Why is
$$\overline{a}^{+}.\overline{b}$$
 the cross product in 20?
First, given a pair of 3D vectors \overline{a} and \overline{b}
 $\overline{a} \times \overline{b}$ is the vector that is
 $\overrightarrow{0}$ or thogonal to \overline{a} and $\overline{6}$
 $\overrightarrow{0}$ whose magnitude is equal to the
area of the parallelogram made by
 \overline{a} and \overline{b}
 $\overrightarrow{0}$ whose direction is such that
 $(\overline{a}, \overline{b}, \overline{a} \times \overline{b})$ form a right type.
Here is the picture:
 $\overrightarrow{a} \times \overline{b}$ mognitude
 \overrightarrow{b} and \overrightarrow{b}

~ Z Taxo Suppose à and b live in the x-y plane. $\vec{a} = (\vec{a}, 0)$ Ь $= (\vec{B}, 0)$ R K Then, according to the definition of $\vec{a} \times \vec{b}$, Then, according to the definition of $\vec{a} \times \vec{b}$, we should have (\vec{a}, \vec{b}) is a right we should have (\vec{a}, \vec{b}) is a right (\vec{a}, \vec{b}) = orea $\vec{a} \times \vec{b} = A(\vec{a}, \vec{b}) K$ makes = $\vec{a} \cdot \vec{b} \cdot \vec{k}$ makes $\vec{b} \cdot \vec{b} \cdot \vec{k}$ makes $\vec{b} \cdot \vec{b} \cdot \vec{k}$ makes $\vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{k}$ makes $\vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b}$ makes $\vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b}$ makes $\vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b}$ makes $\vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b}$ makes $\vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b} \cdot \vec{b}$ makes $\vec{b} \cdot \vec{b} \cdot \vec{b}$ Thus, d.b is called the cross product in 20, Since it represents the "scalar part" of cross product at 2 planar vectors in 3D. the (2)

Indeed, from the algebraic definition: i j k α K, 62 в, $(\alpha_1\beta_2 - \alpha_2\beta_1) \not\in$ $(\vec{a}^{\perp}, \vec{b}) \vec{k}$ Note that if (\vec{a}, \vec{e}) were a left pair, then A $(\vec{a}, \vec{e}) = -$ area and direction direction $\vec{a} \times \vec{b} = \left(-A(\vec{k},\vec{\theta})\right) - \left(-\vec{k}\right)$ (ã, b, axb) le is a left ->y triple.

To summarize, if

$$\vec{q} = (\vec{k}, o)$$
 and $\vec{b} = (\vec{b}, o)$
are two 3D vectors that lye in the K-y plane,
then the scalar $\vec{a} \cdot \vec{b}$ has
i) magnitude equal to $|| \vec{a} \times \vec{b} ||$
2) sign which determines the orientation:
 $\cdot If \vec{a} \cdot \vec{b} = 0$, then $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$
is a right triple
 $\cdot If \vec{a} \cdot \vec{b} = 0$, then $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$
is a left triple.

Thus from the single number
$$\vec{a} \cdot \vec{b}$$
, one
recovers all information about $\vec{a} \times \vec{b}$
justifying the term "cross product in 2D.