The Feynman - Lagerstiom Criterion for Boundary Lagers joint work with
Sumer Eyer and Trish Nguyen.

Theodore Drives Stony Brook University

Consider the Navier-Stotes equations on

$$
\begin{array}{rlrl}
\partial_{t} u^{v}+u^{v} \cdot \nabla u^{v} & =-\nabla p^{v}+v \Delta u^{v} & & \text { in } M \\
\nabla \cdot u^{v} & =0 & & \text { in } M \\
u^{v} \cdot \hat{n} & =0 & & \text { on } \partial M \\
u^{v} \cdot \hat{\tau} & =f & & \text { on } \partial \mu \\
\left.u^{v}\right|_{t=0} & =u_{0} & \text { in } M
\end{array}
$$

Motion is qeaseraled by moving the solid walls, possibly in a non-nniform way.

Consider the simplest situation

Theorems: For any initial data $u_{0}, \tilde{u^{\prime}}(t) \xrightarrow{+\rightarrow \infty} u_{\text {Sb }}:=\frac{1}{2} \omega_{0} x^{\frac{1}{1}}$. In fact,

$$
\left\|u^{v}(t)-u_{s b}\right\|_{L^{2}} \leqslant\left\|u_{0}-u_{s b}\right\|_{L^{2}} e^{-\lambda_{1} v t} \begin{gathered}
\uparrow \\
\text { indeperdat } \\
\text { of } v .
\end{gathered}
$$

Proofs Let $w=u^{v}-u_{s b}$. Then

$$
\begin{aligned}
& \partial_{f} w+u_{s b} \cdot \nabla w+w \cdot \nabla u_{s b}+w \cdot \nabla \omega=-\nabla_{q}+v \Delta w \quad w / g m=0 \\
& B_{u}+(1) \quad \nabla u_{s b}=\omega_{0}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) . \quad \text { Thus } \quad w \cdot \nabla u_{g b}=w^{\perp} . \\
& \Rightarrow \quad \frac{1}{2} \frac{d}{d t}\|w\|_{l}^{2}=-v\|\nabla w\|_{l^{2}}^{2} \leqslant-v \lambda_{1}\|w\|_{l^{2}}^{2} . \quad \lambda_{1} \sim \frac{1}{p^{2}} .
\end{aligned}
$$

Thus, we have the Absence of Turbulence: unis tom rotation

This is analogous to Marchioro's resht on π^{2} forced by $f=\binom{\operatorname{sing} y}{0}$ (cig. the gravest mode).

Experiments by \square Diane Henderson Pena State.

Question: What if the imposed slip is noh-coustant, or the domain is not perfectly circular?

Generally, one would expect time dependence to never disappear entirely 19 these settrags. However there always exist stationary stakes, which will likely shape the large scale features of the flow.

Experiments by Diane Henderson, Pena state. special case: the stake of constant vorticity:

$$
u_{*}=K_{m}[1], \quad k_{M}=\nabla^{\perp} \Delta_{D}^{-1}
$$

This is a Stationary Solution of Navier-stotes

 if forced by it's slip velocity, the solution is forvener.

Theorem: (Pronalt 1904 \& Butchelor 1956)
Let M be simply convected. Suppose u_{e} is an Enter solution in M with a single stagnation point. Let $\left\{u^{\nu}\right\}$ be a family of steady Navier. Stokes solutions. If $u^{v} \rightarrow u_{p}$, soy in c^{2}, thea
$u_{e}=\omega_{0} u_{*}$ for some ω_{0}
That is, u_{c} mast have constant vorticity within M.

Theorem: (Pranatl 1904 \& Batchelor 1956)
Let M be simply connected. Suppose an Enter solution in M with a single stagnation point. Let $\left\{u^{\nu}\right\}$ be a family of steady Navier. Stokes solutions. If $u^{v} \rightarrow u_{p}, s^{c o} y$ in c^{2}, thea

$$
u_{e}=\omega_{0} u_{*} \text { for some } \omega_{0}
$$

That is, u_{c} mast have constant vorticity within M.
Remark: M can reporseat closed streamlines of the limiting Enter solutions possible yielding a staircase of vorticity, separated (perhaps) by vortex sheets...

Constaytinou ard Young, 2017
6-place turbulence

Alenderson, loper, stewart JFM 1996

Proof of Prandfl-Batchelor Theorem
First note that, under the stated assumptions,

$$
w_{e}=F\left(\psi_{e}\right) \quad \text { for a Lip. } F: \mathbb{R} \rightarrow \mathbb{R}
$$

Who suppose $\left\{\psi_{e}=0\right\}$ is the unique critical point.
Stationary vorticity equation:

$$
u^{v} \cdot \nabla \omega^{v}=v \Delta w^{v}
$$

Integrate over a sublenel set $\left\{\psi^{v} \leq c\right\}$:

$$
\begin{align*}
& 0=\frac{1}{v} \int_{\left\{\psi^{v} \leqslant c\right\}} u^{v} \cdot \nabla \omega^{v} d x=\int_{\left\{\psi^{v} \leqslant c\right\}} \Delta \omega^{v} d x \\
& =\int_{\left\{w^{v}=c\right\}} \partial_{h} \omega^{v} d \sigma \\
& \left\{\psi^{v}=c\right\} \\
& \xrightarrow{v \rightarrow 0} \int_{\left\{\psi_{e}=c\right\}} \partial_{h} \omega_{e} d \sigma=F^{\prime}(x) \int_{\{\psi \in c\}} \partial_{n} \psi d \sigma \\
& =F^{\prime}(c) \oint_{\substack{\left.\psi_{e}=c\right\}}} u_{e} \cdot d l \quad \Longleftrightarrow F^{\prime}(c)=0 \tag{6}
\end{align*}
$$

This all begs the question
Question What determines the limiting vorticity

This is the content of Feguman＇s only published
work in fluid dyuanies（as far as I know）：

REMARKS ON HIGH REYNOLDS NUMBER FLOWS IN FINITE DOMAINS ${ }^{(1)}$
by R．P。 FEYNMAN and P_{\circ} ． 。 LAGERSTROM ${ }_{\circ}$
Professor of Aeronautics．California
Institute of Technology，Pasadena．California，U．S．A．

Consider two－dimensional，stationary viscous incompressible flow in a finite domain D on whose boundary B the normal velocity component is ae－ no and the tangential flow component is prescribed to be $u_{w}(s),(s=$ dis－ trance along B ）．As pointed out by Prandtl in 1905 the limiting flow as Re （Reynolds number）tends to infinity has constant vorticity ω_{0}（actually several vortices may occur，each one with different vorticity）．Consider the case of only one vortex．The Euler equations for the limiting flow then reduce to Poisson＇s equation $\nabla^{2} \psi=-\omega_{0}$ ，the solution of which is pro－ portional to ω_{0} 。 At B this solution gives a tangential velocity $u_{e}(s)=\omega_{0} f(s)$ ．Here $f(s)$ depends on the geometry of the domain only and may be considered known．For very large values of $R e$ the vorticity is then essentially constant except in a thin boundary layer near B where the velocity changes rapidly from $u_{w}(s)$ to $u_{e}(s)$ 。 One may now determine ω_{0} from the requirement that such a boundary layer（periodic in s ）be possi－ bile．For a circle of radius L simple momentum considerations then lead to the formula $\left(L \omega_{0} / 2\right)^{2}=\bar{u}_{w}{ }^{2}$ ．（bar denotes average over B ）．Explicit formu－ las are difficult to find for general domains．If $\left|u_{w}-u_{e}\right| \ll u_{w}$ an ap－ proximate formula for ω_{0} is $\omega_{0}{ }^{2} f^{3}=u_{w}{ }^{2} f$ ．The above equations are necessary but not sufficient conditions for existence of a boundary layer as described．Non－existence of such a boundary layer indicates that the limiting flow consists of several vortices．

Incidentally he seems to have independently derised the Prandt/-Batchelor theorean:

Applecinovi to tow senvinuinal flow.

$$
\begin{gathered}
\text { put } q \times u=\frac{\partial y}{\partial y} \psi \\
q_{v}=v=\frac{3 y}{}=\psi \psi \\
\nabla \omega=\nabla^{2} \psi
\end{gathered}
$$

come. - -hupation.
$\int q(\nabla \times \omega) d v e l=0$. Apply to their reagion betewen tur strambinignhich ase A adgaccut os shoum. Iet $d s$ a luysth slewent. $\int q(\nabla \times \omega) d_{s} \omega=0$
 W arparativin is funchonofs).
But q is taryuitin, and $q q W=$ couct ly coutunits.

$$
\left.f(\nabla \times \omega) \operatorname{tang}^{d s}=0 \text { But }(\nabla \times \omega)\right)_{\text {tay }}=\frac{\partial \omega}{\partial m}=\text { Derviciti respect to nound. }
$$

TTHFO., $\oint \frac{\partial \omega}{\partial N} d s=0 \quad$ The meawnomalolenviativiof vortiel taker arruubd strausline is zero.
Suffor, 1 is very smell, and therr is a region in which the flow is escentially that of Eules $(\omega=0)$. Ther w is coustant on intrems-line, st is, thesfore Therefore it is a function of forly,
ff $\frac{\partial \omega}{\partial \mu}=\frac{\partial \omega}{\partial \varphi} \frac{\partial \psi}{\partial \mu}=\frac{\partial \omega}{\partial \varphi} q_{\text {any }} \quad B_{u} t \frac{\partial \omega}{\partial y}$ is constantoner the atsumlinis or W $\int \frac{\partial \omega}{\partial \psi} q_{t} d s=0=\frac{\partial \omega}{\partial y} \int q_{t} d s \quad$ Eithen $\frac{\partial \omega}{\partial \varphi}=0$, or $S q_{t} d s=0$. Aut $S q d$ sif th crubletini. It may hizerofrione otsambine, but not for tur un
 somes on all stream lines.
tifo, 1 St the free flow region, in the tivit $N \rightarrow 0$ regions whter temund

And thought about what happens in the case of multiple eddy formation...

The Interoi F low, for wneysumall.
Supposes as mi have shown in othur flecere, the flow is $\omega=$ conct in regious except for tur bindsof disiontiniuctis:

1. Interval Loundriss. Wjiwerese ive have(fardably) shown that u is contumains windescent. p is contrimaus
and if me tahe $4=0$ ow all the bruendries (all at oree, of coures) then R is contemening, where $R=\beta+\frac{1}{2}\left(a^{2}+v^{2}\right)-\omega \psi$.
2. Surface houndy layers. u-jumper Here me hane shour that piscontermenies

Rjumpe, fut $\Delta R=+\frac{1}{2}\left(\Delta u^{2}\right)$

We call the actud surfoic colocity f.
We call thiseusface velocity which elewicuates seeveforehombly loyers, hat
leaues internal boundries uncharged) g. Thee $R_{\text {rinct incile }}$ - $R_{\text {suigree }}$

$$
=+\frac{1}{2}\left(y^{2}-f y .\right.
$$

Let's revisit Fegaman's idea for determining the vorticity value wo. First we must derive the Pound 1 equations in vou-Mises coordinates.
Let $s:[0, L] \rightarrow \partial \mu$ be the ave length parametrisation of the boundary. Due to smoothness, $\exists \delta$ st. if $\operatorname{dist}(x, \partial M)<\delta$, there exists a unique closest boundary point to x, call it $x(s)$.

Let $z=\operatorname{dist}(x, \partial M)$ and s be our local coordinates. Then

$$
x(s, z)=x(s)+z \hat{n}(s)
$$

and

$$
\begin{aligned}
& \gamma(s)=x_{1}^{\prime \prime} x_{2}^{\prime}-y_{1}^{\prime} x_{2}^{\prime \prime} \quad \text { is bondang curvature } \\
& J(s, z)=1+z \gamma(s) \quad \text { is Jacobian of change of variates } \\
& u_{\tau}(s, z)=u^{2}(x(s, z)) \cdot \hat{\tau}(s)
\end{aligned}
$$

Let

$$
u_{n}(s, z)=u^{v}(x(s, z)) \cdot \hat{n}(s)
$$

on disk: $\gamma=-1, \quad \tau(s \theta)=\frac{1}{r}, u_{\tau}=u_{\theta}, u_{n}=u_{r}$

Navier-Stokes near the boundary:

$$
\begin{aligned}
& \frac{u_{\tau}}{J} \partial_{s} u_{\tau}+u_{n} \partial_{z} u_{\tau}-\frac{\gamma}{J} u_{\tau} u_{n}+\frac{1}{J} \partial_{s} p \\
& =v\left(\frac{1}{J} \partial_{z}\left(J \partial_{z} u_{\tau}\right)+\frac{1}{J} \partial_{s}\left(\frac{1}{J} \partial_{s} u_{\tau}\right)-\frac{1}{J} \partial_{s}\left(\frac{\gamma u_{n}}{J}\right)-\frac{\gamma}{J}\left(\gamma u_{\tau}+\partial_{s} u_{n}\right)\right] \\
& \frac{u_{\tau}}{J} \partial_{s} u_{n}+u_{n} \partial_{z} u_{n}-\frac{\gamma}{J} u_{\tau}^{2}+\partial_{z} p \\
& =v\left(\frac{1}{J} \partial_{z}\left(J \partial_{z} u_{n}\right)+\frac{1}{J} \partial_{s}\left(\frac{1}{J} \partial_{s} u_{n}\right)-\frac{1}{J} \partial_{s}\left(\frac{\gamma u_{\tau}}{J}\right)-\frac{\gamma}{J}\left(\partial_{s} u_{\tau}-\partial u_{n}\right)\right] \\
& \partial_{z} u_{n}+\frac{1}{J} \partial_{s} u_{\tau}-\frac{\gamma}{J} u_{n}=0
\end{aligned}
$$

Now, in a lager of width \sqrt{v}, we anticipate

Specifically $\tau_{\text {slip profile }}$ of unit voutzety Euler lager

$$
\begin{aligned}
& u_{\tau}(s, z) \sim w_{0} q_{e}(s)+u_{\tau}^{P}\left(s, \frac{z}{\sqrt{v}}\right) \\
& u_{n}(s, z)=\sqrt{v} u_{n}^{P}\left(s, \frac{z}{\sqrt{v}}\right)
\end{aligned}
$$

where $\quad \lim _{z \rightarrow \infty} u_{\tau}^{p}(s, z)=0$

Pluggong this ansatz into Navier-stokes and usiang that, with $z=\frac{z}{\sqrt{v}}$:

$$
\frac{1}{J}=\frac{1}{1+z \gamma(1)} \sim 1-\sqrt{z} Z \gamma(s)+\theta^{\prime}(v)
$$

We obtain!
(1)

$$
\begin{aligned}
& \left(w_{0} q_{e}(s)+u_{\tau}^{P}\right) \partial_{s}\left(\omega_{0} q_{e}(s)+u_{\tau}^{P}\right) \\
& \quad+u_{n}^{P} \partial_{z}\left(w_{0} q_{e}(s)+u_{\tau}^{P}\right)+\partial_{s} p-\partial_{z}^{2} u_{\tau}^{P}=0
\end{aligned}
$$

(2) $\partial_{z_{2}} p=0$
toge there with incoripuessibility
(3) $\partial_{s}\left(v_{0} q_{c}(s)+u_{\tau}^{P}\right)+\partial_{z} u_{n}^{P}=0$

Taking $z \rightarrow \infty$ in (1), since $p=p(s)$, we obtain

$$
\partial_{s} p=-\omega_{0}^{2} q_{e}(s) q_{e}^{\prime}(s)
$$

schstituting into the above, we arrive at Proandtt's equations:
(D1) $\left(w_{0} q_{e}(s)+u_{\tau}^{D}\right) \partial_{s}\left(\omega_{0} q_{e}(s)+u_{\tau}^{P}\right)$

$$
+u_{n}^{p} \partial_{2}\left(\omega_{0} q_{e}(s)+u_{\tau}^{P}\right)-\omega_{0}^{2} q_{e} q_{e}(s)-\partial_{2}^{2} u_{\tau}^{p}=0
$$

(P2) $\partial_{s}\left(v_{0} q_{e}(s)+u_{\tau}^{P}\right)+\partial_{z} u_{n}^{P}=0$
(11) $\left(w_{0} q_{e}(s)+u_{\tau}^{p}\right) \partial_{s}\left(w_{0} q_{e}(s)+u_{\tau}^{p}\right)$
(B2) $\partial_{1}+u_{n}^{p} \partial_{2}\left(\omega_{0} q_{c}(s)+u_{\tau}^{p}\right)-\omega_{0}^{2} q_{c} q_{c}^{\prime}(s)-\partial_{2}^{2} u_{\tau}^{p}=0$

Now, detive von Mises vaviables $(5, \psi)$:

$$
\begin{array}{ll}
\partial_{z} \widetilde{\psi} & =w_{0} q_{e}(s)+u_{\tau}^{p}(s, z) \quad \psi=\frac{\tilde{\psi}}{\sqrt{v}} \\
-\partial_{s} \tilde{\psi} & =v_{n}^{p}(s, z)
\end{array}
$$

Let $q=q(t, s)=\omega_{0} q_{e}(s)+u_{\tau}^{p}$.
$q(0, s)=f(s)$ NS slip

Prandtl's equations become

$$
\begin{aligned}
& \text { H/s equations } \\
& \partial_{s}\left(q^{2}\right)-\omega_{0}^{2} \partial_{s}\left(q_{e}^{2}\right)-q \partial_{\psi}^{2}\left(c^{2}\right)=0
\end{aligned}
$$

or, Letting $Q=q^{2}-\omega_{0}^{2} r_{e}^{2}, \quad \frac{\underline{s} e^{\psi=0}}{\prod 11}$

$$
\begin{aligned}
& \partial_{s} Q-q \partial_{\psi}^{2} Q=0 \\
& Q(0, s)=f^{2}(s)-\omega_{0}^{2} q_{e}^{2}(s) \\
& Q(\infty, s)=0
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{s} Q-q \partial_{\psi}^{2} Q=0 \\
& Q(0, s)=f^{2}(s)-\omega_{0}^{2} q_{c}^{2}(s) \\
& Q(\infty, s)=0
\end{aligned}
$$

Feynonan - Lagerstrom (1956) condition
ω_{0} is selected so that \mid has a periodic solution in S.

In the case of the disk, this is explicitly (Noted also by Batchalor '(1956) and Wood (1957))

Since $q_{e}(s)=\frac{R}{2} \quad\left(u_{e}=\frac{1}{2} x^{\perp}\right)$, we have:

$$
\begin{aligned}
& \partial_{s} Q=2 q \partial_{s} q . \text { Thus } \quad\left\{q-\frac{1}{2} \partial_{t}^{2} Q=0\right. \\
& \partial_{\psi}^{2} \int_{0}^{l} Q(s, \psi) d s=0 \Longleftrightarrow \int_{0}^{l} Q(s, \psi) d s=0
\end{aligned}
$$

Evaluating at $\psi=0$, using $Q(c, 0)=f^{2}(s)-\omega_{0}^{2}(R / 2)^{2}$, this is out h thing remembered from Never -Stokes.

$$
\begin{aligned}
& \partial_{s} Q-q \partial_{\psi}^{2} Q=0 \\
& Q(0, s)=f^{2}(s)-\omega_{0}^{2} q_{e}^{2}(s) \\
& Q(\infty, s)=0
\end{aligned}
$$

Feynoman-Lagerstrom condition:
ω_{0} is selected so that \mid has a periodic solution in S.
Let us derive a general (nonlinear) criterion:

$$
\begin{aligned}
& \partial_{s} Q-\omega_{0} q_{e} \partial_{\psi}^{2} Q=-\left(q-\omega_{0} q_{e}\right) \partial_{\psi}^{2} Q \\
&=-\left(q-\omega_{0} q_{e}\right) \frac{\partial_{s} Q}{q} \\
&=\left(1-\frac{\omega_{0} q_{e}}{\sqrt{\omega_{0}^{2} q_{l}^{2}+Q}}\right) \partial_{s} Q \\
& \Rightarrow \quad \partial_{\psi}^{2}\left[\int_{0}^{L} q_{e}(s) Q d s\right]=\frac{1}{\omega_{0}} \int_{0}^{l}\left(1-\frac{\omega_{0} q_{e}(s)}{\sqrt{\omega_{0}^{2} q_{e}^{2}+Q}}\right) \partial_{s} Q d s \\
& \Rightarrow \quad \int_{N_{0}}^{\omega_{0}}(Q) \\
& \Rightarrow \quad \int_{0}^{\infty} q_{l}(s) Q(s, \psi) d s=\int_{\psi} y N^{\omega_{0}}[Q](y) d y \quad \forall \psi \geqslant 0
\end{aligned}
$$

$$
\int_{0}^{l} q_{c}(s) Q(s, \psi) d s=\int_{\psi}^{\infty} y N^{\omega_{0}}[a](y) d y \quad \forall \psi \geqslant<0
$$

Evaluating at $\psi=0$, we find:

$$
\int_{0}^{L} q_{e}(s)\left(f^{2}(s)-\omega_{0}^{2} q_{e}^{2}(s)\right) d s=\int_{0}^{\infty} y N^{\omega_{0}}[Q](y) d y
$$

$f(s)=q_{e}^{(s)}+\varepsilon g(s)$ in hisc asse $\quad 1-\omega_{0}^{2}=\varepsilon \bar{\omega}_{0}$

$$
\begin{aligned}
& \uparrow \text { petrukhen of } \\
& \text { unit varicity }
\end{aligned} \quad \text { with } \bar{w}_{0}=O(1)
$$

We anticipate $Q=\theta^{\circ}(\varepsilon)$. Thes $N[\alpha]=\theta^{\prime}\left(\alpha^{2}\right)=\theta^{\prime}\left(z^{2}\right)$. Then

$$
\omega_{0}^{2}=\frac{\int_{0}^{L} q_{c}(s) f^{2}(s) d s}{\int_{0}^{l} q_{c}^{3}(s) d s}+\gamma\left(|d, k| \varepsilon^{2}\right)
$$

proximate formula for ω_{0} is $\omega_{0}^{2} f^{3}=u_{w}^{2} f$. The above equations are necessary but not sufficient conditions for existence of a boundary layer as described. Non-existence of such a boundary layer indicates that the limiting flow consists of several vortices.
(D. Fryer, Nguyen)

Theorem: Let $q_{e}(s)$ be any smooth, nonvanishing periodic function. Let $f(s)=q_{e}(s)+\varepsilon g(s)$.

For all ε sufficiesty small, there exist a unique $\omega_{0} \in \mathbb{R}$ and function $q:[0,1] \times \mathbb{R}^{-1} \rightarrow \mathbb{R}$ such that (ω, q) solves the Brandt equations

$$
\begin{aligned}
& \partial_{s} Q-q \partial_{\psi}^{2} Q=0 \quad Q=q^{2}-w_{0}^{2} q_{e}^{2} \\
& Q(s, q)=f^{2}(s)-\omega_{0}^{2} q_{e}^{2}(s) \\
& Q(s, \infty)=0
\end{aligned}
$$

Monomer, the selected vorticity obeys

$$
\begin{aligned}
& \partial_{s} Q-q \partial_{\psi}^{2} Q=0 \quad Q=q^{2}-w_{0}^{2} q_{e}^{2} \\
& Q(s, 0)=f^{2}(s)-\omega_{0}^{2} q_{e}^{2}(s) \\
& Q(s, \infty)=0
\end{aligned}
$$

rewrite as, with $f(s)=q_{e}(s)+\varepsilon g(s)$

$$
\begin{aligned}
& \partial_{s} Q+\omega_{0} q_{e} \partial_{\psi}^{2} Q=\left(1-\frac{\omega_{0} q_{e}}{\sqrt{\omega_{0}^{2} q_{e}^{2}}+Q}\right) \partial_{s} Q \\
& Q(s, 0)=\left(1-\omega_{0}^{2}\right) q_{e}^{2}+2 \varepsilon g(s) q_{0}(s)+\varepsilon^{2} J(s) \\
& Q(s, \infty)=0
\end{aligned}
$$

Recall wo is chosen so that Q exist (periodic), Q then implicitly depends on wo. We study...
the following iteration

$$
\begin{aligned}
& \partial_{s} Q_{n}+\omega_{0} q_{e} \partial_{\psi}^{2} Q_{n}=\left(1-\frac{\omega_{0} q_{-1} q_{e}}{\sqrt{\omega_{0}^{2} q_{e}^{2}}+Q_{n-1}}\right) \partial_{s} Q_{n-1} \\
& Q(s, 0)=\left(1-\omega_{0}^{2}\right) q_{e}^{2}+2 \varepsilon g(s) q_{0}(s)+\varepsilon^{2} g(s) \\
& Q(s, \infty)=0
\end{aligned}
$$

$$
\begin{aligned}
& \overline{\omega_{0}}=1-\omega_{0}^{2} \quad \text { determined by } \\
& \left.\left(1-\frac{w_{1}, 4 c}{\sqrt{\sin _{2}^{2} \varepsilon_{2}^{2}}}\right) 2 Q_{n-1}\right) 2 Q_{n-} \\
& \bar{\omega}_{o_{n}}=\frac{f\left(2 g q_{l}^{2}+\varepsilon q^{2} q_{e}\right) d s}{f q_{3}^{3} d s}+\frac{\iint_{0}^{\infty} y f\left(a_{n-1} \omega_{n-1}\right) d s}{\omega_{0,-1} q f q_{e}^{3} d s}
\end{aligned}
$$

to control, we require 1 s-derivative of Q
\rightarrow On the other, hand, if $\omega_{0_{n-1}}$ is known, we can obtain many derivatives of Q

$$
\partial_{5} Q_{n}+w_{0} q_{e} \partial_{\psi}^{2} Q_{n}=F_{n-1}
$$

sure this equation is a "fine"-periddic heat.
\rightarrow Moveover, to make sense of $\iint_{0}^{\infty} y f\left(a_{1-y}, w_{n-1}\right) d s$, we requive decay of Q in ψ.
\rightarrow In fact, the heat evolution gives $Q \sim e^{-\psi}$.

We encode decay and regularity by working in the following space:

$$
\begin{aligned}
& \text { For } f(s, \gamma): T_{L} \times R_{+,} \\
& \|f\|_{X^{k, m}}^{2}= \\
& \sum_{k^{\prime}=0}^{k} \sum_{m^{\prime}=0}^{m}\left[\left\|\langle\psi\rangle^{\alpha^{\prime}} \partial_{s}^{k_{s}^{\prime}} f\right\|_{l^{2}}^{2}+\left\|\langle\psi\rangle^{a^{n}} \partial_{s}^{k^{\prime}+1} f\right\|_{L^{2}}\right. \\
& \left.+\left\|\langle\psi\rangle^{n^{\prime}} \partial_{\psi} \partial_{s}^{t_{s}^{\prime}} f\right\|_{l}^{2}+\left\|\langle\psi\rangle^{n^{\prime}} \partial_{\psi}^{2} \partial_{s}^{k^{\prime}}\right\|_{l}^{2} l^{2}\right]
\end{aligned}
$$

Note that by Suboles, $\|f\|_{2} \infty \|\left\{f\left\|_{l}+\right\| \partial_{3} f\left\|_{l^{2}}+\right\| \partial_{4} f\left\|_{2} \lesssim\right\| f \|_{1,0}\right.$
We construct a solution in $X_{2,50}$.

$$
\partial_{5} Q_{n}+\omega_{0} q_{e} \partial_{\psi}^{2} Q_{n}=F_{n-1}
$$

Step 1 multiply by Q, integrate, controls $\left|\partial_{\varphi} Q\right|_{L^{2}}$
Step z multiply by $\partial_{5} Q$, integrate, controls $\left|\partial_{s} Q\right|_{L^{2}}$
Step 3 given $2_{5} Q$, know $\partial_{\psi}^{2} Q$ (maximal regularity)
Steps use of Q to control $\|Q-f Q d s\|_{L^{2}}$ by Poincare
Step 5 Study zeromade fads separately. Use Feramantiogedion, get odd in ψ. Solve, use to caution $\|f a d s\|_{l^{2}}$.

