
AN INTRODUCTION TO WEINSTEIN MANIFOLDS
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Weinstein manifold is a class of open, exact symplectic manifolds. Important examples in-
clude cotangent bundles of closed smooth manifolds, as well as Stein manifolds (e.g. smooth
affine varieties). In fact, under some suitable generalizations, both of these examples are uni-
versal (in some technical sense).

This note heavily borrows from [5] and Chapter 11 of [3].

1. From Liouville to Weinstein

By Stokes’ theorem, a symplectic manifold (V, ω) with an exact symplectic form has to be
open. We first assume that V is compact. Then V has non-empty boundary. Taking a primitive
λ of the symplectic form ω (i.e. dλ = ω), the vector field X that is ω-dual to λ (i.e. ιXω = λ)
is called the Liouville vector field.

Definition 1.1. A Liouville domain is a compact exact symplectic manifold (V, ω) with a
choice of primitive λ such that one of the equivalent conditions hold:

• λ|∂V is a contact form on ∂V , and the orientation of ∂V given by the contact form
coincides with the orientation as the boundary of the V (whose orientation is given by
the symplectic structure).
• The Liouville vector field X is transverse to ∂V , and points outwards.

The condition that ιXω = λ implies LXλ = λ, so the positive flow expands ω: if φt is the
flow of X, then φ∗tλ = etλ, and thus φ∗tω = etω.

The condition that X is transverse to ∂V is good for pseudo-holomorphic curve purposes,
but it is also useful for a more elementary reason: it gives us a “symplectic tubular neigh-
borhood” of the boundary. Then, given a Liouville domain (V, ω,X), there is a standard way
of “completing” it: the condition that X is outward transverse to the boundary implies that
there is a symplectic collar neighborhood ∂V × (−ε, 0] with λ|∂V×{t} = etλ|∂V×{0}. Therefore
we can attach a cylindrical end ∂X × [0,∞) with Liouville 1-form given by the same formula
λ|∂V×{t} = etλ|∂V×{0} to get a non-compact manifold V̂ = V ∪ (∂V × [0,∞)) with complete
Liouville vector field (notice that the cylindrical end we attached is half of the symplectization
of ∂V ). This is a Liouville manifold, i.e. an exact symplectic manifold with a complete
Liouville vector field and an exhaustion by (compact) Liouville domains. We often think about
Liouville manifolds and Liouville domains interchangeably: finite-type Liouville manifolds,
which are Liouville manifolds with compact skeleton (defined below), corresponds to completion
of Liouville domains.

An important notion for a Liouville domain (V, ω,X) is the skeleton of the Liouville flow:

skel(V, ω, λ) =
⋂
t>0

φ−t(V ).

This is the attractor of the negative flow of X. A point x ∈ V is in the skeleton if and only if it
does not flow “out” of the domain. Given a Liouville manifold Ṽ with exhaustion Ṽ =

⋃
Vi by

Liouville domains Vi, we define its skeleton to be the union of skel(Vi). Notice that since the
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negative flow of the Liouville vector field X exponentially contracts the symplectic form, and
thus the volume form, the skeleton has volume 0. However, the skeleton might still be “big”,
as McDuff [9] has constructed Liouville domains such that

• skel(V ) has codimension 1;
• ∂V has more than one components.

On the other hand, a Weinstein manifold, which is a Liouville manifold whose Liouville flow
is tamed by a Morse (or generalized Morse) function, does not have these behaviors (Wein-
stein domains could have disconnected boundary in dimension 2, but this is impossible higher
dimensions).

Definition 1.2. A Weinstein domain is a Liouville domain (V, ω,X) together with a Morse
function φ : V → R satisfying

dφ(X) ≥ δ(‖X‖2 + ‖dφ‖2) (1)

for some δ > 0. A pair (X,φ) satisfying (1) is said to be a Lyapunov pair; φ is called a
Lyapunov function for X, and X is called gradient-like for φ.

Similarly, a Weinstein manifold is a Liouville manifold (V, ω,X) together with a Morse
function φ : V → R that is

• exhausting, i.e. proper and bounded from below;
• Lyapunov for X, i.e. there exists δ : V → R+ such that

dφ(X) ≥ δ(‖X‖2 + ‖dφ‖2).

Remark 1.1. (1) The Lyapunov condition (1) implies that the zeroes of X exactly cor-
respond with the critical points of φ. One reason tha Weinstein manifolds are better
behaved than Liouville manifolds is that the local theory of zeros of vector fields become
much simpler if there is a taming function.

(2) The taming function φ does not need to be Morse for most purposes – generalized
Morse (allowing birth-death type critical points) is usually enough. But for simplicity
we restrict attention to Morse functions.

(3) AWeinstein manifold is of finite-type if φ has finitely many critical points. Finite-type
Weinstein manifolds correspond to completions of Weinstein domains.

(4) In some place (1) is written as

dφ(X) ≥ δ‖X‖2.

This is equivalent to (1) if the critical points of φ are non-degenerate. See Remark 9.11
in [3].

Example. (1) Cn, with standard symplectic structure ωstd =
∑
dxj ∧ dyj , with Liouville

vector field and Weinstein Morse function

X = 1
2
∑
j

(
xj

∂

∂xj
+ yj

∂

∂yj

)
, φ = 1

4
∑
j

(
x2
j + y2

j

)
= ‖z‖2.

(2) T ∗Q for Q a closed smooth manifold. The “obvious” choice is to choose λstd the
tautological 1-form (locally, λstd = p dq), which gives Liouville vector field X = p ∂

∂p ,
and the taming function φ = ‖p‖2/2. There are two problems: the taming function
is Morse-Bott instead of Morse (since the entire zero section are critical points), and
more importantly we hope our function to reflect the topology of Q.
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The “better” way to do this (see [3], Example 11.12 (2)) is to pick a Morse function
f : Q→ R, and let

φ(q, p) = 1
2‖p‖

2 + f(q),

Then the critical points of φ on T ∗Q are exactly those of f on Q. Now let F = λ(∇f)
where ∇f is the gradient of f (with respect to some fixed Riemannian metric), and let
XF be the Hamiltonian vector field of F . Then XF is close to ∇f near Q and XF = ∇f
on Q. We take the Liouville vector field to be

X = p
∂

∂p
+XF .

Notice that the skeleton of a cotangent bundle T ∗Q is the zero section Q.
(3) Stein manifolds, including smooth affine varieties. We defer this to section 3.

Before we move on to the next section, we mention a quite surprising result, which is proved
using quite elementary methods:

Proposition 1.1 (Lemma 11.2 of [3]). Any symplectomorphism between finite-type Liouville
manifolds is isotopic (through symplectomorphisms) to an exact symplectomorphism.

Recall the nearby Lagrangian conjecture:

Conjecture 1.1 (Nearby Lagrangian Conjecture). If Q is a closed smooth manifold and L a
closed exact Lagrangian in T ∗Q, then L is Hamiltonian isotopic to the zero section (and is, in
particular, diffeomorphic to Q.

We want to remark that, assuming nearby Lagrangian conjecture is true, the previous propo-
sition implies that the symplectic geometry of T ∗Q uniquely determines the smooth topology
of Q: if ϕ : T ∗Q1 → T ∗Q2 is a symplectomorphism, since T ∗Qi have skeleta Qi which are
compact (and therefore T ∗Qi are of finite type), ϕ can be upgraded to an exact symplectomor-
phism. Therefore the image of the zero section of T ∗Q1 is a closed exact Lagrangian in T ∗Q2,
so it is Hamiltonian isotopic to the zero section Q2. Therefore Q1 and Q2 are diffeomorphic.

2. From Morse/Smale to Weinstein

In smooth topology, given a smooth manifold Q and a Morse function f : Q → R, we can
do Morse theory on Q, e.g. defining the Morse homology, with the gradient ∇f of f , if the
pair (f,∇f) satisfies certain transversality properties (which is generic). But we don’t have to
stick with the gradient vector field – it suffices for the vector field to be “gradient-like” (see
e.g. [2, 10]). For example, we can modify the vector field outside some small neighborhood of
critical points, as long as it is going towards the “correct direction”. We call such pair (φ,X)
a Morse-Smale pair if the necessary transversality properties are satisfied.

Along this line, we can think of a Weinstein manifold as a manifold with a Morse-Smale
pair (φ,X), with X compatible with the symplectic structures. Indeed, the name Weinstein
manifold comes from Weinstein’s paper [12] studying symplectic handlebodies. This pair will
allow us to do a lot of the usual smooth Morse theory and handle calculus symplectically.

The point of Morse-Smale theory in smooth topology is to break a manifold into simple
pieces. The way we do this is to take a Morse function φ : M → R, modify so that φ has a
different value on each critical point, and take the cobordisms φ−1[ai, bi] where each φ−1[ai, bi]
contains exactly one or no critical points, and each of these “elementary cobordisms” are

3



standard pieces that we understand well. We want to do the same thing for Weinstein manifolds;
but we must carry the geometric structures around and worry about how they glue together.
Thus we first need to understand the symplectic structures on these elementary pieces.

We work with Weinstein cobordisms (W,ω,X, φ), which has two components of the
boundary ∂+W and ∂−W , with the Liouville vector field pointing outward (resp. inward)
at ∂+W (resp. ∂−W ). We also require that ∂±W are level sets, say ∂−W = φ−1(a) and
∂+W = φ−1(b).

Suppose φ has no critical points on W . Then the Liouville field X also has no zeroes.
Complete W at the ∂+W end to get Ŵ . Define φ−1(a) × [0,∞) → Ŵ by flowing along X.
This map embeds the symplectization of φ−1(a) in Ŵ . Then ∂+W = φ−1(b) is the graph of
some function f : φ−1(a)→ R inside the cylinder φ−1(a)× [0,∞). Let Φ : φ−1(a)→ φ−1(b) be
defined by the flow. Then Φ∗λφ−1(b) = efλφ−1(a). So Φ is a contactomorphism. In particular,
Lemma 2.1 (Lemma 11.13 (b) in [3]). Let (V, ω,X, φ) be a Weinstein manifold. Suppose φ
has no critical values in [a, b]. Then the image of any isotropic submanifold Λa ⊂ φ−1(a) under
the flow of X intersects φ−1(b) in an isotropic submanifold Λb ⊂ φ−1(b).

Suppose φ has exactly one critical point. Then:
Proposition 2.1 (Lemma 11.13 (a) in [3]). Let (V, ω,X, φ) be a Weinstein manifold. The sta-
ble/descending manifold W−p of any critical point p ∈ V of φ satisfies λ|W−

p
≡ 0. In particular,

W−p is an ω-isotropic submanifold of V , and W−p ∩ φ−1(c) is a λ-isotropic submanifold of the
contact manifold φ−1(c) for any regular value c.
Proof. Take any q ∈W−p , and TvW−p . Let φt be the time-t flow of the Liouville field. We know
that φ∗tλ = etλ, so

etλq(v) = φ∗tλq(v) = λφt(q)[(φt)∗v].
Since φt(q)→ p as t→∞, so

λq(v) = e−tλφt(q)[(φt)∗v] = 0.
�

By Proposition 11.9 (c) of [3], the unstable manifold W+
p is coisotropic. In handle calculus

language,
• W+

p is the (coisotropic) cocore;
• W−p is the (isotropic) core;
• W−p ∩ φ−1(c) is the (isotropic) attaching sphere.

Remark 2.1. (1) Since Zero(X) = Crit(φ), the skeleton of (V, ω,X) is exactly the union
of all stable manifolds. By the proposition, the stable manifolds are all isotropic, so the
skeleton must have dimension at most n (if the Weinstein manifold has dimension 2n).

(2) The skeleton of a Liouville domain is a deformation retract of the domain. We have
shown that the skeleton is isotropic for Weinstein domains, so there is no symplectic
topology happening in the skeleton. It is expected that a lot of the symplectic topology
of the Weinstein domain is contained in the “smooth topology” (of course, the skeleton
can be singular) of the skeleton.

In Morse theory, the index of a critical point equals the dimension of corresponding sta-
ble manifold. Since isotropic submanifolds have dimension at most n (say, for a finite-type
Weinstein manifold of dimension 2n), we have :
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Corollary 2.1. A finite-type Weinstein manifold of dimension 2n has the homotopy type of a
finite CW complex of dimension at most n.

Assuming we know that all Stein manifolds are Weinstein (we will define a Stein manifold and
show that they are Weinstein in section 3, or see [3] section 11.5), we have given a symplectic
proof of:

Corollary 2.2. A finite-type Stein manifold, and therefore a smooth affine variety (see [11]
4b), has the homotopy type of a finite CW complex of dimension at most n.

In [10], the proof of h-cobordism theorem depends on several geometric results: a rearrange-
ment theorem that allows us to reorder critical points, an isotopy extension result that allows
us to isotope attaching spheres, and theorems on criterion for creation and cancellation of a
pair of critical points. These results turn out to hold in Weinstein handle calculus. These four
results are listed in 12.6 of [3]. We give the ideas of these results in handle language (these are
called Weinstein homotopy moves):

(1) An isotropic isotopy of the attaching sphere does not affect the result of handle attach-
ment;

(2) If the belt sphere and attaching sphere of two handles are disjoint (i.e. the differen-
tial between these two critical points is zero in Morse homology), then they can be
reordered;

(3) If the attaching sphere of a (k + 1)-handle and the belt sphere of a k-handle intersect
transversely exactly once (i.e. the (k+1) critical point has exactly one negative gradient
flow line that reaches the k critical point, so that they cancel in Morse homology), then
these two handles can be “cancelled”. Conversely, we can “create” two handles of index
k + 1 and k with this property.

Now we take a more constructive viewpoint. Given a Weinstein domain and a isotropic
sphere in the boundary, when can we attach a symplectic handle?

In smooth topology, the handle calculus implicitly depends on the tubular neighborhood
theorem, which tells us near each sphere in the boundary its neighborhood looks “essentially
the same”, so after choosing a framing the procedure of doing the handle attachment inside
this neighborhood is standard. So in order for symplectic handle calculus to work, the first
step is to prove an isotropic neighborhood theorem. Given a contact manifold (M, ξ = kerα)
and an isotropic submanifold L in M , we define the conformal symplectic normal bundle

CSNM (L) = (TL)⊥/TL

where (TL)⊥ is the symplectic orthogonal complement of TL in the contact distribution ξ.
Notice that the topological normal bundle NL can be decomposed into

NL ∼= 〈R〉 ⊕ J(TL)⊕ CSNM (L) (2)

where 〈R〉 is the trivial line bundle spanned by the Reeb vector field, and J an dα-compatible
almost complex structure on ξ.

Theorem 2.1 (Contact isotropic neighborhood theorem, see [6] Corollary 6.2.2). Let (Mi, αi),
i = 0, 1 be strict contact manifolds with closed isotropic submanifolds Li. Suppose there is
an isomorphism of symplectic normal bundles Φ : CSNM0(L0) → CSNM1(L1) that covers a
diffeomorphism Φ : L0 → L1. Then this diffeomorphism Φ extends to a strict contactomorphism
ψ : N (L0)→ N (L1)of suitable neighbourhoods N (Li) of Li such that Tψ|CSNM0 (L0) = Φ.
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There is one more issue related to the framing of a handle. The attaching region of a
k-handle is a copy of Sk−1 × D2n−k, so in order to specify the gluing of the handle, we need
to specify an embedding not only of an isotropic Sk−1, but an embedding of Sk−1 × D2n−k.
Equivalently, we choose a trivialization of the normal bundle of the isotropic sphere. Now we
claim that in the splitting (2), the 〈R〉 ⊕ J(TL) vector bundle is trivial if L is an isotropic
sphere. Now notice that, as an embedded sphere Sk−1 ⊂ Rk, the direct sum of TSk−1 with
a trivial line bundle has a natural trivialization. So roughly speaking, an identification of L
with Sk−1 ⊂ Rn gives a trivialization of 〈R〉 ⊕ J(TL). This is why specifying a trivialization
of CSNM (Sk−1) is sufficient for choosing a framing; the framing chosen in this way is called
the natural framing determined by the choice of trivialization of CSNM (Sk−1).

One important consequence of the above discussion is that for a Legendrian sphere in a 2n−1-
dimensional contact manifold, CSNM (Sn−1) has rank 0. Therefore one can always attach a
symplectic handle along a Legendrian sphere, and specifying an embedding of a Legendrian
sphere suffices to completely determine the handle attachment. So the subcritical handle
attachment is “inessential” for a lot of symplectic purposes, and critical handle attachment is
cleanest with respect to framing issues.

Now we can state the contact surgery/symplectic handle attachment theorem, first proved
by Weinstein in [12]. We will leave the standard details of e.g. smoothing corners to e.g. [6].

Theorem 2.2. Let Sk−1 be an isotropic sphere in a contact manifold (M, ξ kerα) with a trivi-
alisation of the conformal symplectic normal bundle CSNM (Sk−1). Then there is a symplectic
cobordism from (M, ξ) to the manifold M ′ obtained from M by surgery along Sk−1 using the
natural framing. In particular, the surgered manifold M ′ carries a contact structure that coin-
cides with the one on M away from the surgery region.

Thus, we can essentially define Weinstein domains as symplectic handlebodies.

Example. We give a handle decomposition of the T ∗Sn. We claim that this is given by attaching
an n-handle on the standard 2n-ball D2n (with coordinates x1, . . . , xn, y1, . . . , yn), along the
sphere

Sn−1 =
{

(x1, . . . , xn, 0, . . . , 0) |
n∑
i=1

x2
i = 1

}
in the boundary S2n−1 of D2n. For n = 2 this attaching sphere is the Legendrian unknot in
S3.

The key point is the following:
• The attaching Legendrian sphere bounds a Lagrangian disk

Dn =
{

(x1, . . . , xn, 0, . . . , 0) |
n∑
i=1

x2
i ≤ 1

}
.

• The core of the n-handle is another Lagrangian disk Dn

These two Lagrangian disks piece together into a Lagrangian Sn inside theD2n∪Sn−1(n-handle).
By Weinstein neighborhood theorem, a neighborhood of this Sn looks like T ∗Sn. Moreover the
Liouville fields outside this neighborhood have no zeroes, so attaching a n-handle along the
unknotted Sn−1 in the boundary of B2n exactly gives us T ∗Sn.
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