
MAT 307, Multivariable Calculus with Linear Algebra, Fall 2024 Homework 2

(1) Let r⃗(t) be a parametrized curve representing the trajectory of a particle. Let v⃗(t) = r⃗′(t) be its velocity
and a⃗(t) = r⃗′′(t) be its acceleration. Prove that the rate of change of the speed of the particle is the
component of its acceleration along its velocity:

d

dt
∥v⃗(t)∥ = Compv⃗(t)a⃗(t).

Give an example of a particle motion that does accelerate, but whose speed never changes.

Solution: We compute

∥v⃗(t)∥ d

dt
∥v⃗(t)∥ =

1

2

d

dt
∥v⃗(t)∥2 = a⃗(t) · v⃗(t).

Rearranging and using the definition of the component establishes the identity. For the example, just
consider uniform circular motion.

(2) Fix ω > 0 and a ̸= 0. Consider a particle with position r⃗(t) given by the helix

r⃗(t) = (a cosωt, a sinωt, bωt).

(a) Show the speed is constant, and the velocity maintains a constant angle with the z-axis.

Solution: First we compute r⃗′(t) = ω(−a sin(ωt), a cos(ωt), b) so that

∥r⃗′(t)∥ = ω

√
a2(sin2(ωt) + cos2(ωt)) + b2 = ω

√
a2 + b2.

Since r⃗′(t) · k̂ = bω is constant, the angle cos θ = bω√
a2+b2ω

= b√
a2+b2

is constant.

(b) Find the arclength parametrization of the helix and compute the curvature and principle normal
vector. Show that the acceleration vector of the particle is always parallel to the xy plane.

Solution: From part (a), we have s(t) = ω
√
a2 + b2t. The inverse function is t(s) = s

ω
√
a2+b2

. The

arc-length parametrization is therefore given by composing r⃗(t) with t(s), i.e.

r⃗(s) =
(
a cos

(
s√

a2+b2

)
, a sin

(
s√

a2+b2

)
, bs√

a2+b2

)
.

Unit tangent vector to the helix is therefore

T⃗ (s) = r⃗′(s) = 1√
a2+b2

(
−a sin

(
s√

a2+b2

)
, a cos

(
s√

a2+b2

)
, b
)
.

Therefore, the acceleration vector is

d

ds
T⃗ (s) = r⃗′′(s) = − a

a2+b2

(
cos

(
s√

a2+b2

)
, sin

(
s√

a2+b2

)
, 0
)
.

This shows that the acceleration vector of the particle is always parallel to the xy plane (since con-
version between s and t derivatives modifies this expression by constants). The curvature is

κ(s) =

∥∥∥∥ d

ds
T⃗ (s)

∥∥∥∥ =
|a|

a2 + b2
.

The principle normal vector is

N⃗(s) =
d
ds T⃗ (s)∥∥∥ d
ds T⃗ (s)

∥∥∥ = −sign(a)
(
cos

(
s√

a2+b2

)
, sin

(
s√

a2+b2

)
, 0
)
.

(c) Let P = r⃗(0) = (a, 0, 0) and Q = r⃗(2πω ) = (a, 0, 2πb). Note
−−→
PQ is vertical. Show that

r⃗(2πω )− r⃗(0) = 2π
ω r⃗′(s)

cannot hold for any s ∈ (0, 2πω ). Thus, the Mean Value Theorem does not hold for vector functions.

Solution: Since
−−→
PQ is vertical, and r⃗′ is never vertical,

−−→
PQ can not be 2π

ω r⃗′(s) for any s.
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(3) Compute the curvature and draw a (rough) picture of the following spirals:
(a) the Archimedean spiral r⃗(t) = (t cos(t), t sin(t), 0),

Solution: Here we cannot easily compute the arc-length explicitly, so we instead use the formulae in
terms of an arbitrary parametrization. We require

r⃗′(t) = (cos(t)− t sin(t), t cos(t) + sin(t), 0), r⃗′′(t) = −(t cos(t) + 2 sin(t), 2 cos(t) + t sin(t), 0).

We require also

∥r⃗′(t)∥ =
√

(cos(t)− t sin(t))2 + (t cos(t) + sin(t))2 =
√

1 + t2

so that ∥r⃗′(t)∥3 = (1 + t2)3/2. Finally, we need

r⃗′(t)× r⃗′′(t) = (2 + t2)(0, 0, 1), ∥r⃗′(t)× r⃗′′(t)∥ = 2 + t2.

Then we assemble the curvature

κ(t) =
∥r⃗′(t)× r⃗′′(t)∥

∥r⃗′(t)∥3
=

2 + t2

(1 + t2)3/2
.

As time tends to infinity in either way, the curvature tends to zero. This corresponds to two “arms”
of the Archimedean spiral: for t > 0 it spirals out and for t < 0. The maximum curvature occurs at
t = 0, which is the value 2.

(b) the logarithmic spiral r⃗(t) = (et cos(t), et sin(t), 0).

Solution: Again, we cannot easily compute the arc-length explicitly, so we instead use the formulae
in terms of an arbitrary parametrization. We require

r⃗′(t) = et(cos(t)− sin(t), cos(t) + sin(t), 0), r⃗′′(t) = 2et(− sin(t), cos(t), 0).

We require also

∥r⃗′(t)∥ = et
√

(cos(t)− sin(t))2 + (cos(t) + sin(t))2

=
√
2et

√
cos2(t) + sin2(t) =

√
2et

so that ∥r⃗′(t)∥3 = 23/2e3t. Finally, we need

r⃗′(t)× r⃗′′(t) = 2e2t(0, 0, 1), ∥r⃗′(t)× r⃗′′(t)∥ = 2e2t.

Then we assemble the curvature

κ(t) =
∥r⃗′(t)× r⃗′′(t)∥

∥r⃗′(t)∥3
=

e−t

√
2
.

As time tends to infinity, the curvature tends to zero, in accord with it becoming flatter as it gets
farther out. As time goes to minus infinity, the curve coils around the origin, the curvature diverges.

(4) Let r⃗(t) be the vector from the origin to the position of an object of mass m > 0, v⃗(t) := r⃗′(t) be the

velocity and a⃗(t) := r⃗′′(t) be the acceleration. Suppose that F⃗ (t) = ma⃗ is the force acting at time t.

(a) Prove that d
dt(mr⃗ × v⃗) = r⃗ × F⃗ . What do you conclude if F⃗ is parallel to r⃗?

Solution: Note d
dt(mr⃗(t)× v⃗(t)) = mr⃗′(t)× v⃗(t)+mr⃗(t)× v⃗′(t) = mv⃗(t)× v⃗(t)+ r⃗(t)×(ma⃗)(t) = r⃗×F⃗ ,

since F⃗ = ma⃗ and v⃗ × v⃗ = 0. If F⃗ is parallel to r⃗, then r⃗ × F⃗ and therefore the quantity mr⃗ × v⃗, the
angular momentum, is preserved in time.

(b) Prove that a planet (say, of mass m) moving about the Sun (say, of mass M) does so in a fixed plane.

Recall, Newton’s universal law of gravity says that F⃗ = −GmM
∥r⃗∥3 r⃗.

Solution: Since angular momentum is conserved, ℓ⃗ = r⃗(t) × v⃗(t) for some fixed vector ℓ⃗ ∈ R3.

Moreover, r⃗(t) · ℓ⃗ = 0 since r⃗(t) · (r⃗(t)× a⃗) = 0 for any a⃗ ∈ R3. This implies that the position vector

r⃗(t) is confined to a plane with normal vector ℓ⃗.
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(c) Kepler’s First Law says that the orbit of a planet around the sun is an ellipse. Derive Kepler’s Second
Law which states that the rate at which the area swept out by the planet around the sun is constant.

Solution: From (b), r⃗(t) and v⃗(t) must lie in the plane through the origin (sun) with normal ℓ⃗. Note

1

2
∥r⃗(t)× v⃗(t)∥dt = 1

2
∥ℓ⃗∥dt

is the area swept out by the planet during time interval [t, t + dt]. The rate that the area swept out

by the planet around the sun is therefore constant at 1
2∥ℓ⃗∥.

(5) (a) Let r⃗(t) be a differentiable vector valued function of t. Show that, at a local maximum or minimum
of ∥r⃗(t)∥, the vector r⃗′(t) is perpendicular to r⃗(t).

Solution: 0 = 1
2

d
dt∥r⃗(t)∥

2 = r⃗′(t) · r⃗(t).
(b) Prove that if the curvature of a curve is identically zero, then the curve is straight.

Solution: This is intuitively obvious. To prove it, suppose that the curve is parametrized by arc-

length. Then v⃗(s) = T⃗ (s) and T⃗ ′(s) = 0 since the curvature is zero, so v⃗(s) is constant in s and
therefore the same on the entire curve. Therefore the curve is a straight line, the only type of curve
with equal tangent vector at all points.

(6) Suppose that γ(s) : [0, L] → Rd, d ≥ 2 is an arc length parametrization of a closed curve Γ of length
L. Suppose Γ lies entirely within a sphere of radius R. Prove that average of the absolute curvature
|κ(s)| = |γ′′(s)| enjoys the lower bound

L

R
≤

∫
Γ
|κ(s)|ds.

Use this result, together with some typical numbers found searching the internet, to lower bound the net
absolute curvature of a strand of your DNA. Hint: use γ′(s) · γ′(s) = 1 and integrate! Bonus: determine
precisely which curves saturate the above inequality.

Solution: Since γ is arclength parametrized, we have

1 = γ′(s) · γ′(s) = d

ds

(
γ(s) · γ′(s)

)
− γ(s) · γ′′(s).

Thus, using that |γ(s)| ≤ R, upon integration we find

L = −
∫ L

0
γ(s) · γ′′(s)ds ≤ R

∫ L

0
|γ̈(s)|ds = R

∫
Γ
|κ(s)|ds.

The inequality follows.

Let us reflect on what you showed: a cell in your body is roughly 10−5 meters, whereas a strand of your
DNA is on the order of one meter long. So the bound implies the net (or, even, the maximum) absolute
curvature of your DNA is 105, which is probably an enormous underestimate!

We remark that equality holds above if and only if |γ(s)| = R and γ′′(s) = λ(s)γ(s) for some scalar
function λ(s). In fact, γ is a geodesic on the sphere and λ is the Lagrange multiplier to enforce the
constraint of remaining on the sphere. We can find and expression for λ be differentiating the constraint
|γ(s)|2 = R2 twice:

0 = γ(s) · γ′′(s) + |γ′(s)|2 = λ|γ(s)|2 + 1 = λR2 + 1.

As such, γ must satisfy γ′′(s) = −γ(s)
R2 . Without loss of generality, consider initial data γ(0) = (R, 0, . . . , 0)

and γ′(0) = (0, 1, . . . , 0). Then the solution of the above is

γ(s) = R
(
cos(s/R), sin(s/R), 0, . . . , 0

)
.

So the curves that satisfy the inequality with equality are circles (great circles) on the sphere which are
traversed the appropriate number of times.


