
Celestial Mechanics and Kepler’s laws

Theorem: (Newton) Suppose, for constants G, m, and M , that planetary motion about thus is governed by

mr⃗′′(t) = −GMm

∥r⃗∥3
r⃗(t). (1)

Then the planet’s orbit, traced out by r⃗(t), is a conic section.

(1) Show conservation energy. Namely, E = m
2 ∥v⃗∥

2 − GMm
∥r⃗∥ is a constant of motion.

First note that, dotting Newton’s equation ma⃗ = −GMm
∥r⃗∥3 r⃗ with v⃗ and using the product rule we have

d

dt

m

2
∥v⃗(t)∥2 + GMm

∥r⃗∥3
(v⃗ · r⃗) = 0. (2)

On the other hand, computing the evolution of the potential energy U(r) = −GMm
∥r⃗∥ gives

d

dt
U(r(t)) =

GMm

∥r⃗∥3
v⃗ · r⃗. (3)

The we obtain
d

dt

(
m

2
∥v⃗(t)∥2 − GMm

∥r⃗∥

)
= 0. (4)

(2) Deduce from conservation of energy that, provided E0 :=
m
2 ∥v⃗(0)∥

2− GMm
∥r⃗(0)∥ < 0, the planet’s orbit r⃗(t)

is bounded for all time. In fact, ∥r⃗(t)∥ ≤ GMm
|E0| .

The claim follows immediately from energy conservation:

−E0 =
GMm

∥r⃗(t)∥
− m

2
∥v⃗(t)∥2 ≤ GMm

∥r⃗(t)∥
. (5)

(3) Show conservation angular momentum. Namely, L⃗ = r⃗ × v⃗ is a constant of motion. Argue that the the
motion is confined for all time to the plane ΠL⃗ that passes through the origin and is orthogonal to L⃗.
We cross the equations of motion with r⃗ to find r⃗ × a⃗ = 0. But this implies d

dt(r⃗ × v⃗) = v⃗ × v⃗ = 0.

(4) The above is equivalent to Kepler’s second law: “The line segment from the sun to the planet sweeps out
equal areas in equal times.” That is, the vector r⃗(t) sweeps out area A(t) in the plane ΠL⃗ at a constant
rate. Explain why by proving A′(t) = 1

2∥L⃗∥.
We claim that the rate of change of the swept area is A′(t) = 1

2 |r⃗(t)× v⃗(t)|, whence the claim follows. To
see it, note that over short time intervals, this area A(t+ dt)−A(t) can be approximated as half the area
of the parallelogram made from vectors r⃗(t) and v⃗(t)dt. Namely, A(t+ dt)−A(t) ≈ 1

2 |r⃗(t)× v⃗(t)|dt.

(5) Prove conservation of the Laplace–Runge–Lenz vector d⃗ := v⃗ × L⃗−GM r⃗
∥r∥ .

The claim follows by the following computation:

d

dt
(v⃗ × L⃗) = a⃗× L⃗ = −GM

∥r⃗∥3
r⃗ × L⃗ = −GM

∥r⃗∥3
r⃗ × (r⃗ × v⃗)

= −GM

∥r⃗∥3
(
(v⃗ · r⃗)r⃗ − ∥r⃗∥2v⃗

)
=

d

dt

(
GM

r⃗

∥r∥

)
.

(6) Argue that d⃗ is in the plane spanned by r⃗ and v⃗.

Since v⃗ × L⃗ is perpendicular to L⃗, then GM r⃗
∥r∥ + d⃗ is also perpendicular to L⃗. In particular, it is in the

plane spanned by r⃗ and v⃗. As such, d⃗ is also in the same plane spanned by v⃗ and r⃗.
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(7) Let θ be the angle between d⃗ and r⃗/∥r⃗∥. Let L = ∥L⃗∥ and d = ∥d⃗∥, then

∥r∥ =
p

1 + e cos θ
, p =

L2

GM
, e =

d

GM
.

We compute:

∥L⃗∥2 = L⃗ · L⃗ = (r⃗ × v⃗) · L⃗
= (v⃗ × L⃗) · r⃗

= (GM
r⃗

∥r⃗∥
+ d⃗) · r⃗

= GM∥r∥+ d∥r∥ cos θ.

Therefore ∥r∥ = L2

GM+d cos θ . The conclusion follows.
(8) Rotating the plane containing v⃗ and r⃗ so that d⃗ coincides with the positive x-axis. Show the result of (c),

in Cartesian coordinates x = r sin θ, y = r cos θ, is

(1− e2)x2 + 2pex+ y2 = p2.

Show that the curve {(x, y) ∈ R2 | (1− e2)x2 + 2pex+ y2 = p2} is an
• ellipse if |e| < 1,
• parabola if |e| = 1,
• hyperbola if |e| > 1.

First, by the equation in Cartesian coordinates, note that (x, y) satisfy

p = r + er cos θ = r + ex, or r = p− ex.

Therefore, we have r2 = x2 + y2 = (p− ex)2 and, expanding, we obtain

(1− e2)x2 + 2pex+ y2 = p2.

The curve
{(x, y) ∈ R2 | (1− e2)x2 + 2pex+ y2 = p2}

is a conic section of the type claimed in (d). Indeed,
• if |e| < 1, we get (

x+ pe
1−e2
p

1−e2

)2

+

(
y
p√
1−e2

)2

= 1.

The center of the ellipse is at (− pe
1−e2

, 0).
√
a2 − b2 = pe

1−e2
, the foci are at the (0, 0) and

(
−2 pe

1−e2
, 0
)

,

• if |e| = 1, we get y2 = p2 ± 2px, the equation for a parabola,
• if |e| > 1, we have (

x+ pe
1−e2
p

1−e2

)2

−

(
y
p√
1−e2

)2

= 1,

the equation for a hyperbola in its canonical form.
(9) Prove Kepler’s third law for elliptical orbits: “The square of the period is proportional to the cube of the

major axis of the ellipse.”
For elliptical orbit, we see that the area of the ellipse is given by πab, where a is the length of the major
axis p

1−e2
, and b the length of the minor axis p√

1−e2
. Recall the area swept out in time t is A(t) = L

2 t Let

T be the period of the orbit, then area swept after time T is given by A(T ) = πab. Hence L
2 T = πab and

thus 1
4L

22T 2 = π2a3p. Since p
L2 = 1

GM , we have

T 2 =
(2π)2a3

GM
.


