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These notes come from Lawson and Michelsohn’s Spin Geometry and Morgan’s The Seiberg-
Witten Equations and Applications to the Topology of Smooth Manifolds.

1 Motivating Example for Clifford Algebras

Recall that we may realize SU(2) as the group of unit quaternions and thereby identify SU(2)
with S3 := {(z, w) ∈ C2 : |z|2 + |w|2 = 1} = unit vectors in H. There is a natural group action
of S3 on H via conjugation:

S3 ×H→ H; (α, λ) 7→ αλα−1.

This action is clearly trivial on the center of H which is R. This means then that the action
preserves both R and its complement, the imaginary quaternions: Im H. If we study the Lie
algebra of SU(2) we’ll find that it has three generators over R which, when multiplied, behave
just as i, j, k ∈ H. Thus, su(2) identifies with Im H and the action of S3 on this Lie algebra is
the adjoint action.

If we choose α ∈ S3−{±1}, then the action preserves the two subspaces: Cα := {zα : z ∈ C}
and Cαj, defined similarly. Morgan claims that action of α on this second space is rotation by
2θ where θ is the angle between 1 and α.

2 Clifford Algebras

Let V be a finite dimensional vector space over a field k and let q be a quadratic form on V .
Recall that we may define a bilinear form b(v, w) := 1

2
(q(v + w)− q(v)− q(w)). This is called

the polarization of q. Let

T (V ) =
⊕
r=0

V ⊗r

and Iq(V ) be the ideal generated by elements of the form v ⊗ v + q(v) · 1.
Note: we’ll eventually not denote the quadratic form q and also stop using v · w or v ⊗ w
notation.

Definition 2.1. The Clifford Algebra of (V, q) is the quotient k-algebra Cl(V, q) := T (V )/Iq(V ).

Remark: Recall that all finitely generated k-algebras are isomorphic to some polynomial ring
over k, subject to some relations. The quotient by these relations is equivalent to quotient by
an ideal.

If we consider the canonical projection πq : T (V )→ Cl(V, q) and V as a subspace of T (V ),
then we have a natural embedding πq|V : V ↪→ Cl(V, q). It is not completely trivial to show
that this map is injective but it can be done by induction. Note that the quotient gives us the
following relations:

1



1. v · v = −q(v)1

2. If k is not of characteristic 2, then v · w + w · v = −2b(v, w) where b is defined as above.

Proposition 2.2. Let f : V → A be a linear map into an associative k-algebra with unit, such
that f(v) ·f(v) = −q(v)1 for all v ∈ V . Then f extends uniquely to a k-algebra homomorphism
f̃ : Cl(V, q)→ A. Furthermore, Cl(V, q) is the unique associative k-algebra with this property.

Remark: this is a very useful characterization of Clifford algebras. For one, it shows that they
are functorial in the following sense. Given a morphism f : (V, q) → (W, q′) which preserves
the quadratic forms, i.e. f ∗q′ = q, there is an induced homomorphism f̃ : Cl(V, q)→ Cl(W, q′).

Given another such morphism g : (W, q′) → (U, q′′), we see from the uniqueness that g̃ ◦ f =
g̃ ◦ f̃ . So we have a covariant functor from the category of k-vector spaces with quadratic forms
to the category of Clifford algebras.

One consequence of this fact is that the orthogonal group O(V, q) := {f ∈ GL(V ) : f ∗q = q}
extends canonically to a group of automorphisms of Cl(V, q). Moreover, the embedding sends
O(V, q) into the subgroup of inner automorphisms.

Example 2.3. Let k = R, V a real vector space of dimension d, and q be an inner product on
V . Let {e1, ..., ed} be an orthonormal basis of V . Then observe that e2i = −1 and ei ·ej = −ej ·ei
for i 6= j. Thus, the dimension of Cl(V ) as a real vector space is 2d.

An important automorphism is the involution α : Cl(V, q) → Cl(V, q) which extends the
map α(v) = −v on V . Since α2 = id, there is a decomposition of Cl(V, q) into eigenspaces of
α:

Cl(V, q) = Cl0(V, q)⊕ Cl1(V, q).
Here, Cli(V, q) := {ϕ ∈ Cl(V, q) : α(ϕ) = (−1)iϕ}. Since α(ϕ1 · ϕ2) = α(ϕ1) · α(ϕ2), we realize
that

Cli(V, q) · Clj(V, q) ⊂ Cli+j(V, q)

where the indices are taken modulo 2. So we have a Z2-grading and an algebra which has the
above decomposition which satisfies this grading is called a Z2-graded algebra. Cl0(V, q) is a
subalgebra and is called the even part of Cl(V, q). Cl1(V, q) is clearly not a subalgebra but is
a subspace. It is called the odd part.

Example 2.4. Let V = Rn. Then we have the following:

1. Cl(R) = R[x]/〈x2 + 1〉 ∼= C. Cl0(R) is identified with the reals and Cl1(R) with the
purely imaginaries.

2. Cl(R2) is the algebra generated by x, y, subject to the relations x2 = y2 = −1, yx = −xy.
Thus, the algebra identifies with the quaternions H: x = i, y = j, xy = k. Note that
α(ij) = α(i)α(j) = (−i)(−j). So k = ij is an eigenvector and it generates Cl0(R2).
Also, α acting on scalars, i.e. R = V ⊗0 is trivial. So {1, xy} forms a basis for Cl0(R2).
Therefore, we may identify Cl0(R2) with C ⊂ H.

3. Cl(R3) is of dimension 8 and is isomorphic to the polynomial ring R[x, y, z] modulo the
relations x2 = y2 = z2 = −1, xy = −yx, yz = −zy, xz = −zx. Then in fact, we have an
isomorphism with H ⊕ H. Call the map ϕ. In the first factor, send 1, i, j, k respectively
to

1 + xyz

2
,
xy − z

2
,
yz − x

2
,
zx− y

2
and in the second factor, send 1, i, j, k respectively to

1− xyz
2

,
xy + z

2
,
yz + x

2
,
zx+ y

2
.
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The subalgebra Cl0(R3) is identified with the diagonal copy of H. When verifying that,
say, ϕ((i, 0) · ϕ((j, 0)) = ϕ((k, 0)), don’t forget the relations. For example, xy = −yx.

4. For any inner product space V , we have an isomorphism of algebras Cl(V ) ∼= CL0(V ⊕R).
Letting e be a unit vector in R, the isomorphism is given by v0 + v1 7→ v0 + v1 · e. I think
Morgan means it’s mapped to (v0, 0)+(v1, 0)⊗(0, e). Then, for example, Cl0(R4) ∼= H⊕H.

3 Filtration of Cl(V, q)

The tensor algebra T (V ) has a filtration. Define F̃ r :=
⊕

s≤r V
⊗s. Then F̃0 ⊂ F̃1 ⊂ F̃2 ⊂ ...

and F̃ r ⊗ F̃ r′ ⊂ F̃ r+r′ . Let πq : T (V )→ Cl(V, q) be the quotient map and F i = πq(F̃ i). This
too is a filtration, terminating in Cl(V, q).

Clearly, multiplication in Cl(V ) preserves the filtration in that F i ⊗ F j → F i+j. Thus,
there is an associated graded algebra with the induced multiplication

GrF∗(Cl(V )) =
∞⊕
i=0

F i/F i−1.

Then, GrF∗(Cl(V )) is naturally isomorphic to the exterior algebra Λ∗(V ) as vector spaces and
may even be thought of as Λ∗(V ) equipped with a new multiplication.

4 Pin(V ) and Spin(V )

Let Cl×(V ) denote the multiplicative group of units of the algebra Cl(V ) and definte Pin(V )
be the subgroup of Cl×(V ) generated by elements v ∈ V with ‖v‖ = 1. Of course, since
v2 = −1, then these generating v are units. Let Spin(V ) = Pin(V )∩Cl0(V ). We can similarly
define Spin(V ) as the kernel of the group morphism Pin(V ) → Z2 induced by the splitting
Cl0(V )⊕ Cl1(V ).

Observe that if {e1, .., en} is an ONB for V , then every products of these ei are in Pin(V ).
This means Pin(V ) contains a vector space basis for Cl(V ) and thus, Cl(V ) is the smallest
algebra over R containing Pin(V ) as a subgroup of its multiplicative group of units. A similar
statement can be made for Spin(V ) and Cl0(V ).

Corollary 4.1. Two real or complex representations of the algebra Cl0(V ) whose restrictions to
Spin(V ) are isomorphic representations are in fact isomorphic representations of the algebra.

Also note that the natural action of O(V ) on V extends to an action of O(V ) on Cl(V )
as algebra automorphisms preserving the Z2 grading. The action is faithful and so induces an
embedding of O(V ) into Aut(Cl(V )) (algebraic automorphisms). Also O(V ) preserves V as a
subspace of Cl(V ) while SO(V ) does so as well and preserves orientation.

Spin(V ) acts on Cl(V ) by conjugation and this preserves the algebra structure and the Z2

grading. This is commonly called the adjoint action: Adv(w) = vwv−1. In the case of Lie
groups as we have here, the differential of Ad gives a Lie algebra morphism ad which gives the
Lie bracket.

Lemma 4.2. The conjugation action of Spin(V ) on Cl(V ) induces a representation of Spin(V )
as automorphisms of the Clifford algebra Cl(V ). The image of this representation consists of
automorphisms which preserve V ⊂ Cl(V ) and the orientation. Thus, we have an induced map
Spin(V ) → SO(V ). This map is surjective and the kernel is {±1}. If dimV ≥ 3, then the
kernel is also the center of Spin(V ) and the map presents Spin(V ) as the universal covering
group of SO(V ).
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Proof. Note that this conjugation action of Spin(V ) is the restriction of Pin(V ) acting by
conjugation on Cl(V ). We check the representation preserves V ⊂ Cl(V ) and need only check
generators, namely unit length elements in V . Let v, w ∈ V with ‖v‖ = 1. w can be anything.

Note that in general, since v2 = −‖v‖21, then −‖v+w‖2 = (v+w)2 = v2 +v ·w+w ·v+w2.
Thus, vw+wv = −2〈v, w〉. Then vwv = −v2w−2〈v, w〉v. On the other hand, v−1 = −v/‖v‖2 =
−v since ‖v‖ = 1. So vwv−1 = −vwv = v2w + 2〈v, w〉v = −(w − 2〈v, w〉v).

In general, 〈v, w〉/‖v‖ is the projection of w onto the line in the direction v. Subtracting
off this projection is to make w orthogonal to v. Subtracting off two copies then is reflection
across the hyperplane v⊥. We have a minus sign here so then Adv(w) = vwv−1 = −Rv⊥ : a
reflection followed by multiplication by −1.

Thus, we’ve shown that vwv−1 ∈ V and is orientation-preserving. Spin(V ) then acts
on V by even products of reflections in vectors of length 1. It is a classical fact that every
element of SO(V ) is a product of an even number of reflections. From this, it follows that
Spin(V )→ SO(V ) is surjective and its kernel is the intersection of Spin(V ) with the center of
Cl(V ).

Next, we show that this intersection is in fact, {±1}. let φ 7→ φt be the antihomomorphism
of Cl(V ) induced from the map of the tensor algebra which sends v1 ⊗ ...⊗ vr 7→ vr ⊗ ...⊗ v1
(reverses the order). This allows us to define a norm N : Pin(V ) → R∗, α 7→ αε(αt) where, if
x = x0 + x1 ∈ Cl(V ) = Cl0(V ) ⊕ Cl1(V ), then ε(x) = x0 − x1. Since Pin(V ) is generated by
v ∈ V with ‖v‖ = 1, then observe that if we have generators v, w, N(v) = vε(v) = −v2 = +1
and N(vw) = vwε(wv) = vwwv = +1. Thus, N on Pin(V ) sends everything to 1. The center
of Cl(V ) when V is even dimensional is isomorphic to R and when V is odd dimensional, it is
isomorphic to R ⊕ R. When we define N on the center, it simply becomes the squaring map.
Thus, the center of Spin(V ) is contained in and thus equal to {±1}.

We now have a natural isomorphism Spin(V )/Z2 → SO(V ). We show that when dimV ≥ 2,
this comes from a connected cover Spin(V ) → SO(V ) so that Spin(V ) is not simply two
copies of SO(V ) (that would be O(V )). It suffices to restrict our attention to a 2 dim subspace
W ⊂ V . The preimage of SO(W ) ⊂ SO(V ) under this covering map is Spin(W ) ⊂ Spin(V )
and the induced map π1(SO(W )) → π1(SO(V )) is surjective. Thus, we just need to prove
that Spin(W ) → SO(W ) is a non-trivial double cover. Identify Cl(W ) with H and Spin(W )
with S1 ⊂ C ⊂ H = C ⊕ Cj. W is identified with the linear subspace generated by j, k. If
we look at the usual conjugate action of S1 on W , we can look at a direct computation. Let
z = x+ iy ∈ S1 and aj + bk ∈ W . Then (x+ iy)(aj + bk)(x− iy) = (x2 − y2 + 2xyi)(aj + bk).
You’ll observe that x2 − y2 + 2xyi = (x + iy)2. Thus, the conjugation action of z ∈ S1 on
w ∈ W is simply z2w. Of course, SO(W ) ∼= S1 as well but its action is zw; so Spin(W ) is a
non-trivial double cover of SO(W ). We just wrap S1 twice around itself.

The dimension of SO(n) can be computed by looking at its Lie algebra so(n) whose elements
are n × n skew-symmetric matrices and thus, has dimension

(
n
2

)
. This then, is the dimension

of Spin(n) as well and the Lie algebras of the two are the same.

Example 4.3. In the case of Spin(3), we may identity this with S3 ⊂ H or SU(2). Conjugation
of Spin(3) on R3 may be viewed as action of S3 on the imaginary quaternions ImH. Another
view of this action is that it is the usual adjoint action of SU(2) on its Lie algebra which
consists of 2× 2 skew-Hermitian, traceless matrices (thus, has real dimension 3). The image of
this adjoint representation is SO(3).

Spin(4) is the double covering of SO(4) ∼= SU(2) × SU(2)/Z2. Thus, Spin(4) ∼= SU(2) ×
SU(2).
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