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Abstract. In this note we present a number of open problems and conjec-
tures about area presering mappings of the plane. In specific instances we will
illustrate these problems via a number of well known examples: the standard
familily and the conservative Hénon family. We try to further develop a con-
nection with renormalization and holomorphic dynamics. We believe the time
is ripe for renewed vigor.

1. Introduction

Poincaré, more or less single handledly, laid bare the astonishing complexity of
the dynamics of Hamiltonian systems, and saw the limits of the computational an-
alytical point of view: to ’compute’ the dynamics using for instance power series
expansions. In the process of analyzing the dynamics by a geometric decomposition
of phase space Poincaré discovered many of the fundamental notions of dynamics
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known today: periodic points, their eigenvalues, ellipticity and hyperbolicity, in-
variant manifolds, heteroclinic and homoclinic intersections, normal forms, and
genericity.

Fundamental progress in the area was slow, and due primarily to the work
of Birkhoff (Ergodic theorem and Fixed Point Theorem), and later through the
work of Siegel, Moser, Kolmogorov, Arnol’d, Sinai, Smale, Cushman, Duistermaat,
Fomenko and countless others. We choose to end the list with Conley, Zehnder,
Witten, Floer and Gromov.

One of the central problems has been the issue of the Boltzmann-Gibbs ergodic
hypothesis: to determine if the phase space is ergodic relative to Lebesgue mea-
sure. One of the points of KAM theory (Kolmogorov, Amsterdam 1954), is that the
ergodic hypothesis is often false, since the KAM theory can ’cover’ a domain of pos-
itive measure, certainly for area preserving maps, (see also for instance Arnol’d and
Avez). To a large extent KAM theory provides the only obstruction to ergodicity
that is understood well.

As will be discussed later: the existence of invariant circles is not the only
obstruction to ergodicity.

We note as an interesting and open problem:

Problem 1.1 (Strelcyn, The ”Coexistence Problem”, [37]). Is it possible for the
phase space to divide into two dense sets A and B, both of positive measure, with
all Lyapunov exponents zero on A while on B the maximal Lyapunov exponent is
strictly positive.

There are many of such problems, and we will discuss these in more detail below
(Sea of Stochasiticity).

Physicists, primarily in Russia, for instance, Frenkel-Kontorova, (in the thirties),
Chirikov (fifties and sixties), Zaslavsky, and also Taylor observed that statistical
physics and confinement problems often have the dynamics of an area preserving
map at its core, (or at least in a mock up version). They were able to make certain
predictions about the behavior in plasma and solid state physics, based on some
computational analytic understanding of the theory of area preserving maps.

The seventies and eighties brought two fundamental improvements: computing
brought us a full frontal view of the complexity of the dynamics of even simple an-
alytic examples; new, physics based, variational principles (Aubry-Mather theory)
were able to transcend the analytic KAM approach and explain the well-ordered
part of the dynamics of area preserving maps.

The enthusiasm of physicists and mathematicians Greene, Percival, Meiss, Col-
let, Eckmann, and quite a few more (Feigenbaum, MacKay, see [54], Helleman,
Strelczyn, etc,) observed that the dynamics of area preserving maps is not eas-
ily explained as just a complicated mixture of hyperbolic and elliptic dynamics:
the geometry is intertwined in a delicate fashion that is in its fine resolution de-
tail very sensitive to perturbations, however in its gross characteristics always the
same: stochastic, sensitive to initial conditions, numerically positive Lyapunov ex-
ponents, although rigorously out of reach. Young proved that with the addition
of noise the dynamics picture dramatically simplifies and positive metric entropy
is the rule. However, absent noise, to understand mathematically exactly what is
going remained difficult, despite numerous attempts. From the point of view of
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mathematical analysis, the quest to prove serious simple statements, (for instance
to solve the ”problem of coexistence” or to decide if positive metric entropy pre-
vails) about area preserving mappings became somewhat of a professional suicide
mission. As far we can tell these attempts have been more or less abandoned over
the last 10-20 years.

There is one exception: the theory of formal normal forms pioneered by Poincaré,
Birkhoff, Arnol’d, Takens and Broer. This theory gives (some) insight in certain
bifurcations prevalent in area preserving dynamics.

Investigators such as Simo have reminded the world continually of the impor-
tance of the problems with area preserving maps and of the complicated bifurcation
structure seen for this dynamics.

The work of Thurston has made an enormous impact in terms of isolating a
robust and fundamental mechanism at work to explain the sensitive dependence
on initial conditions seen in both area preserving and dissipative maps. Thurston
introduced the geometric theory of pseudo Anosov maps and train-tracks. This
approach culminated in what is now known as the Pruning Front Conjecture: Cz-
itanovic, de Carvalho and Hall, a topological approach to explain the ’creation’ of
horseshoes. See also Van Strien’s early work (see Palis Takens 1993.)

The same computing equipment revealed that the dynamics of maps in a single
variable (real or complex) is in comparison far more attractive looking and in fact
essentially comprehensible. Problems that had been open and dormant since the
time of Fatou and Julia became visually compelling enough for mathematicians,
Sullivan and Douady-Hubbard, Lyubich, Branner, Shishikura, Devaney (see for
instance Milnor Dynamics in One Complex Variable), etc, to apply conformal and
quasi-conformal techniques to their resolution. At this stage, 2010, one can say
that the resulting push (including Jacobson, Benedicks-Carlsson, Lyubich, etc.)
has been very successful in providing an almost complete picture of the dynamics
of maps of a single variable. While for a specific map it may be impossible to
prove anything, we know that one dimensional families of maps typically unfold
the dynamics. This approach then provides detailed answers about the prevalence
of stochastic or regular behavior, with the first explained via SRB measures, and
the second via essentially a group theoretic description and renormalization.

While much can still be done in one complex variable, we think that is time for
the younger generation to look one dimension up and contemplate the horror that
still awaits resolution.

It is our personal belief that to try to explain everything in terms of stable and
unstable manifolds/structures (the Hopf picture), and weakening to non-uniform
hyperbolicity, partial hyperbolicity, etc. etc, may be enough in the dissipative case
where one Lyapunov exponent is non-zero (Katok, Palis-Yoccoz, Shub-Wilkinson).
The area preserving case presents an alternative where Pesin theory just does not
say much of anything: the case of zero Lyapunov exponents. In that case lengths can
grow as a power law in time (in the very regular case) or grow, oppositely, in very
irregular manner: epochs of exponential growth followed by epochs of shrinkage.
We note that at the Period Doubling this growth is very controlled, and its existence
thus indicates that there are possibilities to control nonlinearities. Distortion tools
that are of much use in the C>1 category are not that well developed or difficult
to use (Palis-Yoccoz, Newhouse, Duarte). The C1 category, via the work of Mañe,
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Bochi and Avila, is still comparatively ”easy” to comprehend, though the techniques
are highly non-trivial.

Theorem 1.2 (C1 Residual Alternative). Either the map is Anosov, or the map
has zero Lyapunov exponents and very regular and small exponential growth rates.

In the smoother category, C>1 perturbations methods fail to provide such a
simple residual picture: ’return of the mess’. Furthermore the dynamics is known
to to be so complicated from a topological point of view (moduli of stability) that
there can be no finite dimensional unfolding of the dynamics near any area
preserving map of interest. 1

The core example and one that we will devote some time on is the period dou-
bling dynamics in the area preserving case: zero Lyapunov exponents, with a very
intricate and non-hyperbolic geometry. We believe that a proper understanding of
this example lurks at the bottom of our ignorance.

The viewpoint developed by Bedford-Smillie, et al, comes in from the other end,
via the theory of complex dynamics of more variables. Here, and in particular for
the Henon family a seemingly simple and robust quasi hyperbolic picture develops
that unfortunately does not see the elliptic part of the ’real’ dynamics in the area
preserving category.

With the older generation of mathematicians in apparent shell-shock with re-
gards to the dynamics of area preserving maps, a younger, innocent generation,
with names like Duarte, Gorodetski and Kalushin (more Russians, Ilyashenko, Gel-
freich, Lazutkin,..) as well as Ecalle, having been forging fearlessly along to provide
new computational analytic insights into the dynamics of area preserving maps and
other examples (for instance Borel Summability).

We believe that this is an opportune moment to review the new techniques
that could be also applied to this problem. We propose to formulate this in a
”problem format” that is more bite-sized. We hope that by presenting enough of
such problems and organizing it in a logical manner, a sort of programme can be
surrected for a renewed assault on, for instance, the coexistence problem.

We do this by concentrating on three families, the Henon family, the Standard
Family, and K3 dynamics. Each of these are typical in a sense besides being also
holomorphic. Here is a brief description of each.

The Conservative Henon family (or alternatively in the deVogelaere represen-
tation) has this form:

(x, y) → Ha(x, y) ≡ (a − x2 − y, x)

This family is the analytic model for the unfolding of a homoclinic tangency in the
orientation preserving case. This example can thus can be found almost anywhere
in a family of area preserving maps. The dynamics of the Henon map near infinity is
relatively simple, and can be decribed as a link of solenoids (Douady-Obserstforth,
Buzzard).

1It may even be possible that the simple minded real analytic perturbation theory introduced
by Broer and Tangerman, diffusion via the Heat Kernel, and the understanding of the resulting
perturbed, but real analytic (often in fact ”entire”) dynamics may be a key tool in this respect.
Heat Kernel methods were initially seen as useful in index theory.
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The Standard family (see survey by Meiss and Wikipedia entry) is defined on
the cylinder S1 × R:

(x, y) → Sk(x, y) ≡ (x + y +
k

2π
sin(2πx), y +

k

2π
sin(2πx))

This family is prototypical in that it incorporates periodic forcing, and tends to
mix elliptic, hyperbolic and well-ordered behavior, that is to a large understood
via Aubry-Mather theory. (One can replace the sinusoid by almost any other non-
constant periodic function.) The view from infinity of a map in the standard family,
certainly when viewed in two complex dimensions, is not simple. Its dynamics is,
by analogy, more like an entire function than a polynomial.

The K3 family is a good prototype to learn the off-real dynamics, combining holo-
morphic pseudo Anosov behavior (postive entropy) with elliptic behavior (Siegel
disks). The real dynamics of the K3 family is like every other area preserving map.
(Different from the Trace map). The K3 family is algebraic and defined for this
discourse on a bi-quadratic surface K3(A, B), with A and B fixed:

(x2 + 1)(y2 + 1)(z2 + 1) + Axyz = B

and defined algebraically as follows. Let (x, y, z) be a point in K3(A, B). Since
the equation is quadratic there is a unique point ιX(x, y, z) = (x′, y, z) in the same
surface. ιX is thus an involution. Similarly define involutions ιY (x, y, z) = (x, y′, z)
and ιZ(x, y, z) = (x, y, z′). The composition of any two, for instance ιX ◦ ιY ,
preserves a foliation, (in this case z = const) and are thus integrable. The K3
map is the following composition: ιZ ◦ ιY ◦ ιX . Each of these maps preserves the
level surface of the function (x2 + 1)(y2 + 1)(z2 + 1) + Axyz. Since each of these
maps is obviously volume preserving, the induced map on the K3(A, B) surface
preserves, by Liouville’s theorem, an induced area form. We refer to the work of
Cantat and McMullen for further information as well as a major tool for proving
hyperbolicity/Anosov behavior: the Kähler cone. Of particular interest is the fact
that K3 have minimal entropy in their class, a property that is analogous to pseudo-
Anosov maps, while also permitting the simultaneous existence of Siegel disks. This
situation is therefore rather different from hyperbolic toral automorphisms that are
then automatically Anosov.

It is the interaction between these three examples that, we hope, can elucidate what
is really going on in even one example of interest.

A Word Of Warning: If we learned anything about the theory of one variable,
it is that the mathematics becomes a lot easier when looked at from the holomorphic
perspective. However the holomorphic theory (Douady-Hubbard etc.) needed to
be almost fully developed before one could return to the ’real’ case, the smooth
category. The smooth category is seemingly too flexible to comprehend easily:
nonlinearity tools are still sorely lacking in that category (Comment here: the main
trick is to prove suitable convergence to the real analytic, and thus holomorphic
case). The real analytic/holomorphic assumption introduces a notion of algebraic
rigidity that seems to be indispensible for rapid progress.

We will also see this in the two dimensional area preserving case. At some point
one may need to take a holomorphic, or at least real analytic point of view, and
use it advantageously. It is through the work of Bedford-Smillie-Lyubich, Hubbard,
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Sibony, Fornaess, Buzzard and DuJardin that we think progress may be possible
in our life time.

What is particularly lacking is a good tool to visualize anything in two complex
variables. Some computational tools have been developed by Hubbard and Ishii(?)
et al.

How do algebraic geometers do ’it’ ?

Remarks:

(1) This list is not meant to be a comprehensive overview of the literature, but
rather my view on what is perhaps achievable.

(2) Problems may be posed in a number of different ways. When stated as
”Conjecture” I indicate that there is more universal support for the state-
ment. The word ”Problem” has two meanings: either the issue is of a more
open-ended and of a vaguer nature, or oppositely, technically doable, (as in
a calculus type problem).

(3) While it would be ideal to have the best references listed, the field is fairly
vast. Instead we opt as default reference mechanism: to provide enough
information so that the search string ”Hénon ref”, for instance ”Hénon
Devaney-Nitecki” will yield relevant references via any search engine”.

Acknowledgements: The authors acknowledge conversations with the fol-
lowing domain experts in preparation of this manuscript: Misha Lyubich, Vadim
Kaloshin, Anton Gorodetski, Henk Broer, Richard Hall, Oliver Knill, Curtis Mc-
Mullen, Bob Devaney, Marco Martens, Fred Gardiner, Mitchell Feigenbaum, Denis
Gaidashev, John Milnor, Santiago Simanca, Peter Veerman [53, 52, 51], Robert
MacKay, Yakov Sinai, Dennis Sullivan, Floris Takens and Greg Buzzard.

2. More on the Henon Family

The purpose of this note was initially to only state a number of open problems
regarding the conservative Hénon case , i.e. the map:

Ha(x, y) = (a − x2 − y, x)

The parameter a varies in the interval [−1, 5.69995117187506]∼ [−1, 5.7]. For a <
−1 the real dynamics is trivial (the complex is not). For a > 5.7 (or thereabouts) the
dynamics is uniformly hyperbolic, and the nonwandering set (also in the complex)
is real, hyperbolic, at entropy log(2), and the dynamics is conjugate to the full
2-shift.(Devaney-Nitecki, Bedford-Smillie (I-XII), Newhouse)

Remarks:

• The map Ha is a subclass of the following family:

Ha,b(x, y) = (a − x2 − by, x)

which has Jacobian equal to b. The dissipative case corresponds to |b| < 1.
The notation Ha will refer to the case b = 1.

• With the identification (x, y) = (xn, xn−1) it is sometimes useful to repre-
sent the Hénon map in the following form:

xn+1 + xn−1 = a − x2
n
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which shows that the map is reversible in a simple manner.
• Reversibility for the map Ha can be expressed in the following manner also:

Let R(x, y) = (y, x) denote reflection in the diagonal, then

Ha ◦ R = R ◦ H−1
a

When the context is clear (real or complex) we will use these standard notations:
K+, respectively K−, is the set of points with orbit that is bounded for positive,
respectively negative, times. K = K+ ∩ K−. Since the map is reversible K− =
R(K+). The boundary of K+ is J+, while the boundary of K− is called J−, again,
J− = R(J+). Finally J = J+ ∩ J−. When the context (real or complex) for a
set A defined as above is not clear we will say AC when referring to the complex
context or AR its restriction to the reals.

While there are no attractors or repellors in the conservative Henon family, it
is possible for K to have non-empty interior. Components of its interior are of
a special type: rotation/Reinhardt domains (see Bedford-Smillie II) on which the
dynamics is entirely classified as Siegel Domains (there is confusion in the language)
or Herman Domains. These domains may be thought of as foliated by Siegel disks
or by Herman rings. Siegel domains do occur in the Hénon family. Such rotation
domains do not intersect the reals, for a simple reason: on the reals the non-
resonance condition fails.

Problem 2.1. Siegel Domains ought to be plentiful in the area preserving Hénon
family. Is this the corresponding Newhouse phenomenon in the holomorphic area
preserving case? I.e. do tangencies ’create’ Siegel domains?

In the theory of one complex variable, Herman rings do not exist for polynomial
maps. They do exist for rational and entire maps.

Problem 2.2. Do Herman Domains exist in the Hénon family?

3. Meta Problems

We also note the following meta problems: Tangencies, etc, create also moduli
of stability, making equivalence classes, ”modulo conjugacy” too small to be useful.
The Teichmuller classification ”modulo conjugacy up to isotopy relative a finite set”
yields equivalence classes that are too big, but usually contain pseudo-Anosov maps
that ’explain’ the dynamics, but usually on a set of measure of zero. Gardiner and
Lakic (Quasiconformal Teichmüller theory), expanded Teichmüller Theory relative
a finite set, to a notion of ”asymptotically conformal”, which behaves in many ways
correctly to be useful for Teichmuller theory relative to an infinite set, for instance
a Cantor set. As far as I know the notion of ”asymptotic conformality” has not
yet been very successful in holomorphic dynamics of one variable, or real dynamics
in two variables. There is a formulation of the Period Doubling Renormalization
operator relative to a Period Doubling Cantor set.
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Problem 3.1. Find a use for the notion of asymptotically quasiconformal
in two dimensional dynamics. Under what conditions can Thurston’s theory be
expanded into this realm?

Remark 3.2. There is additional quasi conformal and affine structure (Buzzard
Verma) on certain ’instrinsic’ (measured) laminations, see also further sections.

Problem 3.3. Can the Gardiner theory be expanded relative to for instance lami-
nations? How about relative to a measured foliation induced by a pseudo-Anosov?

Remark 3.4. These problems are vaguely stated, but maybe accessible with some
further thought. The analysis is non-trivial, but maybe most of the work is already

done, and some attention is needed from the harmonic analysts.

Problem 3.5 (to Fred Gardiner:). Is ”Asymptotically conformality” on a set E
equivalent, in some moral sense, to C1+α restricted to a E????? If not, is there
then a better solution? For instance with respect to a product structure?

Problem 3.6. Develop the theory of asymptotically affine in two dimensional
dynamics. Under what conditions can Thurston’s theory be expanded into this
realm?

4. Quick Tour through Parameter Space

When a = −1 there is a single parabolic fixed point, with a center stable and a
center unstable curve. The complex dynamics on the center stable and the center
unstable complex curves is also known, the regularity of these curves is understood,
with dynamics conjugate to z → z + 1([14], following the methods of Ecalle and
Lazutkin).

Problem 4.1. Assume that a = −1:

(1) Describe the complex dynamics.
(2) Are K and J connected?

Remark 4.2. When a = −1 one obtains with a slight change of coordinates the
’Mother’ of nonlinear recursion relations common in area preserving maps: xn+1 +
xn−1 − 2xn = −x2

n. It would seem surprising that it would be unknown if the Julia
set were connected or not.
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When a is slightly larger than −1 There are a number of things that happen.
The parabolic fixed point is replaced by a pair of fixed points, one with positive
eigenvalues β+, immediately hyperbolic and one with negative eigenvalues β− which
for a in the range (−1, 3) is elliptic. When a > −1 the stable and unstable
manifolds of β+, W s(β+) and Wu(β+), intersect for all a > −1 (Devaney-Nitecki)
and due to the reversibility of the Hénon map and simple geometric insights into
how the map turns. The entropy of the map is positive when a > −1. It was
earlier conjectured by Milnor (not clear how seriously though) that the entropy is
monotone in the parameters.

Problem 4.3. Is the entropy of the Hénon map on the reals monotonically increas-
ing with a in the conservative case?

Meiss et al,[29], and Yorke et al (”Non monotonic”) found that the bifurcation
theory is not monotone in a.

In the eighties, (Alligood-Yorke [30, 31]) proved in both the dissipative case as well
as the conservative case that, by analytically tracking the bifurcations between the
simple dynamics a < −1 and the hyperbolic dynamics a > 6 that there are com-

plete period doubling sequences. As a result one has the analog of the existence

of a map in the quadratic family with the dynamics of an adding machine in the
base 2 (a.k.a. as period doubling, or Feigenbaum dynamics). We state this as a
theorem, as this result is not generally known.

Theorem 4.4. Alligood-Yorke There are maps in the conservative Hénon fam-
ily that have a Feigenbaum like invariant Cantor set, on which the dynamics is
conjugate to the adding machine. (’Feigenbaum dynamics’).

Remark 4.5.

• The bifurcation tree for the conservative Hénon map was analyzed exten-
sively also by MacKay ([8]). He also noticed that via saddle node bifurcation
certain periodic orbits just ’have to’ appear, out of the ’complex blue’, This
happens for example for period 5 where some are created by a saddle-centre
bifurcation.

• In the dissipative Hénon map the period doubling sequence is apparently
known to be not monotone (Meiss Hénon Non Monotonic).

• MacKay and certainly others also observed that the period doubling ap-
pears to be monotone in the parameter a.

Problem 4.6. Prove that the period doubling sequence is monotone in the conser-
vative case

If necessary we will assume that there is a unique parameter value a2∞ (and map
H2∞) in the conservative Hénon family with Feigenbaum dynamics.

ADD MORE There are many papers describing aspects of the bifurcations with
increasing parameter for the Henon family, FIND SOME...
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5. Sea of Stochasticity

(Duarte Abundance of Elliptic Isles) has made a very precise analysis of the homo-
clinic tangle produced by the intersections of stable and unstable manifolds of β+

for a close to −1, in an interval [−1,−1 + ε).

Theorem 5.1 (Duarte). This example contains the conservative Newhouse phe-
nomenon: there are many parameter values in the interval [−1, ε) where the map
Ha has many elliptic points, that occur near parameter values and locations in the
plane where Ha has a homoclinic tangency. The parameter value a = −1 is a
Lebesgue point of density of such parameters.

Since the Hénon map is a normal form for a homoclinic tangency, Theorem
5.1, suggests that the Newhouse phenomenon is indeed widespread in conservative
systems:

Conjecture 5.2 (Check if this has been proven already, Gorodetski was not too
precise.). There is a (large) open set in the Ck-topology, (k > 1) of area preserving
maps where the following property is residual: Elliptic Periodic points and thus
elliptic islands are dense in the non-wandering set.

Theorem 5.3 (Gorodetski). Elliptic islands are prevalent in the Standard Family
Sk: For k > 10 there is a residual set of parameters for which the closure Ek of the
set of elliptic points is a transitive invariant set of Hausdorff dimension equal to 2,

and Ek is
1

k
dense.

Recall the dynamics of Hénon like maps: most points escape to infinity under
forward iteration. Clearly points that are trapped in elliptic islands do not escape
to infinity.

Problem 5.4 (Area Preserving Henon). Is the Lebesgue measure of the non wan-
dering set KR equal to the Lebesgue measure of the union of the elliptic islands?

Remark 5.5. The C1 (and the C0) topology behaves rather differently in the
conservative case. C1 perturbation theory in the conservative case (Mane, Avila) is
rather wild: Avila has a good C1 perturbation method to show in the conservative
category that there is a dichotomy: either the map is Anosov or the map is a C1

limit of maps with only zero Lyapunov exponents. Furthermore more the dynamics
associated with the zero Lyapunov exponents is regular in the sense of (Avila-
Bochi).

Problem 5.6. What bifurcations in the topology of K are associated with homo-
clinic tangencies (real or complex)?



FUNDAMENTAL OPEN PROBLEMS ON AREA PRESERVING MAPPINGS: DRAFT 11

Figure 1. Orbits for K3, the tame case. (Image thanks to McMullen).

McMullen ([32]) suggested the following common sense conjectures about the
Sea of Stochasticity.These conjecture provide a framework that is analogous to the
Palis Conjecture for dissipative systems.

These conjectures are born out of observations from a limited but varied set
of examples: algebraic, real analytic, and smooth. These observations were made
initially by MacKay ([8]), and can bear some precision. While it may be difficult
to make any statement about any map in particular, the philosophy pioneered by
Jacobson, and further applied by Benedicks-Carleson, etc. should make it possible
to make certain statements about suitably transverse families (to be defined). Al-
gebraic, and real analytic examples appear to be rigid enough to be transverse,
but so is C333 and likely C3. We note that there is a general method to imbed
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a map into a family, diffusion via convolution by the heat kernel. This pertur-
bation method tends to preserve many properties ([41]) and allows one to deduce
Kupka-Smale properties in general real analytic categories.

Let Ft : Xt → Xt be a suitably transverse (say, one-dimensional) set of real area
preserving maps, through the map F0 which we assume to be not Anosov.

Conjecture 5.7. SOS 1: There exists and open and dense set of parameters t for
which there exist elliptic islands.

Conjecture 5.8. SOS 2: There exists and open and dense set of parameters t for
which elliptic islands are dense.

Conjecture 5.9. SOS 3: There is always an ergodic component of positive mea-
sure. (See Figures 2 and 3) (The largest Lyapunov exponent may or may not be
positive)

Conjecture 5.10. SOS 4: There exists a set of parameters t of positive measure
for which there are no elliptic islands. [33, 34]

Conjecture 5.11. SOS 4’: If F0 is special, for example the standard map with k
large enough, and an isotopy Ft, then there exists a set of parameters t of positive
measure for which Ft is ergodic.

We refer to the Strelcyn [37] reference for the precise statement of the ”coexistence
problem” (see also the introduction).

Conjecture 5.12. SOS 5: There are area preserving examples that satisify Strel-
cyn’s coexistence condition/

In the Thurston-Nielsen classification of surface homeomorphisms up to isotopy
there is always a dichotomy the map is reducible (leaves invariant a multi curve)
or is irreducible (periodic case or pseudo Anosov case).

Conjecture 5.13 (Turaev;). There is a real analytic map defined on an annulus,
bounded by invariant curves that is infinitely reducible. This is the standard picture
of islands within islands.
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Figure 2. Standard map K=2.0;

Problem 5.14 (Bonk, Kleiner, Merenkov, Rigidity of Schottky Sets). Are Schottky
sets (complements of at least 3 spheres) an appropriate model for ergodic connected
components of positive or zero Lebesgue measure?

ADD MORE HERE
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Figure 3. Obits for K3, the seemingly ergodic case. (Image
thanks to McMullen)

6. Big Invariant Circles

The bifurcation from a = −1 is of Neimark-Sacker type2. This bifurcation leads
to the the creation of invariant circles in the reals that emanate from the elliptic
fixed point. The rotation number of such an invariant circle is determined at the
moment of its creation: the argument of the eigenvalues at the elliptic fixed point
β− and therefore increases monotonically.

2This bifurcation is the analog of the Takens-Bogdanov bifurcation for flows and was sometimes
called secondary Hopf bifurcation
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When a = 3 the point β− has a period 2 bifurcation: β− becomes hyperbolic, and
in addition there is a new real period two elliptic cycle. This period two cycle
exists also for a < 3 but is then a hyperbolic cycle off the reals. This is a general
phenomenon: a complex conjugate hyperbolic pair becomes a real elliptic pair,
during period doubling.

When a = 3 there are still invariant circles surrounding β−. These disappear when
a is around 4. We make a numerical observation: these invariant circles, as long as
they exists appear to be graphs in polar coordinates, centered at the point β−. It
would be interesting if one could prove this with a simple argument. 3

abcd

Problem 6.1 (Maybe John Franks knows this.).

• Is there an action-angle coordinate system centered at the point β− rela-
tive to which the map has the monotone twist property, when this point is
elliptic?

• How far does this system extend?
• Is the Hénon map a monotone twist map in that coordinate system?

Problem 6.2. For the Hénon map find a simple (Matherish) argument to show
that there are no invariant circles surrounding β− when a > 4.

Clearly a heteroclinic intersection between stable manifolds of β− and unstable
manifolds of β+ implies that there are no invariant circles surrounding β−. 4 The
following conjecture is the converse:

Conjecture 6.3. When there are no invariant circles surrounding the point β−

then the stable manifold of β− intersects the unstable manifold of β+.

For twist maps on the annulus there is an analogous converse: if there are no
topologically invariant circles then there are orbits with α− ω-limit sets on both
boundaries (if not: then there would be an invariant circle by construction.) We

3We briefly review the corresponding situation for the standard map Sk: (x, y) → (x + y +
k

2π
sin(2π(x)), y +

k

2π
sin(2π(x))). In these coordiantes x is periodic of period 1. The standard

map Sk is defined on the cylinder S1
× R. Mather, [42] proved, using a very simple argument

that for k >
4

3
, there a no topologically non-trivial invariant circles for the standard map Sk.

This method is very robust, i.e. it can be applied to many variants of the standard map (change
the sinusoid to another periodic function). This method can be used to produce an a priori
bound on the non-existence of such invariant curves for a broad class of maps. MacKay ([8])

using computing and Mather’s cirterion, proved that when k > 0.971635. ∼

63

64
there are no

topologically non-trivial invariant circles of any rotation number.
4Since Hénon maps are reversible, an intersection between W s(β

−
) and W u(β+) implies an

intersection between W s(β+) and W u(β
−

).
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note that it rather straightforwardly to prove using numerics that such manifolds
intersect when they do so transversally. It is not easy to so geometrically.

Problem 6.4. Find a geometric argument based on simple intuition about the
Hénon map, that when ’something’, the nonlinearity, say measured by ’a’, is suf-
ficiently large, that there is then a heteroclinic intersection between W s(β+) and
Wu(β−).

Remark 6.5. Since invariant circles persist while the point β− becomes hyperbolic
(i.e. for a range of parameters beyond a = 3) this can not be too obvious.

These problems are related to the following observation made by MacKay ([8].
Using a high resolution grid of initial points, MacKay measured the Lebesgue mea-
sure λ(a) of the non wandering set of Ha. 5

• Whenever there is period three bifurcation λ(a) decreases sharply.
• When a = a2∞ then λ(a) appears to be equal to zero.

These measurements could easily be flawed by many small elliptic islands (’see
of stochasticity’) that were missed in the counting.

Problem 6.6. Has this experiment been repeated at very high resolution studies?

MacKay did carry out scaling analysis for λ(a2n) as n → ∞.

Conjecture 6.7. Small elliptic islands exist at the period doubling parameter a2∞

at all length scales.

Remark 6.8. Relatively large elliptic islands have not been observed at the period
doubling parameter, and the general conjecture that the elliptic island have small
density.

Conjecture 6.9. At the period doubling parameter a = a2∞ the set of escaping
points has positive Lebesgue density on the invariant Cantor set.

Conjecture 6.10. For any map F in the stable manifold of the period doubling op-
erator the set of escaping points (needs to be properly defined) has positive Lebesgue
density on the invariant Cantor set CF .

5When a is outside the interval [−1, 6] λ(a) = 0: the map has empty non wandering set or the
non wandering is hyperbolic.
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WHY IS THERE NO SUBSECTION HERE?

If we now consider the complex Hénon maps with the same parameters it would be
very useful to be able to trace topological changes in K(a), resp K±(a),with increas-
ing a, by looking at the dynamics on the reals. Let K(a, x) denote the connected
component of K(a) containing the point x. Clearly KR(a, β+) and KR(a, β−) are
disjoint when −1 < a < 3 (or as long as there is an elliptic island surrounding β−).

Problem 6.11. For −1 ≤ a ≤ 3 (or as long as there is an elliptic island sur-
rounding β−:

• Are KC(a, β+) and KC(a, β−) disjoint?
• Are there any topological changes in KC(a, β−)

Problem 6.12. Describe the change in topology between KC(3, β−) (when there are
invariant circles surrounding β−) and KC(4, β−), when there are no such invariant
circles surrounding β−.

7. Pruning Front Questions

Here we summarize a bit as to what is known about pruning fronts for the Hénon
family, and what might be a good conjecture.

ADD More, also ask Andre about this.
In particular there is an question of Lyubich: can we ’approximate’ the period

doubling map via Pseudo Anosovs. The advantage of the latter is that they are
also (in some sense) area preserving.

Problem 7.1. Is the area preserving or the reversible category special in the prun-
ing front perspective?

8. Period Doubling Dynamics

We first begin with a summary of the results to date regarding Period Doubling
in the conservative case.

Theorem 8.1. Eckmann-Koch-Wittwer There exists a real analytic area pre-
serving fixed point of renormalization.

Some of the properties of this fixed point have been determined rigorously by
numerical means (see Eckmann-Koch-Wittwer). Work is underway (Gaidashev et
al) to use softer methods to determine the existence of this fixed point: numerical
apriori bounds, and Schauder Fixed Point Theorem.

Specifically:

Conjecture 8.2. Gaidashev-Koch is working on this type of statement
The fixed point F of renormalization is close to a Hénon map.
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Remark 8.3. In the setup of Eckmann-Wittwer-Koch the map is defined by an
action S. Reversibility is expressed as a symmetry with respect to the reflection
(x, y) → (x,−y). The fixed point map F is not close to Ha2∞

, but close to a
conjugate of it, the corresponding deVogelaere map.

According to Gaidashev (private communication), while the unstable eigenvalue
is known at 9 digits of accuracy, the best estimate of the spectral radius along the
stable subspace of the renormalization operator at the fixed point F is less accurate
and roughly 0.85

The dynamics of this fixed point was analyzed by Gaidashev et al. We are using
the same notation for the fixed points β+ and β−.

Theorem 8.4 (Gaidashev and Johnson, [43, 44]).

(1) F has a transverse heteroclinic intersection between the stable manifold of
β− and the unstable manifold of β+ ( and vice versa via reversibility).

(2) F has a period doubling Cantor Set.
(3) If G is on the stable manifold of the renormalization operator and if the

renormalizations of G converge sufficiently rapidly to F (i.e. at a prescribed
upper bound r ∼ (0.002) on the rate of convergence), then the conjugacy on
their respective Feigenbaum Cantor sets is Bi-Lipschitz.

The following conjecture is very reasonable (Lipschitz implies higer smoothness).

Conjecture 8.5. If G is on the stable manifold of the renormalization operator and
if the renormalizations of G converge sufficiently rapidly to F (i.e. at a prescribed
upper bound r on the rate of convergence), then the conjugacy on their respective
Feigenbaum Cantor sets is C1+α.

.
The bound for r has a geometrical interpretation, see [43] and seems to be almost

optimal, if one disregards a peculiar geometry that is inherent in the area preserv-
ing case. This geometry was also not used in Gaidashev’s proof. We conjecture
therefore, also on esthetic grounds:

Conjecture 8.6. All maps in the stable manifold of the renormalization operator
are on the period doubling Cantor set Bi-Lipschitz (and thus C1+α) conjugate.

Problem 8.7. What is the appropriate class of scaling functions to describe the
intrinsic geometry of the period doubling Cantor Set?

Remark 8.8. These scaling functions should take not just length, but also orien-
tation change effects into account. Note that the areas of the pieces at depth n are
the same, and that every piece has a corner that has dynamic signficance (orbit of
period 2n−1). So one approach might be to use to points, and an oriented frame
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along the axes, in such a way that the areas are correct and consistent with the
SL(2mR action of the derivative.

While the dynamics of Ha∞ on the Period doubling Cantor C is in a sense
obvious (adding machine σ on the cocompact group 2N) we do not understand its
embedding in the reals too well.

Here is a simple question:

Problem 8.9.

(1) What are the limits of the sequence of iterates of Ha∞ on C in the C0-
topology?

(2) How about the Cα-topology 0 < α < 1?
(3) How about the C1-topology?

The next section puts the imbedding properties in more perspective.

9. Cocycles for the Renormalization Fixed Point

The following theorem is an extension of the corresponding theorem due to
Carvalho-Lyubich-Martens [16]:

Theorem 9.1 (Tangerman [38]). If H is conservative and reversible and H has
a invariant Cantor set CH with the period doubling dynamics, then there is no
continuous invariant line field on C.

´ The argument goes by contradiction, as in [16]. Of interest however is the
ergodic theory of the underlying SL(2, R) cocycle, when the underlying dynamics
is topologically minimal (the adding machine in this case or irrational rotations
studied by Avila).

Consider the projectivized action PH of the derivative of H on directions and
ellipses, (think Beltrami differentials) define on CH × D, where D is the unit disk
and defined as:

(x, v) → (H(x), PDHx(v)

Here PDHx is the Mobius transformation associated to the derivative DH of H
that maps directions to the unit circle. If H is topologically minimal then the
ergodic theory of PH should not be that complicated. Avila analyzed the case for
irrational rotations. 6 In a typical situation these Móbius maps themselve may be
elliptic or hyperbolic or a parabolic. (There is here a more general context Frenkel-
Kontorova, Matthieu, Fibonacci) Extend this analysis to the adding machine on
2N, or similar skew-products for other ’cocompact’ groups. Any invariant measure
on CH × D disintegrates to a measure on each of the fibers D, equivariant by the
dynamics on the base. The base has a unique invariant measure µH and one can
talk about properties of the disintegrated measure a.e relative to µH .

Problem 9.2. Understand the general ergodic theory of such actions.

6Yoccoz has analyzed the case when the map H is defined on a Cantor set for the shift map
(more complicated case in some sense) and the map x → PDHx is piece wise constant.
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For an ergodic invariant measure, the options are limited, see also (See Yoccoz
WHAT REF?, Avila WHAT REF?):

(1) Rotation Case: The support of the measure is µH a.e bounded in the
Poincare metric on the open unit disk. The hyperbolic barycenter is equi-
variant under the dynamics. By conjugating this barycenter fiberwise to
be at the origin of the D one concludes that these maps are conjugate to
rotations.

Problem 9.3. Under what conditions may one bootstrap the almost ev-
erywhere to everywhere? in the rotation case?

(2) Not Rotation Case In this case the support of the ergodic measure is con-
tained in the boundary S1 of D. Here the notion of conformal barycenter
due to Douady-Earle is useful, since it is equivariant by the dynamics on
the base. There is only one case where the conformal barycenter is not

defined: two points on the boundary with equal weight (=
1

2
). In that case

there an invariant pair of directions (a.e.).
Thus this case has very few possibilities.

(a) One Invariant Direction: the support consists of a single point on the
boundary. In which case there is an invariant direction a.e. Thius
could happen in a hyperbolic situation, a degeneration (say 1 positive
Lyapunov exponent, as in the dissipative case [16].

(b) An Invariant Direction Pair: The support of the disintegrated measure
on the fiber consists of two points with equal weight (a.e). DISCUSS
more.

(c) Rotation Cases: The conformal barycenter is contained in the open
unit disk. In which case we should be back to the rotation case.

Conjecture 9.4.

(1) PH2∞ is uniquely ergodic.
(2) and has a unique (a.e) invariant direction.

This should imply the following:

Conjecture 9.5. The invariant Cantor set for H2∞ is rectifiable.

Let pn be the sequence of periodic orbits of period 2n that converge to the Cantorset.
This periodic orbit is hyperbolic. On such a periodic orbit there are two direction
fields, corresponding to stable and unstable directions: Es(pn) and Eu(pn).

Problem 9.6.

(1) In what sense do Es(pn) and Eu(pn) converge?
(2) In what sense do they have the same limit?
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One can also consider not just limiting directions but also the limits of W s(pn)
and Wu(pn). In the dissipative case it is possible to argue that their limits, at
least generically, form a laminations in a neighborhood of the invariant Cantor set.
Exceptions are caused by homoclinic/heteroclinic tangencies. While I may believe
that such homoclinic tangencies do not exist in the conservative Hénon case at
the period doubling point, that would be a rather unique situation that would need
explanation (Of course there is only one such map in the Hénon family). (Also near
such tangencies elliptic islands should be found if we enlarge the space of maps to
be conservative Hénon like see below).

Problem 9.7.

(1) Is there any reason to believe that the limits of Wu/s(pn) exist?
(2) If so, is the limit a lamination?

10. Renormalization Operator: Real

The first issue to be explained is what was remarked in MacKay([8]): numerically

the geometric scalings at the fixed point of renormalization are as follows: λ ∼ ±
1

4
,

µ ∼
1

16
and so they are nearly but not exactly resonant:

λ2

µ
∼ ±1.03.

Problem 10.1. Why are these geometric scalings nearly resonant? (see below for
an explanation)

Problem 10.2. What is the relevant category: reversible? conservative?

Let’s assume that F is a reversible conservative map, close to the Hénon family.
Also assume that F has the following Hénon like normal form:

(x, y) → (f(x, y), x)

Consider the maps FR and R. Both are involutions, area preserving and ori-
entation reversing. FR and R do not commute: F = FRR, while F−1 = RFR
(reversibility). While R is a linear reflection in the diagonal, FR is definitely non-
linear. Denote the axis of symmetry of FR as Fix(FR), the set of points that are
fixed by FR. Fix(FR) is a parabola x = Q(y), and FR preserves the horizontal
leaves.

Problem 10.3. Consider the group on two generators generated by FR and R.
What additional structure is there that could be exploited (besides lines of symme-
try)?

Let V be the vertical foliation, and let H be the horizontal foliation. Then F (V) =
FRR(V) = FR(H) = H. The foliation F (H) = FRV consists of ’parabolas’. Its
leaves are of the form x = Q2(y) with Q2 (close to) quadratic and have second



22 F.M. TANGERMAN AND A. DE CARVALHO?
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Figure 1. Sketch of the Box Construction. Shown are the parabo-
las Fix(FR), Fix(RF ) , the corner β−, labeled ’b’ in the picture,
and the points P and RF (P ).

derivative that is about two times that of the curve describing the axis of symmetry
of FR.

Next consider F−1(V). Since F−1 = RFR we then obtain that F−1(V) =
RF (H). Its leaves are thus the reflection of the leaves of F (H) and are parabolas
y = Q2(x).

Now note that RF = RFRR itself is a nonlinear reflection that preserves the
vertical foliation, and is a vertical reflection in the parabola y = Q(x).

Assume that F has a fixed point β− and assume that it is hyperbolic, i.e. of flip
type, i.e. has negative eigenvalues.

We now define its geometric renormalization, using a process that is almost
the same as that defined in [16]). It is defined in an intuitive manner, but is based
on preserving the reflective properties that are needed.

We construct a geometric box B, see Figure 1, that has the point β− as a corner
(on its top to the left) 7

(1) Consider the horizontal line segment l to the right of β−

(2) Consider its reflection RF (l) and determine its first intersection P (beyond
the point β−) with the curve Fix(FR): below and to the right of β−.
The resulting line segment [β−, P ] on RF (l) is the left side of the box.
The point RF (P ) is of course on l again. The horizontal line segment
[β−, RF (P ) forms the top of the box.

(3) The bottom of the box B is constructed as follows. Draw the horizontal
from the point P to the parabola Fix(RF ), to the right of P . This line
segment forms the bottom of the box.

(4) The right side of the box is obtained using the reflection RF of the bottom
just constructed.

(5) This produces an almost affine box B.

7We note that a similar region can also be defined using stable and unstable manifolds of β
−

.



FUNDAMENTAL OPEN PROBLEMS ON AREA PRESERVING MAPPINGS: DRAFT 23

(6) The fixed point set of the involution RF is a ’diagonal’ in the box B, and
is almost a straight line.

(7) The fixed point set of the involution FR is a parabolic like curve x = Q(y)
that connects β− with the point P .

(8) FixFR intersects the diagonal of the box Fix(RF ) in a second point (be-
sides the corner point β−. This second point is a point β1 of period 2.

(9) These are the alternatives:
(a) Too far: This segment on Fix(FR) is not entirely contained in the

box B. In that case we have gone too far and a horseshoe has been
created.

(b) Too shallow: The segment is almost up against the right side. In that
case the point β1 is elliptic.

(c) Just deep enough: The point β1 is hyperbolic, but of flip type for the
map F 2 and we can renormalize again.

Also notice that the corner β− is an orientation preserving fixed point for
the map F 2 restricted to B.

The ”near resonance” statement, see the statement above, is really a statement
abouth the ratio of the sides of this box. A simple calculation, near the Hénon
family, shows that the ratio of width to height has to be close to 1:4. An explanation
for this ratio is that the segment on the fixed point set of the involution FR should
be contained in this box for the map to be again renormalizable. Since this segment
has a quadratic singularity inside the box, the ratio of height to width must
approximately be in the 1:4 ratio.

Conjecture 10.4. Apriori bounds (naive version): Let F be a conservative
reversible map near the Hénon family that is once renormalizable,i.e. there exists a
box B as above, then the width:length ratio of the box is roughly 1:4 and the scalings
are as advertized: the scaling in the x-direction is about 1/16 and the scaling in the
y-direction close to −1/4.

The map F 2 on B has properties that are identical to F , when instead of the
vertical foliation we now look at the foliation F (H) in B. There are a number of
ways to straigthen B into a square:

• Via an area preserving transformation. Using this method it is not possible
to map the foliation F (H) exactly to V. The resulting renormalized F 2 will
then be area preserving. There are many ways to conjugate in an area pre-
serving manner, that preserves the horizontal leaves, via a transformation
(x, y) → (x + V (y), y), composed with a diagonal rescaling. It is possible
to choose V so that the fixed point set of RF , Fix(RF ) is mapped to the
fixed point set of R, Fix(R).

• Preserving the reversible property. Apply the transformation that preserves
the horizontal leaves and verticalizes the leafs of F (H). This transformation
is essentially canonical.

In both of these cases change coordinates using a diagonal matrix to produce a
square as domain for the renomalized maps. When one choose the reversible route,
the result is reversible.
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Problem 10.5. Which of these alternatives is preferred?

Of course there is an alternative method to renormalize, namely as in (Eckmann-
Koch-Wittwer formulation, see Gaidashev [44]).

If we choose the reversible route, and define that as the renormalization Reno(F )
of F :

Reno(F ) ≡ G−1F 2G

By reversibility we have the following property Reno(F ) is of the form

(x, y) → (Reno(f)(x, y), x)

It is straight forward to deduce an explicit formula for Reno(f).
Furthermore we have:

• Reversibility: Reno(RF ) = R.
• Invariance: Reno(FR) = G−1F 2RFG = Reno(F )R

So in a sense the involution FR behaves like a fixed point under renormalization:
at the fixed point of renormalization FR is then fixed. In this formulation something
geometric is fixed at as well and that is the axis of symmetry FRx = x of the
involution FR. This axis of symmetry is defined for reversible maps, and is a
parabola in the Hénon case x = Q(y) with Q quadratic.

We conclude that at the fixed point of renormalization there is special point p∞
in the Cantor set, and on the axis FRx = x (we note that for every n there are
exactly two points in the orbit of pn on this axis). This pair of points converges
to p∞. This is the point that we will refer as the ’tip’ of the Cantor set. It is not
exactly the right most point of the Cantor set, but it is canonical.

While Reno(f) maps the vertical foliation to the horizontal, it does not exactly
map the horizontal foliation to one that is parabolic. This is not so much a problem,
but a fact of life, and it would be interesting to develop a notion of nonlinearity
which suitable for this context.

Problem 10.6. Develop an appropriate notion of nonlinear distortion.

Even though we have some notion of apriori bounds we believe that it is necessary
to move from the reals to two complex variables.

11. Renormalization Operator: Complex

WE suspect that the notion of ”Hénon-like” (Romaine DuJardin) is the correct
notion case when we consider the Henon map in two complex variables. It is defined
on a bi-disk D×D and has the correct algebraic behavior as far as the degree, via a
clever definition of ’horizontal’, ’vertical’ and degree. In particular this notion seems
to behave correctly with respect the (relative) count of periodic points contained in
the bi-disk. It is difficult to enforce the notion of area preserving in the Hénon-like
context. However, the notion of reversible may just be good enough.

Theorem 11.1 (Tangerman [38]). There is a natural notion of a holomorphic
Renormalization Operator defined on a subset of (reversible) Hénon-like maps, that
produces a (reversible) Hénon-like map.
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What is missing in this setting is the notion of a straightening theorem as in
Douady Hubbard. The situation is however is not entirely hopeless. There are a
numbers of notions:

• (Buzzard, Verma: Hyperbolic automorphisms and holomorphic motions in
C2) conjugacies can be ’canonically’ quasiconformal on leaves of stable or
unstable foliations. (usually not on both at the same time in the dissipative
case due to additional ’moduli of stability’).

Problem 11.2. In the reversible case can the conjugacy be chosen so that
it is quasiconformal on both laminations? At the same time? Since the qc
extension is ’canonical’, i.e. Bers-Royden, this could just happen to be the
case.

• Buzzard also has a smooth standard model at infinity that differs from the
Hubbard-ObserteVorth model at infinity. It is not exactly holomorphic.

Problem 11.3. Might this setting, combined with the notion of Hénon-like
allow for an analog of a straightening type theorem? At least in certain
cases?

ADD MORE

12. Aubry Mather Theory

THIS SECTION IS IN NEED OF A PLACE SOMEWHERE. In the real case
Aubry-Mather theory is a good tool to prove the existence of invariant sets that
are for instance well-ordered, and more.

Problem 12.1. Is there a variational principle that is appropriate in the holo-
morphic context, and can explain the existence of KAM annuli, (see below), and
(’after bifurcation’) the left-over Can-tori for rotation numbers that are sufficiently
irrational?

Problem 12.2. Same questions, but how about periodic orbits, minima, minimax,
etc.?

Aubry Mather theory also allows one to consider the ’whole’ of well-ordered orbits.

Problem 12.3. What can we say about how periodic well-ordered invariant sets
limit on the quasi-periodic ones?

One can also add stable and unstable manifolds of hyperbolic periodic orbits, see
[53, 52, 51].
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Problem 12.4. How, even conceptually, do these limit to the quasi-periodic ones?

13. The ends of KAM annuli/Herman rings

Given a real, real-analytic, invariant circle C for a holomorphic area preserving
map and assume that the rotation number on this circle is sufficiently irrational.

Problem 13.1. When does there exist a maximal invariant holomorphic annulus
AC , containing C, on which the dynamics is conjugate to a rotation by the given
rotation number.

It is conceivable that there is an invariant set that contains annuli but with ends
that are not circles, but rather Cantor sets, like Cantori.

Problem 13.2. Are there examples where such a largest invariant set is an annu-
lus? For what type of rotation number?

Conjecture 13.3. If the rotation number of Diophantine/Bruno then the ends of
AC is a pair of circles, on which the dynamics is transitive [46].

Problem 13.4. Are there examples where such a largest invariant set is not an
annulus? For what type of rotation number? It is conceivable that the Liouville like
rotation numbers that satisfy a Bruno condition, behave entirely unpredictably, and
might yield boundaries that are smooth circles. (see Avila-.....)

Remark 13.5.

• For now we assume that AC is indeed an annulus.
• Such an invariant annulus AC is invariant under the operation of complex

conjugation
• The intersection with the reals is single Jordan curve C (Why is that?)

Problem 13.6 (Rigidity). Explain why AC is an annulus, i.e. has finite modulus,
unless the map is integrable.

Problem 13.7 (Visualize). How can we visualize such an annulus?

Problem 13.8. Is AC clearly the polynomial (or the ’entire’) hull of its two bound-
ary circles?
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Problem 13.9. Can we think of these annuli as catenoids?

Problem 13.10. What can be said about the regularity of the boundary circles?
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Figure 1. Shown is the image of a circle close to the radius
of convergence. It is more or less evident that there are no self-
intersections, and that the boundary curve is the image of the
boundary of a univalent map. It also shows that the boundary has
small detail wiggles on, suggesting that it may not be that smooth.

Remark 13.11. We are currently investigating an example (the complex standard
maps) where instead of annuli one has Siegel disks. For the golden mean rotation
number the boundary circle is smooth (see Figure 1), but not C3 and on which
the dynamics is transitive.

14. Holomorphic Models

In order to have a good understanding how the various sets fit together for
complex analytic maps of two variables, it maybe a good starting point, to do
this for flows. This is also consistent with results from formal normal forms for
mappings which are often time 1 maps of flows.

So a good example to start with is to understand Hamilton Flows in two complex
variables:

dz/dt = Hw(z, w)(14.1)

dw/dt = −Hzz, w(14.2)
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where we take H to be a holomorphic function of two variables, the Hamitonian,
and where t may be real or complex time, the last in order to have Riemann surface
foliations and laminations.

Problem 14.1. (also discussed by Camacho Sad) Develop the corresponding theory
of Riemann surface foliations.

Another example is that of a gradient system,

dz/dt = Fz(z, w)(14.3)

dw/dt = Fzz, w(14.4)

Where F is a holomorphic of meromorphic function.

Problem 14.2. Understand the holomorphic Lefschetz formula vor vectorfields in
a dynamical fashion.

Problem 14.3. Is there analogous definition of Morse function and Morse complex
in one or more complex variables?

Remark 14.4. Recall Milnor’s book, Morse Theory and Witten’s papers: Super-
symmetry and Morse theory for the real case and the companion paper Holomorphic
Morse Inequalities. In the latter paper the assumption that the vector field is Killing
seems required, but should be inessential. It would be interesting to develop this
in the Hamiltonian setting. Also there is possibly an interesting connection with
Gromov’s (see [50]) theory of pseudoholomorphic curves, genericity and symplectic
theory.

Within the context of holomorphic flows as well as in the context formal normal
forms one could try to understand the corrsponding foliations.

We next turn to bifurcation theory for flows and mappings.In the real context
the corresponding singularity theory has been fully developed by Arnol’d, Thom,
Mather, Takens, Zeeman, and many others.

Problem 14.5. To what extent is the holomorphic bifurcation theory, even for
flows or maps in one or two complex variables, already understood?

Remark 14.6. We note that there was a large Russian school that may have
addressed these problems already.

Specifical examples of bifurcations we suggest for study are:

(1) Period doubling Bifurcation
(2) Saddle node Bifucation
(3) Hopf Bifurcation
(4) Neimark Sacker bifurcation (used to be called secondary Hopf Bifurcation)

in this case for the creation of the Henon dynamics in the complex case.
(5) Etc: The field seems to be wide open.
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We expect the following objects, Teichmuller theory, and moduli spaces to nat-
urally appear!

Problem 14.7. Build holomorphic laminations to understand the interaction be-
tween KAM theory (and the ends of KAM theory), and hyperbolic theory, as in the
real case.

Problem 14.8. Introduce Ecalle technology (Borel Summability) to understand
parabolic behavior, dynamical parametrization of leaves and the Melnikov method:
intersection theory (see Gelfreich and Lazutkin).

15. Dimensional Reduction and Visualization: Theory of One
Complex Variable

Problem 15.1. How to Visualize these holomophic objects? Did Thom do it? How
does Hubbard do it? How do algebraic geometers do it?

Dimensional reduction can be an important tool for visualization. Assume that
a holomorphic system has an invariant curve. If this curve is a partially a graph
w = G(z), then there is a corresponding holomorphic dynamics in the z-variable
that we can visualize well. Singularities in the projection of the curve become
critical points of the dynamics in one variable.

Problem 15.2. Can we apply the theory of one complex variable to not just visu-
alize but also understand the bifurcations (Mandelbrot, Julia sets etc.)?

Another method for dimensional reduction for flows (and recall that flows often
occur for maps are normal forms) is the Poincare section.

Problem 15.3. Define an appropriate notion of Poincare section in the holormphic
context.

It is sometimes possible to construct a Poincare section, to reduce dimension,
and to further reduce.

Problem 15.4. Explore the following constructions: polynomial hull to construct
holomorphic objects, relation with minimal surfaces theory, and the notion of holo-
morphically connected the refine the notion of connected.
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Remark 15.5. Recall that two points are holomorphically connected if there
is a chain of holomorphic disks with open non-empty intersection, connecting the
two points.

Here is again an interesting problem.

Problem 15.6. Consider an elliptic island in the reals, it is in a connected compo-
nent of K. Construct or investigate the lamination(?) with leaves formed by points
that are holomorphically connected. Are there transverse measures?
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