is

an Euler solation In M with a single stagnation

point . Let S43 be a family of steady
Navier . Stokes solutions . If n"ty , say
in c
,

then

He-Wolly for some wo

That is
, he must have constant vorticity within M

.

IRemark : M can represen closed streamlines of the
-

limiting Euler solution, possible yielding a staircase

of vorticity , separated (perhaps) by vortex
sheets

...

Constantinon and

Young, 2017
8-place turbulence Henderson, Lopez , Stewart

JFM 1996 ⑤



Proof of PrandAt-Batchelor Theorem
-

First note that
,
under the stated assumptions,

w = F(4)) for a Lip .

F: IR* IR
C

WLOG suppose 24 : 03 is the unique critical point.

Stationary vorticity equabon
:

nV . Do = v Aw

Integrate over a
sublevel set 343 :

0 = SuDwidy = /Dwdx
S4 ? 3 54- 3

= /Ow do
sp= c3

(Unwedor=FingOnt do
+ = c3 343

2

= F Guide > F(x =0

54 =c Feg



This all begs the question

Question : What determines the limiting vorticity wo?

This is the content of Feyuman's only published
work in fluid dynamics (as far as I knowl :

⑪



Incidentally , he seems to have independently
derived the Prandt)-Batchelor theorem :

-



And thought about what happens in

the case of multiple eddy formation ...

⑭



Let's revisit Feynman's idea for determining
the vorticity value wo . First we must

device the Prandt equations in von-Mises coordinates
.

Let Sito,-> OM be the avelength parametrication

of the boundary . Due to smoothness
,

I 8 s .t

it dist(x ,0M) <8 there exists a unique closest
/

boundary point to x call it x19) .
/
Ess

Ess x(S)
!

........
35 W

18in
Let z = dist(x

, zM) and 5 be our local coordinates .

then
x(s
,
z) = x15) + zn(s)

and
ris, = x

,
"x-xix

!

" is bondary curvature

is Jacobian
of

J( ,z)
= 1 + z81s7

change of variables

= (5
,
z) =

4) + 1s
,
z)) - E(s)

Let

Un(5 ,z) = nV(x(S,z) - [(S)

on disk
! U =-1 ,

T1 , 0) = &
, Ue , Ur Un

Do



Navier-Stokes near the boundary:

&U + UnUz= - +n
+8

--I= 8(50z4+) + 4(84) -(2) - (un+6,un)
&Un + Unkn - u + 82P

--I= (50zun) + (8) - (4) - -ru)
8z4n + 8

,
4
=
- Eu = 0

Now
,
in a layer of width

o
,

we anticipate
Enter Prandt

(U=
,
Un) = (Wogels), 0) + (u

,
u! )

t slip profile
↑

boundary

Specifically of unit vorticty Euler layer

n
= 15

,2)
w- ge(s) += Is, Er)

un1 , z)
= Fu? (s , El

whem em u! (s,z)

⑪



Plugging this ansatz into Navier-Stokes and

using that
,

with Z = Er :

↓
-
- ~ 1 - E EVIS +Oc]

I 1 + 8(3)

We obtain !

(wogels + U= ( 8
,
(wo9e(s) +4)

D
+ n8z(-9,( + 4)

+ Osp - 22 = 0

② OP = 0

together with incompressibility

& I
, (w9e1s + ut) + GzU= 0

Taking Z -> b
in D
,
since p-p(s) , we obtain

84 = -wo 9e's 9,1s) .

substituting into the onbone
,

we arrive at Prandt's

equations :

C, (Wogels
+ 4 = (8, (wo9e(s) +UE)

4) -- TeEdis -zU! = 0+ nn Ez (9e(s) + Us
P

& 8
, (w9e(s +u! ) + GzUn= 0 ⑫



C, (Wogels
+ 4 = (8, (wo9e(s) +UE)

- z(-9,(
+ f) -- eEdis-8U!= 0
P

& 8
, (w9e(s +u! ) + GzUn= 0

Now
,

define run Mises variables (s
, 4) :

82Y = wo9e(s) +u! 1s,z) y =
I
F

m

- 6
,
4 I - s

,
z)

q10,
5) = f(S)

-
= M

Let 9
= 914, 5)

= woge's
+P L NS Slip

Prandfrs equations become

Pressure
term .

25 92)-wrsle) - 9 OK"- O

=
or
,

Letting G =
2-wis

/

6
,
a - q64Q = 0

IEQ10,5) = fs) -wogess
Q(0, 51

= 0

⑬



↳
Q(0, 51

= 0 I
-

Feynman-Lagerstrom (1956) condition

wo is selected so that
I has a

periodic solution in s .

In the case of the disk
,

this is explicit !
/Noted also by Batchelow (1956) and Wood (1957)

Since 9
,
15)= (e = =xt), we have :

8
,
Q = 29639 . Thus 1

,9-t8? Q
= 0

L

up als,vids
= 0 >

as
,
ulds = 0

Evaluating at 4 = 0, using &1s
,
01
= fiss-v-(RI)?

2πR ↳ this is only thing
- I fYF) dO remembered from
2wo= (R/2) Navier-Stokes ·

O ⑪



↳** Finest
Q(0, 51

= 0

Feynman-Lagerstrom condition·

wo is selected so that
I has a

periodic solution in s .

Let us devive a general (nomlinearl criterion :

6 - w
-98 =-/9-w.el24Q
-- 19-woe) OsQ
I

-(I - Fas

=>

panans] - i !"-osas
-

N"(R)

=> 9,als,4ds= gNa]lydy F 47,0

⑪



Seals,4ds= yNa]lydy #490

Evaluating at 4 = 0, we find:

,

Sass (Ais-wigise)ds=jyjablyidy
f(s) = 9e(s)+5g1S) in this case 1 -w = Ewo

↑ with w
= 0(1)

perturbation of
unit vorticity

We anticipate Q = O(9)
.

Then NTQT=&(C) = ME ·

Then

wo=sFid + & (16 e

⑮



= -

,
Nguyen)ID. Iyer

Theorem Let gess: be any
smooth

, nonvanishing
-

periodic function . Let f(s)= Ye(s) + Eg(s) .

For all 3 sufficiently small
,

there exist a unique

wot and function 9 : Toi2x1R
*
- I such that

(wo
,
9) solves the Prandt equations

3
,
a - qua = 0 Q = q -wiqe

Q1s
,
0 = 745 -wes

Q(S
,
x) = 0

Moreover
,

the selected vorticity obeys

we"= mid + Very
,

IWork a

⑯



3
,
a - q0Q = 0 Q = q -w8q?

Q1s
,
0 = 745 -wes

Q(S
,
x) = 0

rewrite as
,

with f(s)= 90ss) +99(5)

3
,
a
+ Wo9e2Y=(1-ra)a

Q(S
,
01 = D -wi) 92 + 25g(s)9e(s) + >g(3)

Q(S, )
= 0

Recall wo is chosen so that & exist (periodic,
① then implicitly depends on wo . We study ...

the following iteration Fr-1
-

n-1Gantwo9erIa=(1-ahban-n-1 U u!9
n-1

Q15
,
01 = D-win) 92 + 2591519015)

+ >g(3)
n

Q(S, )
= 0

⑪



-

Non- 1- won determined by 11- talGan-
n-1

⑧

wo=sggelds + 8/a
...,walds

-

f93dS wonf9eds

e
to control

,

we require I
s-derivative of Q

-> On the other hand , if Wome ,
is known

,

we can obtain many derivatives
of Q
I

Q - En-iIsQn+ WoYe O U

since this equation is a
time" - periodic heat

.

-> Moreover
,

to make sense of $88(a...,walds,
we require decay of Q in 4

.

-4

-> In fact, the
heat evolution gives are .

⑱



We encode decay and regularity by working
in the following space

:

For &Cs
,41 : T, xIR+/2

11711y,m
=

[leysws !"All+Neys,
*

All

+ 1 +4)
*
242,/ + 11243

*427]
Note that by suboler

, 111p =181p+112,911,+ 11847)),2= IfI,
We construct a solution in X2

,
50 ·

OsQn+ We 24Qn En-

-
ep1 multiply by G

,
integrate, controls 1849

Step2 multiply by EsQ
,
integrate , controls 18, Q1p

-

3 given 8,Q ,
know CPQ (maximal regularity)

p use GR to control IQ-fads1I, by Poincare

Step 5 study Gero-mode fads separately . Use Feynmanagerstran,
-

get ope in 4 . Solve
,
use to control IIfads/Ip .

⑭



g
Thank-you!
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