
MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024 Homework 3

(1) For what values of a and b does the following system of equations

x+ 2y + 3z = 4, x+ 4y + 9z = 16, x+ 8y + az = b,

(a) have a unique solution?
(b) have no solution?
(c) have infinitely many solutions?

Solution: (a) Row reduction can get us to

[A | b⃗ ] =

1 2 3 4
1 4 9 16
1 8 a b

 row ops.−−−−−→

1 0 −3 −8
0 1 3 6
0 0 a− 21 b− 40

 .

If a ̸= 21, then we can divide the 3rd row by a− 12 to get a (consistent) pivot in the 3rd column. This will
give a unique solution as every column will have a pivot.
(b) If a = 21 and b ̸= 40, then the constant column will have a pivot, meaning the system is inconsistent.
(c) If a = 21 and b = 40, the last row is all zeros, meaning that z is a non-pivot variable, which is free.

(2) Find a matrix A representing the linear transformation T in the following two cases:

(a) T

([
1
1

])
=

[
2
3

]
, T

([
1
2

])
=

[
4
5

]
(b) T

xy
z

 =

[
2x+ 3y − 7z

y − z

]
.

Solution: (a) Let

A =

[
0 2
1 2

]
. Then, A

[
1
1

]
=

[
2
3

]
and A

[
1
2

]
=

[
4
5

]
.

(b) Let

A =

[
2 3 −7
0 1 −1

]
. Then, A

xy
z

 =

[
2x+ 3y − 7z

y − z

]
.

(3) A square matrix A is called nilpotent if Ak = 0 for some positive integer k.
(a) Compute the determinant of any nilpotent matrix. Solution: Zero, since 0 = detAk = (detA)k.
(b) Find a 3× 3 matrix A such that A2 = 0 but A ̸= 0. Solution: Let

A =

0 0 1
0 0 0
0 0 0

 . Then, A2 = 0, i.e. the zero matrix.

(c) Find a 3× 3 matrix A such that A3 = 0 but A2 ̸= 0. Solution: Let

A =

0 1 1
0 0 1
0 0 0

 . Then, A2 =

0 0 1
0 0 0
0 0 0

 and A3 = AA2 = 0.

(4) True or False. Answer the following questions concerning systems (i) and (ii) below. Here, x, y, z are the
unknowns and ai, bi, ci, di ∈ R. Explain your answers. If a statement is false, give a counterexample.

(i)
a1x+ b1y + c1z = d1
a2x+ b2y + c2z = d2
a3x+ b3y + c3z = d3

(ii)
a1x+ b1y + c1z = d1
a2x+ b2y + c2z = d2
a3x+ b3y + c3z = d3 + 1

1
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(a) If (i) has exactly one solution, then the same is true for (ii). True. Let

A =

a1 b1 c1
a2 b2 c2
a2 b2 b3

 =

r⃗1r⃗2
r⃗3

 , d⃗ =

d1d2
d3

 , d⃗ ′ =

 d1
d2

d3 + 1


If (i) has exactly one solution then rref([A | d⃗ ]) has a pivot in in every one of the first three columns.

Since rref([A | d⃗ ]) and rref([A | d⃗ ′ ]) differ only in the last column, we see that (ii) must have a
unique solution. Geometrically, the three row vectors of A define three intersecting planes. A unique
solution to (i) means that the first two planes intersect in a line and the third plane intersects that
line transversely (i.e. doesn’t contain the line). The third plane in (ii) is simply a shift of the third
plane in (i) in the direction of r⃗3, so the intersection remains a point.

(b) If the solution set of (i) is a line, then the same is true for (ii). False. A counterexample is

A =

1 0 0
0 1 0
1 1 0

 , d⃗ =

00
0

 , d⃗ ′ =

00
1

 ,

where the solution set of (i) is span{[0 0 1]t}, while (ii) is inconsistent.

(c) If (i) has no solutions, then the same is true for (ii). False. A counterexample is

A =

1 0 0
0 1 0
1 1 0

 , d⃗ =

 0
0
−1

 , d⃗ ′ =

00
0

 ,

where (i) is inconsistent, while span{[0 0 1]t} is the solution set of (ii).

(5) ∗ Let A =

(
0 1
1 1

)
and f0 = 0, f1 = 1, f2 = 1 and, for n ≥ 1, fn+2 = fn+1 + fn be the Fibonacci sequence.

(a) Show that A2 =

(
1 1
1 2

)
and prove, using induction, that

A2n =

(
f2n−1 f2n
f2n f2n+1

)
, n = 1, 2, 3, . . .

Solution: It hold manifestly for A2 (e.g. n = 1), By the induction hypothesis (that the identity holds
for A2n) , we have

A2(n+1) = A2nA2 =

(
f2n−1 f2n
f2n f2n+1

)(
1 1
1 2

)
=

(
f2n−1 + f2n f2n+1 + f2n
f2n−1 + 2f2n 2f2n+1 + f2n

)
=

(
f2(n+1)−1 f2(n+1)

f2(n+1) f2(n+1)+1

)
using the fact that Fibonacci numbers are defined by the recurrence fn = fn−1+fn−2. E.g. f2(n+1)+1 =
f2n+3 = f2n+2 + f2n+1 = 2f2n+1 + f2n.

(b) Compute the determinant of A2, and use it, together with the formula for A2n (relating the determi-
nants), to prove the identity

f2n−1f2n+1 − f2
2n = 1, for n = 1, 2, 3, . . . .

Solution: The determinant is, on one hand,

det (A2) = 1, det (A2n) = det (A2)
n
= 1.

On the other hand, by part (a), we have

det (A2n) = f2n−1f2n+1 − f2
2n.

The claimed relation follows.
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(6) ∗ Stony Brook University’s Board of Trustees, which consists of 20 members, recently had to elect a
President. There were three candidates on the shortlist (A, B, and C). On each ballot, the three candidates
were listed in order of preference, with no abstentions. The vote outcome is as follows:

• 11 members, a majority, preferred A to B, thus 9 preferred B to A
• 12 members preferred C to A.

Given this, it was suggested that B should withdraw, to enable a direct comparison between A and C.
However, B’s proponents objected. It turned out that 14 members preferred B to C. Suppose every possible
order of A, B, and C appeared on at least one ballot, how many members voted for B as their first choice?
Argue how, by eliminating by first comparing a given two of the candidates head to head, and then comparing
the remaining two, you could “fairly” elect either A, B or C in this election. (!!)

Solution: There are 6 possible ways to fill out a ballot: ABC, ACB, BAC, BCA, CAB, CBA. Suppose
each of these received a, b, c, d, e, f votes, respectively. The information in the problem tells us that

a, b, c, d, e, f ≥ 1

a+ b+ c+ d+ e+ f = 20

a+ b+ e = 11

d+ e+ f = 12

a+ c+ d = 14

The last four equations give a linear system that we can solve.

rref


1 1 1 1 1 1 20
1 1 0 0 1 0 11
0 0 0 1 1 1 12
1 0 1 1 0 0 14

 =


1 0 0 0 0 −1 5
0 1 0 0 1 1 6
0 0 1 0 −1 0 −3
0 0 0 1 1 1 12


So 

a
b
c
d
e
f

 =


5
6
−3
12
0
0

+ e


0
−1
1
−1
1
0

+ f


1
−1
0
−1
0
1

 .

We must find values for e, f such that a, b, c, d, e, f ≥ 1. The only such values are e = 4 and f = 1, giving

a = 6, b = 1, c = 1, d = 7, e = 4, f = 1

Therefore c+ d = 1 + 7 = 8 had B as their first choice.
Voting paradoxes have interesting ramifications in political elections. When there are more than two

candidates, the election authority can always manipulate the voters to adopt a voting system that elects
a particular candidate as the ultimate winner. In our example, to elect A, the board is asked to choose
between B and C, and then B and A; to elect B, the board is asked to choose been A and C, and then
B and C; to elect C, the board is to choose between A and B, then C and A. Professor Kenneth Arrow
won the Nobel Prize in economics in part for his work to prove that no voting system is entirely fair, i.e.
satisfy a set of reasonable criteria for fairness.


