MAT 307: Advanced Multivariable Calculus Lecture 10 Functions of multiple variables. f(x,y)x, y and Neal variables either xig can le all real Variables, or défined on some Domain 10 122 (the plane). ex. $f(x_1y) = x^2 + y^2$ 2 variables $f(x,y) = ln(x^2+y^2)$ $f(x,y) = e^{-\frac{1}{x^2-2y}}$ ተኑ $\int (x_{i}y_{1}z) = \frac{1}{(x^{2}+y^{2}+z^{2})^{3/2}}$ 3 variables

EF: f(x,y) = x + y (x,y,z) = x + y (x,y,z) = x + y (x,y,z) = (x,y)is a plane whose height is x + y. y = -y

Z

 $F(x,y) = x^2 + y^2$

۶×:

 $f(x_{cy}) = xy$

Saddle

ections along
$$X=Y_{j}$$

upwords parabola $f=X^{2}$
along $X=-Y$.
downcames $f=-X^{2}$
for X, Y^{20} $f=0$
 $X70, YC0$ $f<0$
 $X10$ $Y > 0$
 $X70, YC0$ $f<0$
 $X70, YC0$ $f<0$

I

Another way to depict function of two variables: level curves

diffueent c, diffueent curve

Ex:

For a function of 3 variables, the graph is in the fourth dimension, 50 impossible to draw. Level curves are level surfaces. Sometimes these can be imagined Key. it spheres or tori) but in general it is difficult.

$$\frac{Partial}{f(x)} = \frac{dlvivatives}{dlvivative studied extensively}$$

$$\frac{f(x)}{f(x)} = \frac{dlvivative studied extensively}{\ln e-1e I and I}$$

$$\frac{f(x,y)}{f(x,y)} = \frac{dim}{h^{20}} \frac{f(x+hy) - f(x,y)}{h}$$

$$\frac{\partial f}{\partial x}(x,y) = \frac{dim}{h^{20}} \frac{f(x+hy) - f(x,y)}{h}$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{dim}{h^{20}} \frac{f(x,y+h) - f(x,y)}{h}$$
Growe trice, lly g acts like a parameter, h

$$\frac{f(x,y)}{f(x,y)} = \frac{f(x)}{h^{20}} \frac{f(x,y+h) - f(x,y)}{h}$$

$$E_{x} = f(x_{1}y) = x^{3}y^{2}$$

$$Y = x$$

For functions of three variables we have

$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Ex:

$$f(x_{i},y_{i},z_{i}) = \frac{1}{(x^{2}+y^{2}+z^{2})^{1/2}}$$

$$\frac{\partial}{\partial y} \mathcal{P}(x, y, z) = -\frac{1}{2} \frac{1}{(x^2 + y^2 + z^2)^{3/2}}$$
$$= \frac{-\frac{1}{2}}{(x^2 + y^2 + z^2)^{3/2}}$$

$$\frac{\partial}{\partial x} f = \frac{-\chi}{(\chi^2 + y^2 + z^2)^{3/2}} \frac{\partial f}{\partial z} = \frac{-z}{(\chi^2 + y^2 + z^2)^{3/2}}$$

R

Expansion of Solid budies	as you raise typpartu
$L(\tau_{0}) = 0$	diameter as function of frageratury
$L(T_{j}+h) \approx L$	$(\tau_0)(1+\alpha h)$
a is coefficien (depender	t of linear expansion ton material)
limar size $V(T_{sth}) \approx V$ Incorres.	(To) (1+84)
also voinne Bis coefficient	f of volume expression
<u>Claim</u> : B=3d	
Is this an experimental	fact?
Nol It's a theorem 1	ising linear approximation
$V(T_{fh}) \simeq V(T_0) (1+d)$	$h^{3} \approx V(t)(1+3ah)$
$f(x) = x^{3}$ $f(1) = 1$ $f(1+\alpha y)$	= \$(1) + 7'(1)ah

Two variables	if	derivatives	ex:st	and are	cont
J(K14, Ytk	·) ~ '	f(x, y) $\frac{\partial f}{\partial x}(x, y)h$	+ 3f dy	(K,Y) K .	
E_{κ} : $f(x,y)$	= In (·	x ² + z ²)	x=1' A	۶2	
$f(1, 2) =$ $h= 0.1, k=$ $\frac{2f}{2x} = \frac{2}{x^2}$ $\frac{2f}{2x}(x) =$ $f(1.1, 2.1) \approx$	η (5 0.1 <u>r</u> +y2 2 = 0.4 5	$) \approx 1.6094$ $\frac{\partial f}{\partial y} = \frac{2}{x}$ $\frac{\partial f}{\partial y} = \frac{2}{x}$ $\frac{\partial f}{\partial y} (1,2) = \frac{4}{5}$ $+ \frac{2}{5} (0.1)$	(38) 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 3 3 3 4 3 4 3 4 3 4	¥ . (o	. ()
Ξ	1.609	+ 0.1	2		
~ Y = ln ((1.1) Ynpp-y = 0	1.729 ² + (?.1) ²) .003	438 = Jay) = (.7263 (ovder of sy	19 31 unne o	chang 1 ^{ar} f 0.1)	e in jument

Notation

$$\begin{aligned} \partial f &= \partial_x f = f, \\ \partial f &= \partial_y f = f_z \\ \partial f &= \partial_z f = f_z \\ \partial f &= f_z \\ \partial z &= f_z \end{aligned}$$

Chain rule:
1) $x = x(H)$ $f(x, y, z)$ y = y(H) z = z(H) $F(H) = f(x(H), y(H), z(H))$
t -> t+ dt very small (infintesional) change
$\chi(t) \Rightarrow \chi(t+dt) = \chi(t) + \chi'(t) dt$ linear $\chi(t) \Rightarrow \chi(t+dt) = \chi(t) + \chi'(t) dt$ $Z(t) \Rightarrow Z(t+dt) = Z(t) + Z'(t) dt$
$\begin{aligned} f(x,y,z) &= f(x+dx,y+dy,z+dz) \\ &= f + f_x dx + f_y dy + f_z dz \\ &= f + f_x x'df + f_y y'df + f_z^2 dt \end{aligned}$
Thus
$\frac{d}{dF}[F] = \chi'[H] \int_{X} (\chi[H], \chi[H], 20]) + J'[H] f_{y}(\chi[H], 2(H), 2(H), 2(H))$
$+ 2 \ln f \ln \sqrt{2}$

$$E_{x}: f(x,y,z) = x^{2} + y^{2} + z^{2}$$

$$x(t) = \cos t$$

$$y(t) = \sin t$$

$$F(t) = f(x(t), y(t), z(t))$$

$$z(x) = t$$

$$F'(t) = f_{x} + f_{y} + f_{y} + f_{z} = 1$$

$$f_{x} = 2x$$

$$f_{y} = 2y, \quad f_{z} = 2z$$

$$x' = -\sin t \quad y' = \cos t \quad z' = 1$$

$$F'(t) = -2 \cos t \sin t + 2 \sin t \cos t + 2t$$

= 2t.

$$F(u,v) = f(x,y) \quad \text{fort} \quad x = x(u,v) \\ y = y(u,v) \\ F(u,v) = f(x(u,v), y(u,v)) \\ \frac{\partial F}{\partial u} = ? \qquad \frac{\partial F}{\partial v} = ? \\ (u,v) \rightarrow (u + du, v) \\ x(u,v) \rightarrow x(u,v) + \frac{\partial x}{\partial u}(u,v) du \\ y(u,v) \rightarrow y(u,v) + \frac{\partial y}{\partial u}(u,v) du \\ x = x + dv \quad y = y + dy \\ F(u,v) \rightarrow F(u,v) + F_x(u,v) dx + F_y(u,v) dy \\ = F(u,v) + F_x(u,v) \frac{\partial x}{\partial u}(u,v) du \\ \text{for } x = x + f_y(u,v) + F_x(u,v) \frac{\partial x}{\partial u}(u,v) du \\ x = x + dv \quad y = y + dy \\ \text{for } x = x + dy \quad y = y + dy \\ x = x + dv \quad y = y + dy \\ \text{for } x = x + dv \quad y = y + dy \\ \text{for } x = x + dv \quad y = y + dy \\ \text{for } x = x + dv \quad y = y + dy \\ \text{for } x = x + dv \quad y = y + dy \\ \text{for } x = x + dv \quad y = y + dy \\ \text{for } x = x + dv \quad y = y + dy \\ \text{for } x = x + dv \quad y = y + dy \\ \text{for } x = y + dy \\ \text{for } x = y + dy \\ \text{for } x = y + dy \\ \text{for } y = y + dy \\ \text{fo$$

I

$$\frac{\partial F}{\partial u} = \frac{\partial Y}{\partial u} \frac{\partial f}{\partial x} (X(u_{1}u_{1}), Y(u_{1}u_{2})) + \frac{\partial Y}{\partial u} \frac{\partial f}{\partial y} (X(u_{1}u_{1}), Y(u_{1}u_{2})),$$

$$\frac{\partial F}{\partial v} = \frac{\partial Y}{\partial v} \frac{\partial f}{\partial x} (X(u_{1}u_{1}, Y(u_{1}u_{2})) + \frac{\partial Y}{\partial y} \frac{\partial f}{\partial y} (X(u_{1}u_{2}), Y(u_{1}u_{2}))$$

$$F_{K'} = \frac{1}{4} \left(\frac{1}{4}, \frac{1}{9}\right) = x^{2} + 2y^{2}$$

$$x = u conV \qquad y = u sinV$$

$$F(u_{1}u) = \frac{1}{4} \left(\frac{x(u_{1}v)}{y(u_{1}v)}\right)$$

$$= u^{2} cosV^{2} + 2u^{2} sin^{2}v$$

$$\partial_{x}f = 2r \qquad \partial_{u}x = cosv \qquad \partial_{u}y = sinv$$

$$\partial_{y}f = \frac{2}{4} \qquad \partial_{v}x = -u sinv \qquad \partial_{v}y = u corv$$

$$\frac{\partial F}{\partial u} = 2(osV (u cosV) + 4 sinv (u sinv))$$

$$= 2u (osv^{2} + 4u sinv^{2})$$

$$\frac{\partial F}{\partial v} = 2u (osv (-u sinv)) + 4u sinv (u cosV)$$

$$= -2u^{2} cosV sinv + 4u^{2} cosV sinv$$

$$= 2u^{2} cosV SinV.$$