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These notes were taken from a reading of John Morgan’s Introduction to Gauge Theory,
lecture notes which appear in Gauge Theory and the Topology of 4-Manifolds, a book in the
IAS/Park City series.

1 Introduction

Classically, when studying the topology of smooth manifolds, we have a number of invariants
to consider. There is the homotopy type which may sometimes be replaced by the cohomology
ring. We may also consider the characteristic classes of a manifold on its vector bundles.
For example, the 1st Stiefel-Whitney class determines orientability. If the manifold is almost
complex, the top Chern class is the Euler class. If the manifold is a 4k-manifold, the Pontrjagin
classes are homeomorphism invariants.

In dimensions above 4, surgery theory has been amazingly successful at understanding the
smooth structures and topology of manifolds. In dimensions 1,2, and 3, topology and smooth
structures coincide. That is, for a given topological manifold, there is exactly one smooth
structure, up to diffeomorphism. However, dimension 4 is peculiar in that neither these lower
dimensional or higher dimensional techniques/facts, hold.

In dimension four, if we assume the smooth manifold M is closed, orientable, simply con-
nected, then the only interesting homology class to consider is H2(M,Z), on which there is an
intersection form. Knowing about the intersection form of a topological manifold gives quite
a lot of information. Michael Freedman showed that, for each unimodular symmetric bilinear
form q (up to isomorphism), there is a topological 4-manifold with q as its intersection form.
If q is even, the manifold is unique (up to homeomorphism). If it is odd, then there are two.

It is then an interesting question to ask: what can the intersection form tell us about
smooth structures? This is where gauge theory enters the picture, through the work of Sir
Simon Donaldson, using the Yang-Mills functional. He showed that for a simply connected,
closed, smooth 4-manifold, if its intersection form is definite, then the form is diagonalizable
over the integers. This shows, for example, that there are topological 4-manifolds which do
not admit any smooth structure, such as the E8 manifold.

2 Principal G-Bundles and Connections

Usually, when considering a principal bundle, we have a structure Lie group G and a base B
which is a topological space. We may assume the base to be a simplicial or CW complex and
apply homotopy theory. Or we assume B is smooth and the total space of the bundle to also
be a smooth manifold.
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2.1 Principal Bundles

Definition 2.1. A (right) principal G-bundle is a triple (P,B, π) where π : P → B is a map.
There is a continuous, free right action P ×G→ P with respect to which π is invariant. That
is, π(pg) = π(p). Thus, π induces a homeomorphism between the quotient space of this action
and B. There is also an open covering {Uα} of B and homeomorphisms ϕα which give us the
following commutative diagram:

π−1(Uα) Uα ×G

Uα

ϕα

π
p1

p1 is projection onto the first factor and ϕα is G-equivariant with respect to the right G-action.
This means ϕα commutes with the right G-action: ϕα(pg) = ϕα(p)g. The ϕα are called local
trivializations.

If P and B are smooth manifolds, the G action is smooth, and π is a smooth submersion,
then the ϕα are automatically diffeomorphisms. An isomorphism of G-bundles over the same
base is a homeomorphism between their total spaces which is G-equivariant and commutes
with the projections to the base. A map between G-bundles with possibly different bases is a
G-equivariant map between total spaces and is an isomorphism on each fiber. Such a map also
induces a map on the base spaces.

Note that these local trivializations give rise to local sections σ : Uα → P . Choose a g ∈ G
and let x ∈ Uα. Then since ϕα is a diffeomorphism and ϕ−1α (x, g) ∈ π−1(Uα), this gives a way to
define our local section σ. Note that the converse is also true. If we start with a local section,
because of the G-invariance of π, it gives us a local trivialization. We simply translate the
image of the section by G action (which is free). This gives us a result.

Proposition 2.2. Let P → B be a smooth G-bundle. Then P ∼= B ×G if and only if there is
a smooth global section σ : B → P .

2.2 Examples

Example 2.3. Let M be a smooth n-manifold; then the frame bundle F for its tangent bundle
is constructed as follows. Let x ∈ M . The fiber over x is the space of all bases for TxM .
This space is acted on by GL(n,R) and in fact, this shows us that F is a GL(n,R) bundle. If
(M, g) is an orientable Riemannian manifold, we can take oriented orthonormal bases instead
and form a SO(n)-bundle instead.

Example 2.4. Consider CP n; we can form the tautological bundle in the following way. A
point z ∈ CP n corresponds to a complex line in Cn+1 through the origin. Each complex line
contains a copy of S1 which can be obtained simply by looking at the unit vectors in the line.
Therefore, we can also consider all the unit length vectors of Cn+1 which is the unit sphere
S2n+1. In coordinates, S2n+1 = {(z1, ..., zn+1) : |z1|2 + ... + |zn+1|2 = 1}. S1 acts by left-
multiplication and clearly preserves the norm. This data determine a principal S1-bundle, the
tautological bundle over CP n

By the way, if we think of S2n+1 inside of R2n+2 with coordinates p = (x1, y1, ..., xn+1, yn+1),
then the 1-form

1

‖p‖

n+1∑
j=1

yjdxj − xjdyj

is dual to the vector field which rotates each plane spanned by {xj, yj} counterclockwise. We
normalize so that the rotation is uniform.
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2.3 Transition Functions

Let π : P → B be a principal G-bundle with an open covering {Uα} on B and local trivializa-
tions ϕα defined by ϕα(p) = (π(p), gα(p)). Then, from these data are transition functions
gαβ : Uα ∩ Uβ → G defined by gα(p) = gαβ(π(p)) · gβ(p) for all p ∈ π−1(Uα ∩ Uβ). These satisfy
the cocycle condition: gαβ · gβγ = gαγ on Uα ∩ Uβ ∩ Uγ.

Then gαα = id and gβα = g−1αβ . If we have another set of trivializations on {Uα} which gives
rise to g′α, there are maps hα : Uα → G such that g′α(p) = hα(π(p)) · gα(p). Then, the new
transition functions are related to the old ones by g′αβ = hα · gαβ · h−1β on Uα ∩Uβ. In this case,
we say the two transition cocycles differ by a coboundary.

With this in mind, we have a different way to describe a principal G-bundle over a base B.
Suppose we have an open covering {Uα} of B and functions gαβ : Uα ∩ Uβ → G which satisfy
cocyle conditions. We form a space P by taking the quotient space of∐

α

Uα ×G

under the equivalence relation (u, g) ∈ Uα×G is identified with (u, gβα(u)·g) for any u ∈ Uα∩Uβ.
We are gluing the pieces Uα ×G together.

2.4 Constructing Bundles

There is the usual construction of bundles by pullback. If f : A→ B is a continuous map and
P → B is a principal G-bundle, then f ∗P → A is a principal G-bundle. The total space is the
fibered product which means f ∗P = {(a, p) : f(a) = π(p)} ⊂ A× P . That is, we make a fiber
over a by taking the fiber over f(a).

We can also form associated vector bundles from principal bundles. Let ρ : G → GL(V )
be a linear representation of G on some vector space V . This gives us a natural left action of
G on V . Thus, we can form a total space P ×G V which is the quotient of P × V under the
equivalence (p · g, v) ∼ (p, g · v). This gives us a vector bundle.

Example 2.5. An example is the adjoint representation of G on its Lie algebra g: G× g→ g
given by (g,X) 7→ g ·X · g−1. The vector bundle associated to P → B and this representation
is denoted adP , the adjoint bundle of P .

A major result is that we may classify all principal G-bundles up to isomorphism by con-
sidering pullback bundles from a universal bundle. For a Lie group G, there is a classifying
space BG and a universal, contractible G bundle EG → BG. Let X be a smooth manifold
and f : X → BG a smooth map. Then, f ∗EG gives a smooth principal G-bundle over X. In
fact, all principal G-bundles over X are isomorphic to a pullback bundle f ∗EG, coming from
some map f . The isomorphism classes of principal G-bundles are in 1-1 correspondence with
homotopy classes of maps f : X → BG.

2.5 Connections on Smooth Principal Bundles

Let π : P → B be a smooth principal G-bundle over an n-manifold. A connection for P → B
is an infinitesimal version of an equivariant family of cross sections.

Definition 2.6. A connection on this bundle π : P → B is a rank n distribution H of the
tangent bundle TP which is horizontal in the sense that the restriction of dπ to each plane
in H is an isomorphism onto the corresponding tangent space to B. H is also invariant under
G action.
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Such a distribution is a family of complementary subspaces to the subbundle TP v of tangents
along the fibers. The vectors of TP v are also called vertical tangents as they point in the
direction of each fiber which are all diffeomorphic to G. Thus, a distribution gives us an
isomorphism TpP ∼= TpP

v ⊕ Tπ(p)B.

Lemma 2.7. Suppose H is a connection for P → B. Let γ : [0, 1]→ B be a smooth path and
e ∈ π−1(γ(0)). Then there is a unique path γ̃ : [0, 1] → P such that γ̃(0) = e, π ◦ γ̃ = γ, and
γ̃′(t) is contained in the horizontal space Hγ̃′(t).

The proof amounts to considering the pullback bundle γ∗P over the [0, 1] and looking for
existence and uniqueness of integral curves. This becomes an application of the ODE theorem.

Corollary 2.8. Given a smooth curve in the base γ from b0 to b1, a connection determines
an isomorphism between the fibers π−1(b0) → π−1(b1) which is equivariant with respect to the
G-actions on these fibers.

This is the reason for the name connection. They give a way to connect distinct fibers.

2.6 Connection 1-Forms

There is a unique 1-form ωMC ∈ Ω1(G, g) which is invariant under left multiplication by G
and at the identity element e of G, it is the linear identity map TeG → g. This form is
called the Mauer-Cartan form and is often denoted g−1dg. Its value on τ ∈ TgG is equal to
g−1 · τ ∈ TeG = g.

Lemma 2.9. A connection on a smooth principal bundle π : P → B is equivalent to a differ-
ential 1-form ω ∈ Ω1(P, g) with the following properties:

• Under right multiplication by G, ω transforms via the adjoint representation of G on g:
ωpg(τ · g) = g−1ωp(τ) · g, for any p ∈ P , any τ ∈ TpP , and any g ∈ G.

• For any p ∈ P , consider the embedding Rp : G → P , g 7→ pg; this embedding is another
way to see G is a (vertical) fiber. Then the pullback R∗pω = ωMC.

Proof. Suppose ω has the two properties. Then let Hp be the kernel of ωp : TpP → g. Since
Rp is an embedding of G into a fiber (which are thought of as vertical), we get an isomorphism
dRp : TgG→ TpgP

v.
The second property of ω says that restriction to the vertical tangents gives an isomorphism

TpP
v → g. But locally, in a neighborhood U ⊂ B, P looks like U × G. Thus, Hp = kerωp

means it is projected isomorphically to the tangent spaces to B.
We have only to check that H is G-invariant. But the first property of ω shows that the

kernel of ω is invariant: the adjoint representation is linear and so it does not affect the kernel.
Conversely, given a connection H, define ωp : TpP → g to be the following composition

TpP TpP
v g

pr (dRp)−1

where the first map is linear projection with kernel Hp. Let’s check

that ωpg(τ · g) = g−1ωp(τ) · g. Since H is G-invariant, if we set Hp as the kernel of the ωp, then
it is clear that if τ ∈ kerωp, then τ · g ∈ kerωpg. And since Hp is complementary to TpP

v, then
if τ ∈ TpP v, τ · g ∈ TpgP v. Thus, when τ ∈ TpP v, the projection in ωp is the identity map.

Putting this together, we know the following: ωpg(τ · g) = (dRpg)
−1(τ · g) and ωp(τ) =

(dRp)
−1(τ). Thus, we just need to show

(dRpg)
−1(τ · g) = g−1(dRp)

−1(τ) · g ⇐⇒ g · (dRpg)
−1(τ · g) = (dRp)

−1(τ) · g;

i.e. Rp and G-action commute. But they do. To show that ω satisfies the second condition,
if τ ∈ Hp, then its in the kernel. So consider τ ∈ TpP

v, the complement. Then pr is the
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identity and so ωp(τ) = (dRp)
−1(τ). Now let τ ∈ TgG which will be sent to a vertical fiber.

Then (R∗pω)g(τ) = ωpg((dRp)g(τ)) = (dRpg)
−1 ◦ (dRp)g(τ) = g−1 · τ . This is the Mauer-Cartan

form.

When thinking of a connection A with connection 1-form ω, we can discuss its covariant
derivative ∇A on an associated vector bundle W → B. This vector bundle is associated to the
principle G-bundle π : P → B via a linear representation of G on some V which serves as the
fiber for W .

Let s be a section of W → B. Locally, s(b) = [p(b), v(b)] where p and v are smooth functions
of b with values in P and V respectively. p is a local section of P → B. Then∇A(s)(b) evaluated
on a tangent vector τb ∈ TbB is

[p(b), ωb(Deb(τb)) +Dvb(τb)]

if p(b) is horizontal in the τb direction (we can always choose this), then the above simplifies to
[p(b), ∂v/∂τb]. This satisfies the Leibniz rule.

Then, parallel transport is a section s such that ∇As = 0. It exists and is unique once
we specify some initial conditions.

2.7 Curvature

Above, when we looked at parallel transport, we have the existence and uniqueness of ODEs
at our disposal. Parallel transport was essentially an integral curve. However, for higher
dimensions, if the horizontal distribution that is a connection has rank > 1, then, there may
be an obstruction to the distribution being integrable. Curvature may be thought of as this
obstruction.

Fix a point b ∈ B and two linearly independent vectors t1, t2. In local coordinates (x1, ..., xn)
such that (∂/∂xi)|0 = ti for i = 1, 2, we can consider a rectangle [0, ε]2 in the (x1, x2)-subspace.
Lifting the four sides of the rectangle in a counterclockwise fashion gives us some path in P .
Say that b lifts to p ∈ P . The end point might not coincide with the starting point but it will
equal p · g for some unique g = g(ε) ∈ G. For small ε > 0, this g is close to the identity so we
can consider the element:

KA(ε) = − log(g(ε))

ε2
.

Lemma 2.10. The element in g given by KA(p, t1, t2) = limε→0KA(ε) depends only on p, t1, t2.
Moreover, [p,KA(e, t1, t2)] ∈ adP depends only on t1, t2 and is bilinear and skew-symmetric in
these variables. We obtain it by evaluating a 2-form on B with values in adP . Denote this as
FA, on (t1, t2).

This FA is the curvature of A. If we’re in the case of vector bundles (G = GL(n,R)),
these comments basically tell us that a flat connection A; i.e. FA = 0 amounts to Fröbenius’
integrability theorem. One would see some Lie bracket condition appearing: [X, Y ] = 0 for all
spanning vector fields X, Y of the distribution.

We can also relate the curvature FA ∈ Ω2(B, adP ) to the connection 1-form ωA ∈ ω1(P, g)
by using π : P → B. If we have η ∈ Ω1(B, adP ), then η ∧ η will be defined by η ∧ η(v, w) =
1
2
[η(v), η(w)] where [, ] : adP ⊗ adP → adP is the Lie bracket. Then, the 2-form π∗FA =
dωA+ωA∧ωA. Observe that if G = S1, then ω∧ω = 0 because the Lie bracket is trivial, seeing
that the Lie algebra is iR which is abelian. This means that a connection of a U(1)-bundle has
curvature FA = dωA; the flat connections are precisely the ones with closed connection 1-forms.
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