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1 Spinc Structures and the Dirac Operator

1.1 Spinc Structures

Let (V, q) be a real, finite dimensional, inner product space; Spin(V ) may be defined as the
double cover of SO(V ) or we may instead define it using Clifford algebras. Let Pin(V ) be the
group generated by elements v ∈ V with ‖v‖2 = 1 and Spin(V ) = Pin(V ) ∩ Cl0(V ).

We may define Spinc(V ) using the complexified Clifford algebra Cl(V )⊗C; it is the subgroup
generated by Spin(V ) and S1 ⊂ C.

Example 1.1. Spin(1) = {±1}, Spin(2) = S1, Spin(3) = S3 = SU(2), Spin(4) = SU(2) ×
SU(2). Spin(n), for n > 2 is simply connected. The group that interests us is Spinc(4) =
(SU(2)× SU(2))×Z2 S

1.

An oriented Riemannian manifold (Xn, g) gives us a natural SO(n) bundle: we consider the
tangent bundle TX and since the manifold is oriented, we can consider oriented orthonormal
bases on each TpX; SO(n) acts on these bases and thus, we get an SO(n) bundle, called the
frame bundle F of TX.

A Spin or Spinc structure on X is not merely a principal bundle but one that lifts F → X.
There is a natural map Spin(n) → SO(V ) which is really just quotienting by Z2. Thus, a
spin structure P → X is a Spin(n) bundle which, when we quotient by Z2, is isomorphic to
F . Similarly, there is a natural map from Spinc(n)→ SO(n)× S1 → SO(n) which arises first

by modding out Z2 diagonally and then modding out S1. So a Spinc structure P̃ → X is one
which quotients by the above construction to an SO(n) bundle isomorphic to F → X. If X
admits a spin or Spinc structure, we call it a spin or Spinc manifold.

Note that we are assuming that X is orientable; we don’t discuss spin or Spinc outside
of this assumption. There is a well known obstruction theory result for spin manifolds. X is
spin if and only if w2 = 0 (the 2nd Stiefel-Whitney class). By the way, if X is a closed spin
4-manifold, its intersection form is even. If X is simply connected, the converse holds.

We may also ask when X is Spinc. From a Spinc structure P → X, we can construct a
complex line bundle which we call the determinant line bundle L. It can be constructed in the
following way. It is well-known that principal G-bundles over a manifold X are classified as
pullbacks of EG by some maps X → BG. More precisely, the isomorphism classes of G-bundles
over X are in 1-1 correspondence with homotopy classes of maps X → BG. Now, there is a
natural map det : Spinc(n) → S1 which comes from letting Spin(n) be the kernel. In some
sense, because of the Z2, this map is like squaring. It induces a map det : BSpinc(n) → BS1

which we call by the same name. Thus, if P ∼= f ∗ESpinc(n), then L ∼= (det ◦f)∗ES1.
Now we can describe an obstruction theory result. If X admits a Spinc structure, then

when we consider c1(L), it reduces mod 2 to w2(X). Conversely, if L → X is a complex line
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bundle with c1(L) = w2(X) (mod 2), then there exists a Spinc structure P with detP ∼= L.

Claim: All closed, oriented Riemannian 4-manifolds admit a Spinc structure.

1.2 Spin Bundle

Now, we can, to any G-bundle, associate to it a vector bundle, once we fix a vector space V
and a linear representation ρ : G→ Aut(V ). We consider the total space P × V and mod out
in the following way: (p · g, v) ∼ (p, g · v).

There are, of course, many representations to choose from in the case of Spin(V ). However,
it is natural to study finite dimension irreducible complex representations of Cl(V ) restricted
to a complex representation of Spin(V ). It turns out that there is only one such restriction, up
to isomorphism (of course, once we restrict, the representation might not remain irreducible).
Call it SC(V ). We can also consider how Cl(V ) ⊗ C acts on SC(V ). Moreover, if dimV = 2n
, this Spin(V ) representation decomposes into irreducible complex representations S±C (V ) of
dimension 2n by the action of ωC (recall ω2

C = 1). If dimV = 2n + 1, then the representation
is already irreducible and of dimension 2n.

Moreover, there is a unique way to extend these Spin(V ) representations to Spinc(V ) rep-
resentations; it respects the decomposition when V is even dimensional.

1.3 The Dirac Operator /∂A

Let us state once and for all our setting: we consider a fixed Spinc structures P → X where
X is a closed, oriented Riemannian 4-manifold. Let SC(P ) be the vector bundle associated to
P with vector space R4 and representation being the unique one that extends to Cl(R4) ⊗ C.
It decomposes into two irreducible complex vector bundles, each of complex rank 2.

We wish to construct an operator on sections of SC(P ) using covariant derivatives and
Clifford multiplication.

The covariant derivative must come from a connection. There’s a natural connection to
choose from on an SO(4) bundle: the Levi-Cività connection. It’s the unique connection which
is orthogonal and also torsion-free. It easily lifts to being a connection on a Spin(4) bundle
because a connection can be viewed as a 1-form with values in the Lie algebra and conveniently,
so(4) ∼= spin(4). On the line bundle L = detP , we can choose a connection A. Thus, from
these two, we can form a connection on a principal SO(4)× S1 which we can lift to our Spinc

bundle P as Spinc(4)→ SO(4)×S1 is a finite cover and thus they have the same Lie algebras.
Let ∇ be the induced covariant derivative on SC(P ).

Now, let {e1, ..., e4} be an oriented orthonormal frame for TpX. We define the Dirac
operator /∂A : C∞(SC(P )) → C∞(SC(P )) on smooth sections of the spin bundle. These are
called spinors. The definition is:

/∂A(σ)(p) =
4∑
i=1

ei · ∇ei(σ)(p)

where · means Clifford multiplication. Note that /∂A interchanges the plus and minus parts of
SC(P ) because of the Clifford multiplication. As a reminder, if ∇ is a connection on a vector
bundle E → X, its image is in sections of T ∗X ⊗E. However, if Y is a vector field of X, then
∇Y maps sections of E to sections of E.

It can be shown that the Dirac operator is elliptic by considering its principal symbol which
is Clifford multiplication by iξ, ξ ∈ T ∗xX. Since X is closed, elliptic implies Fredholm and /∂A
is even self-adjoint. Therefore, Fredholm index of /∂A on the sections of the full spin bundle is
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0. However, when we restrict our attention to /∂A : C∞(S+
C (P )) → C∞(S−C (P )), the index can

be computed by the Atiyah-Singer Index theorem to be: (c1(L)2 − 2χ− 3σ)/4. Here, χ is the
Euler characteristic of X and σ is the signature of X.

2 The Seiberg-Witten Equations

The Seiberg-Witten Equations are a pair:

/∂Aψ = 0; F+
A = q(ψ) := ψ ⊗ ψ∗ − |ψ|

2

2
id .

The first equation is pretty self explanatory; such ψ that satisfy the Dirac equation are called
harmonic spinors and by elliptic regularity, even if ψ is of Sobolev type, say W 2,2, it will
turn out to be smooth (actually we can say something stronger; it has an analytic continuation
result). Also, by self-adjointness, harmonic spinors are orthogonal to the image of /∂A.

The second equation needs a bit more explanation. F+
A is the self-dual part of the curvature

2-form of a U(1) connection A (the self-dual comes from ωC which behaves a lot like Hodge-*).
On the RHS, we have ψ⊗ψ∗ which is an element of C∞(SC(P )⊗SC(P )∗) ∼= C∞(End(SC(P ))).
It’s clear that the trace of ψ ⊗ ψ∗ is |ψ|2 and so subtracting off the second term makes it a
traceless endomorphism.

How does this relate to curvature 2-forms? The endomorphisms on the spin bundle can be
identified with 2-forms because there is a way to define an action of differential forms on the
spin bundle. First, recall that the Clifford algebra, as a vector space, is the exterior algebra
with a new type of multiplication. Thus, differential forms act on the spin bundle; and this
particular q(ψ) can be realized as a section of Λ2

+(T ∗X) ⊗ C; then identify TX and T ∗X by
the Riemannian metric g.

2.1 Configuration Space

In order to consider a solution (A,ψ) to the SW equations, we consider the space in which
they live. We call this space the configuration space C(P ) = A2,2(L) ×W 2,2(S+(P )); that
is, we’re taking them to be Sobolev elements in W 2,2 rather than smooth elements.

As is typical, we let F : C(P ) → W 1,2((Λ2
+T
∗X ⊗ iR) ⊕ S−(P )) be defined by F (A,ψ) =

(F+
A − q(ψ), /∂Aψ). So F−1(0) are the solutions.

2.2 Change of Gauge

However, the space of solutions is enormous and we’ll like to consider them up to some equiv-
alence. The group of changes of gauge G(P ) will be what we quotient our configuration space
by. These are bundle automorphisms of P which cover the identity on the frame bundle of the
tangent bundle. That means when we quotient P → X to obtain the frame bundle F → X, our
bundle automorphism is just the identity map. The automorphism only acts on the S1 piece
and possibly on the Spin(4) part but in a way compatible with the map Spin(4)→ SO(4).

It turns out that the G(P ) is an infinite dimensional abelian Lie group. Its Lie algebra is
the space of W 3,2 sections of the trivial bundle X × iR with trivial bracket.

The action of C(P ) is somewhat natural. Let σ ∈ G(P ). Then σ induces bundle endo-
morphisms det σ and S±(σ) on L and S±(P ). If we view detσ as a map from X → S1,
then its simply the image of σ under squaring from S1 → S1. The action is given by
(A,ψ) ·σ = ((detσ)∗A, S+(σ−1)(ψ)). We also have an action on W 1,2((Λ2

+T
∗X⊗ iR)⊕S−(P )):

σ acts trivially on the first factor and by S−(σ−1) on the second factor.
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One can show that F ((A,ψ) · σ) = F (A,ψ) · σ; i.e. F is G(P )-equivariant. Thus, if (A,ψ)
is a solution to the SW equations, so is (A,ψ) · σ.

It is important to make a point here that the stabilizer of an element (A,ψ) is trivial unless
ψ = 0, in which case the stabilizer can be identified naturally with S1 (as groups). Thus, we’ll
see that when we quotient C(P ) by G(P ), we’ll get some cones over CP∞ where the vertex is
something of the form (A, 0). This is because the link of (A, 0) is something like S∞ and we
have the following diagram.

S1 S∞ CP∞

3 The Seiberg Witten Moduli Space

The reason the Seiberg-Witten equations are so useful is that the moduli space M(P ) for a
Spinc structure P is actually a closed orientable smooth manifold in generic cases. (X, g)
will be our closed, oriented smooth Riemannian 4-manifold and P , our Spinc structure. First,
we have the following theorem:

Theorem 3.1. Let (an, ψn) and (bn, µn) be solutions of the SW equations and suppose they
converge to (a, ψ) and (b, µ) in the W 2,2 topology. Also suppose there is a sequence σn ∈ G(P )
such that (an, ψ) · σn = (bn, µn). Then there exists a subsequence of σn with limit σ such that
(a, ψ) · σ = (b, µ).

The idea of the proof is as follows. Let τn = (detσn)∗. Then τnan = τ−1n dτn + τ−1n anτn = bn.
Since the groups are abelian, we have τ−1n dτn = bn − an or dτn = τn(bn − an). We get natural
bounds on an, bn and a bound on τn will thus give a bound on dτn. Now elliptically bootstrap.
This result shows that the moduli space (so we quotient by change of gauge) is Hausdorff in
C∞.

3.1 Compactness of the Moduli Space

Compactness of the moduli space requires some analytic estimates. However, we get a stronger
compactness: for any metric on X, there are only finitely many nonempty moduli spaces
(arising from Spinc structures) and each is compact. Of course, we’re dealing with those that
have nonnegative formal dimension. This result follows from two phenomena; we’ll explain it
more in Proposition 3.3.

1. Uhlenbeck showed that in general, L2 bounds on curvature of the connections imply W 1,2

bounds on the connections in an appropriate gauge.

2. We have a priori pointwise bounds on the spinor, and hence, pointwise bounds on the
curvature of any solution.

The Weitzenböck identity is the main tool in obtaining bounds on solutions to the Seiberg-
Witten equations (need to play with Ricci tensors and indices to prove it). The identity is:

/∂
2
Aψ = ∇∗A∇Aψ +

κ

4
ψ +

FA
2
· ψ.

If ψ is a harmonic spinor, then the LHS is zero. Let’s use the fact that ψ is a +-spinor so
FA · ψ = F+

A · ψ. Then, since F+
A = q(ψ), we get |FA|/2 = |ψ|2/4; this is an easy computation
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using local representations. Finally, we have an equation when we take the above Weitzenbock
equation and take an inner product with ψ:

|∇Aψ|2 +
κ

4
|ψ|2 +

|ψ|4

4
= 0.

Then, we can show that for every x ∈ X, |ψ(x)|2 ≤ κ−X . Here, we have κ−(x) = max{−κ(x), 0}
and κ−X = maxx∈X κ

−(x). Thus, we have a uniform bound on the spinor fields and a nice
additional lemma.

Lemma 3.2. If X admits a metric with nonnegative scalar curvature, then the only solutions
are reducible because |ψ|2 ≤ 0.

In particular, T 4 is flat and so admits a metric with zero scalar curvature. Thus, we’ll see this
means SWT 4 ≡ 0.

More over, c21(L)− 2χ− 3σ ≥ 0 by our assumption of non-negative formal dimension. But
also, c21(L) = 1

4π2 (|F+
A |2 − |F

−
A |2); the − sign comes from the fact that F−A is anti-self dual. So

we obtain L2 bounds on the curvature FA = F+
A + F−A . The bounds only depend on scalar

curvature κ, the Euler characteristic, and signature of X. Note that this gives us the following
result:

Proposition 3.3. For a given metric g on X, there are only finitely many Spinc structures
which admit a non-empty moduli space with non-negative formal dimension.

The proof goes as follows. A solution (A,ψ) to the SW equations gives us a bound on FA.
Thus, c1 = [iFA/2π] ∈ H2(X,R) is in a bounded set. Moreover, it is an integral class so it is
discrete. Thus, there are finitely many possibilities for the determinant line bundle of a Spinc

structure if we’re looking for non-empty moduli spaces with non-negative formal dimension.
Now, combining the L2 bounds on curvature with a result of Uhlenbeck gives us W 1,2 bounds

on the connections in an appropriate gauge. We prove a local slice theorem to show that in
fact, we can always ensure that our connections are in some appropriate gauge to get the W 1,2

bound. Through elliptic bootstrapping, we show our solutions are C∞. Thus, we have C∞

bounds on the connections. This, together with the pointwise bounds on the harmonic spinors
gives us compactness. Therefore, if we have a sequence of solutions, we can find a subsequence
that converges to another solution. Thus, the moduli space is compact.

Local Slice Theorem: In a brief word, the local slice theorem is something of a tubular
neighborhood theorem. If we have Lie group G acting on M , then for some x ∈M , S := G · x,
the orbit, is hopefully a submanifold. Moreover, we’ll like to say it’s diffeomorphic to G/Gx

(G mod the stabilizer of x). What we get is that if we realize G/Gx as the zero section
of G ×Gx (TX/TS), then there is a neighborhood U of G/Gx which is diffeomorphic to a
neighborhood V of S and is an equivariant extension of the map [g] 7→ g · x.

3.2 Smoothness of the Moduli Space

We will show that away from reducible solutions to the SW equations, the moduli space defined
is a smooth manifold because we know precisely that the singular points arise from reducible
solutions.

However, ultimately, we want to ensure there are no reducible solutions. Thus, we will first
introduce the perturbed SW equations. Then, we show that away from reducible solutions for
these new equations, the moduli space is a smooth manifold. Lastly, we will show that we can
pick a generic perturbation so that the moduli space does not contain any reducible solutions
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and thus is smooth everywhere.

Step 1: The perturbed SW equations only changes the curvature equation. We request F+
A =

q(ψ) + iη for an η ∈ Λ2
+(X,R). So we’re perturbing by a self-dual, purely imaginary 2-form iη.

Let
F : W 3,2(Λ2

+(X,R))× C4(P )→ W 3,2(Λ2
+(X, iR)⊕ S−(P )),

F (A,ψ, h) = (F+
A − q(ψ)− ih, /∂Aψ)

Observe that in the h coordinate, dF is basically inclusion and also then, surjective.

Step 2: To show that the moduli space is smooth, we would like to use an implicit function
theorem. If we have a regular value of our SW map, then its preimage forms a smooth manifold.

To do this, we should show that F and the gauge action are Fredholm. This is not too hard
because the equations are elliptic and linear elliptic maps on a closed manifold X are Fredholm.

Next, we show that at any point where F (η, A, ψ) = 0 and ψ 6= 0, when we project to
vertical fibers, G := dF ◦ π is surjective. This is the transversality property. From our
observation above about dF being an inclusion on the first factor, we really just need to show
G is surjective on the second factor. So let’s restrict dF to the second factor and then project;
continue to call this map G. We now have a formula: G(a, η) = /∂Aη + 1

2
a · ψ.

To prove surjectivity, suppose we have an element Z ∈ S−(P̃ ) orthogonal to the image of G;
we suppose Z 6= 0. Being orthogonal to the image of dF means Z is orthogonal to the image
of /∂A. But /∂A is self-adjoint so /∂AZ = 0. That is, Z is a S−-harmonic spinner and so is C∞ by
elliptic regularity. But not only this, we have that Z has an analytic continuation property and
thus, is non-vanishing in an open set. Let U be a neighborhood where Z and ψ don’t vanish
and let x0 ∈ U .

Claim: We can produce an element Y in the image of G and show that 〈Y, Z〉 6= 0; a
contradiction. This would show that G is surjective at solutions to the perturbed SW equations.
So let’s show there is such a Y .

Recall that R4⊗C ∼= Cl1(R4)+ ∼= Hom(S+, S−). Let’s suppose we’re given σ± ∈ S±. We can
define a morphism ϕ : S+ → S− that takes σ+ and maps it to something that is not orthogonal
to σ−; i.e. 〈ϕ(σ+), σ−〉 6= 0. Let ψ,Z be our σ±. By the identification, ϕ corresponds to some
element a ∈ R4⊗; we can treat a ∈ R4 ∼= T ∗x0X if we just want Re〈a · ψ(x0), Z(x0)〉 > 0. Now
extend a to be a 1-form on X with compact support in U . Thus,

∫
X
〈a · ψ,Z〉 6= 0 which is the

contradiction.
We conclude from this that (η, A, ψ) is a regular value and the moduli space M∗(P, η) =

F−1(0) is a smooth manifold by the implicit function theorem.

Step 3: Let M∗(P ) be the space of triples (η, A, ψ) such that [A,ψ] are solutions to the SW
equations perturbed by η. Let π : M∗(P ) → W 3,2(Λ2

+(X, iR)) be projection; it is a smooth
map. Clearly, π−1(η) = M∗(P, η). Now, the fact that F is Fredholm shows that π is also
Fredholm. Thus, we may use Sard-Smale (the theorem requires Fredholm) to show that the
regular values of π are dense. Thus, we’ve shown that these perturbations which give a smooth
manifold (without boundary) of irreducible solutions are indeed generic.

3.3 Reducible Solutions

In the previous section, we see that away from reducible solutions, the moduli space is a smooth
manifold. What about the reducible solutions? First, in a neighborhood of a reducible solution

6



in the configuration space, the boundary is something like S∞ and its stabilizer is S1. Thus,
when we quotient, the reducible solutions give us singular points which are cones over CP∞.

Notice that if there are reducible solutions (A, 0) then in the standard equations, they satisfy
F+
A = 0; i.e. A is anti self-dual. We’ll show that by perturbing the SW equations, there are no

reducible solutions. We will, in later sections, prove that under small perturbations, the SW
invariant is in fact invariant.

Now, in general, FA = −2πic1(L). This means the curvature is independent of A. In the
perturbed setting, a reducible solution (A, 0) satisfies F+

A = iη. Because of the relationship of
curvature with c1, we only have reducible solutions when, after orthogonal projection to the self-
dual harmonic 2-forms, η+ = 2πc1(L)+. Our hope is that by perturbing, our η fails this equality.

Question: Can we always perturb so that the equality here fails? If so, is the perturbation
generic or are there relatively few ways to perturb?

Answer: Yes, we can always perturb and the perturbations making the equality fail are generic.
However, we’ll be needing the assumption that b+2 > 0.

Theorem 3.4. Suppose that b+2 (X) > 0 and that for the Spinc structure P , its determinant
line bundle L is such that c1(L) is not a torsion cohomology class. For a generic metric, there
are no reducible solutions to the Seiberg-Witten equations coming from P . Moreover, for any
Spinc structure, if there are no reducible solutions to the SW equations, then for all sufficiently
small perturbations of the equations, there are no reducible solutions either.

The proof relies on Taubes’ result: if there exists a reducible solution, the Riemannian metric g
must be of a particular type, living in a closed codim b2+ subspace in the space of all Riemannian
metrics on X. So when b2+ > 0, the set of metrics which do not admit reducible solutions is
open and dense. Moreover, there are only finitely many Spinc structures with nonempty moduli
spaces of non-negative formal dimension. Therefore, we can take a finite intersection of all these
generic metrics for each Spinc structure P and still have a dense set of generic metrics for which
there are no reducible solutions coming from any Spinc structure.

We may say even more; for a generic metric, if the SW equations have no reducible solu-
tions for any Spinc structure, then any sufficiently small perturbation will also lack reducible
solutions.

Theorem 3.5. For any metric and a generic perturbation, there are no reducible solutions.

The proof is as follows: for any metric g, a reducible solution to the perturbed equations
satisfies F+

A = η. Moreover, it must be that the orthogonal projection of η into the self-dual
harmonic two-forms equals the projection of 2πc1 into the same space (note that the orthogonal
projection depends on our Riemannian metric g). If we perturb η slightly, this equality fails.

Corollary 3.6. For any metric and a generic perturbation, there are no reducible solutions
and hence the moduli space of all solutions is a smooth manifold.

3.4 Orientation of the Moduli Space

In order to define the invariant, we need to integrate the moduli spaces; thus, we need them to
be orientable. Consider the theorem:

Theorem 3.7. The open subset of smooth, irreducible points of M(P ) is an orientable mani-
fold. A choice of orientations of H0(X, iR), H1(X, iR), and H2

+(X, iR) determine an orienta-
tion of M(P ) at any irreducible point.
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This theorem establishes that the moduli spaces are orientable and that there is a canonical
way to do so. We’ll take the proof in steps but we first need a definition.

Definition 3.8. The determinant bundle of a linear Fredholm operator F : V → W is defined
as detF = Λtop kerF ⊗ (Λtopcoker F )∗. There’s a way to glue these together for a family of
Fredholm operators Fs over some parameter space S and obtain a determinant line bundle for
the family as a line bundle over S.

Our parameter space will be C(P ). There is a lemma that will be useful:

Lemma 3.9 (6.6.1). Suppose Fs and F ′s are two families of Fredholm operators parametrized
by S. Further, suppose they are homotopic. Then the homotopy determines an isomorphism
between the determinant line bundles L→ S and L′ → S.

Proof of Orientability

1. Let (A,ψ) ∈ C(P ) and consider the elliptic complex which comes from linearizing the
Seiberg-Witten map F :

0 W 3,2(X; iR) W 2,2((T ∗X ⊗ iR)⊕ S+(P ))

W 1,2((Λ2
+T
∗X ⊗ iR)⊕ S−(P )) 0

D1

D2

Here, D1 = (2d,− · ψ) and

D2 =

(
d+ −Dqψ
·1
2
ψ /∂A

)
.

2. When studying elliptic complexes, we study the symbol of operators which look at the
highest order terms. Since /∂A is a 1st order linear operator, we can study just the 1st
order terms and do away with the 0th order terms. That is, we homotope the operator
D = (D2, D

∗
1) to an operator E = (E2, E

∗
1) which does not have any 0th order terms.

What we have is

E∗1 = (2d∗, 0), E2 =

(
d+ 0
0 /∂A

)
.

3. By lemma 6.6.1, detD ∼= detE. Both are bundles over C(P )× I.

4. G(P ) acts on these bundles “nicely” so after restricting to C∗(P )× I and quotienting, we
get line bundles over B∗(P )× I. Denote the one coming from E by ξ → B∗(P )× I.

5. Claim: ξ is trivial and has orientation determined by the line bundle

ΛtopH1 ⊗ (ΛtopH2)−1 ⊗ (ΛtopH0)−1.

Proof. We can restrict our attention to just showing the fiber over B∗(P )×{1} is trivial.
Now, over C∗(P )×{1}, the family of Fredholm operators split as d+ + /∂A + 2d∗; the only
family changing as we parametrize over C∗(P ) is /∂A, a family of complex operator. Thus,
ξ1 = R ⊗ det(d+ + 2d∗) ⊗ detR /∂A. Quotienting by G(P ) preserves the tensor structure
and also the complex structure of detR /∂A. Moreover, the real determinant line bundle of
any family of complex operators is trivial and oriented by the complex structure.

So we only need to orient det(d+ + 2d∗) over a point. Let H denote harmonic forms.
Observe that ker d+ = H1⊕ Im d⊕{maybe something else}. On the other hand, ker d∗ =
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H1 ⊕ Im d∗. Nothing in the image of d is in this kernel. For if, say df ∈ ker d∗ where
f : X → R, then 0 = 〈d∗df, f〉 = 〈df, df〉 = |df |2 = 0. Thus, df = 0. This shows that
ker(d+ + 2d∗) = H1 ∼= H1(X, iR), the intersection of the two kernels. Also, Λ0 = H0 ⊕
Im d∗ so coker d∗ = H0 ∼= H0(X; iR) while Im d+ is the space of exact self-dual 2-forms.
So coker d+ = Λ2

+/Im d+ = H2
+(X; iR). So coker (d+ + 2d∗) = H0(X; iR) ⊕ H2

+(X; iR)
and the claim is proved.

6. Orienting ξ → B∗(P ) × I amounts to orienting detD → B∗(P ) × I when (A,ψ) is an
irreducible solution. Now kerD(A,ψ) = T(A,ψ)M(P ) and D(A,ψ) is generically surjective.
Thus, orienting detD(A,ψ) orients T(A,ψ)M(P ). This orientation comes canonically from
H0, H1, H2.

3.5 Variations of the Moduli Space

The main goal of this section is to study what happens to our moduli spaces when we choose
different metrics and perturbations. We will use the fact that the space of metrics on a man-
ifold is convex and thus, we can find a path through the space of generic metrics and regular
perturbations connecting any two pairs (g0, η0), (g1, η1) which lifts to a cobordism between the
moduli space at (g0, η0) and the moduli space at (g1, η1).

Let M(P, η) be elements ([A,ψ], t) ⊂ B(P )× [0, 1] satisfying

F+t
A = q(ψ) + iη(t); /∂A,gt(ψ) = 0.

Here, /∂A,gt is the Dirac operator defined by the Levi-Civita connection for gt and the connection
A on L. Similarly, F+t

A is the self-dual part of the curvature form of A; of course, the Hodge-*
operator now depends on how gt varies.

Let P(η1, η2) be the space of W 1,2 paths η : [0, 1]→ W 3,2(Λ2
+T
∗X ⊗R) satisfying η(0) = η0

and η(1) = η1. Since we can integrate along paths, P(η1, η2) is a Hilbert manifold with tangent
space at η(t) being the space of W 1,2 paths η : [0, 1]→ W 3,2(Λ2

+T
∗X ⊗R) which vanish at the

endpoints. Define

F : C∗4(P )× I × P → W 3,2(Λ2
+T
∗X ⊗ iR⊕ S−(P ))

by F(A,ψ, t, η) = (F+t
A − q(ψ) − iη(t), /∂A,gt(ψ)). The claim is that we have a transversality

result here as well: dF is surjective at every (A,ψ, t, η) on which F vanishes. Let M∗(P ) be
the moduli space of irreducible solutions parametrized by P ; i.e. F−1(0) quotiented by G5(P ).
This is a smooth manifold with boundary.

The projection M∗(P ) → P is a smooth map. Sard-Smale gives us that regular values
η ∈ P are generic and thus, the fiber over η is a smooth manifold with boundary. It is precisely
M(P, η). This is compact as each M(P, η(t)) is compact. Thus, what we’ve showed is that
for a generic path η as described above, M(P, η) is a compact, properly embedded, smooth
submanifold of B∗(P )×I. Its boundary is the disjoint unionM(P, η0)

∐
−M(P, η1) (oriented).

In the above, we were not requiring smooth paths but rather W 1,2 paths. However, there is
a dense set of C∞ paths such that we still get this smooth cobordism.

4 The Seiberg-Witten Invariant

4.1 b+2 (X) > 1

Let us assume that b+2 (X) > 1. The Seiberg-Witten invariant of a 4-manifold satisfying this
condition is given by the homology class of the moduli space M(P, η) of solutions in the
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configuration space mod gauge changes; it has dimension d. This configuration space B∗(P ) is
homotopy equivalent to CP∞ ×K(H1(X,Z), 1), a classifying space of (S1)X := {f : X → S1}
bundles. If π1X = 0, then its homotopy equivalent to CP∞. The H∗(B(P );Z) has a canonical
generator µ in even degrees. d is even if and only if b1 + b+2 is odd (this also shows that the
dimension of all the moduli spaces are either all even or all odd). In this case, by evaluating µ
against the fundamental class of the Seiberg-Witten moduli space we obtain an integer

SWX,g,η(P ) =

∫
M(P,η)

µd/2 ∈ Z.

If d is odd, then we let SW ≡ 0 for all Spinc structures; this means that SW theory cannot
tell us anything in the b1 + b+2 is even case.

Even when d is even, a priori, the integer SW (P ) depends on the metric and perturbation.
Let (g1, η1) and (g0, η0) be regular pairs of metrics and perturbations. By regular, we mean they
yield smooth moduli spaces M(P, g1, η1) and M(P, g0, η0) (they do not contain any reducible
solutions). From our previous discussion, we can form a smooth cobordism between these two
spaces. Now, µ is closed. Thus, by Stokes’ Theorem applied to the cobordism,

0 =

∫
M(P,η)

d(µd/2) =

∫
M(P,g1,η1)

µd/2 −
∫
M(P,g0,η0)

µd/2.

Therefore, when b+2 > 1, the Seiberg-Witten invariant really is an invariant as it does not
depend on a regular pair (g, η). The invariant is an orientation-preserving diffeomorphism
invariant of the 4-manifold, and it has been used very effectively to distinguish many homeo-
morphic but not diffeomorphic 4-manifolds (exotic pairs).

4.2 b+2 (X) = 1

When b+2 = 1, there is a codimension 1 space of bad metrics which forms a wall between two
chambers in the space of all metrics. The wall is defined in the following way. First, letR be the
space of all Riemannian metrics. The space of self-dual harmonic 2-forms, denoted H2

+(X,R)
has dimension b+2 = 1 and is thus, a line. Once we orient this line, to each metric g, we assign
the unique g self-dual harmonic 2-form of norm 1, lying in the positive component of H2

+(X,R)
(with respect to orientation). Denote it by ω+(g). Let ω+(g) · c1(L) denote the intersection
pairing of the two. The space of metrics g such that ω+(g) · c1(L) = 0 disconnects R. Our two
chambers are R+ which contains metrics g satisfying ω+(g) · c1(L) > 0 and R− which is defined
similarly.

Despite this wall, within each chamber SWM,g,η(P ) stays constant for each Spinc structure
P . So, within a chosen chamber, the invariant is indeed, an invariant.

4.3 Wall-Crossing Formula when b+2 (X) = 1 and b1 = 0

If in addition to b+2 = 1 we also know that b1 = 0; e.g. π1X = 0, there is a wall-crossing formula
describing the difference of SW in the two different chambers: SW−(P ) = SW+(P ) + (−1)d/2.
Proof of the Wall-Crossing Formula:

1. Let g0 ∈ R−, g1 ∈ R+; we can make it so that this path crosses the wall only once at
g1/2. Similarly, we have perturbations η(t) to make it so thatM(P, t) :=M(P, g(t), η(t))
is a smooth manifold for all t 6= 1/2.

2. Now, since b1 = 0, the homotopy type of B∗(P ) ' CP∞ ×K(H1(X;Z), 1) = CP∞. Let
M = {([A,ψ], t) : [A,ψ] ∈M(P, t)} ⊂ B(P )× I be the parametrized moduli space.
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3. Claim: M has only one reducible solution at t = 1/2. That is, M is a singular cobordism
between M(P, 0) and M(P, 1) and has only one singularity. I think I partially under-
stand two proofs; of course, together, they do not equal fully understanding one proof.
I’ll record both:

“Proof” 1 (doesn’t seem to use b1 = 0)

Proof. We may choose our path in such a way that it crosses the wall transversely at
time t = 1/2. Thus, the only possible reducible solutions live in M(P, 1/2). How do
we guarantee there is only one? Well, for there to be a reducible, we need F+

A = iη+

but F+
A = −2πi[c+1 ]. So we need η+ = −2π[c+1 ]. This all lives inside of H2

+ which is 1
dimensional by our b+2 = 1 assumption. Therefore, as we go along a path η(t), we’re going
to hit −2π[c+1 ] exactly once for each time we cross the wall. Since we’re making sure the
path is transverse to the wall, we get one reducible solution.

Indeed, this transverse wall-crossing condition tells us that the singularity we get in
M(P, 1/2) is regular in M; in the t direction, we have the derivative of the parametrized
Seiberg-Witten map being nonzero. It’s sort of like an elliptic fibration X → P1 with
fibers being elliptic curves E. The fibers are generically nonsingular though you can have
some singular fibers. Say the local coordinates on a singular fiber E is z and the local
coordinates around this fiber in X are (z, w). So E is defined by some F (z, w) locally.
Then ∂F/∂z = 0 at the singularity in E by definition but there’s no reason a priori that
∂F/∂w = 0. Hence, it can be regular in the full space.

“Proof” 2

Proof. We have the following fibration which gives rise to a long exact sequence of homo-
topy groups:

G(P ) C∗(P )

B∗(P ) ' CP∞

π1CP∞ = 0 π0G(P ) π0C∗(P ) π0CP∞ = 0

Now, C(P ) = A(detP )×Γ(S+(P )) and A is modeled on an affine space so is contractible
while Γ(S+(P )) is connected as X is connected. Hence G(P ) is connected. This means
that each element γ ∈ G(P ) can be represented by some f : X → S1.

Now, we want to see that there is a unique reducible connection. This part is rather hand-
wavy and I’m not sure if it’s correct, but morally, it seems it should be. If A satisfies
F+
A = −iη+(1/2), then we have a reducible solution (A, 0). Suppose that A′ also satisfies

this equation; so F+
A = F+

A′ . Expressing this in terms of their local connection 1-forms,
we have dω = dω′ (the ω∧ω part vanishes because iR is abelian). This means ω′ = ω+α
where α is a closed 1-form in Ω1(L, iR). Here L is viewed as a U(1)-bundle rather than
a complex line bundle.

α is locally exact so we can represent it by some function. However, this function should
somehow correspond to a function f : X → S1. In this way, we see that A and A′ are gauge
equivalent. Thus, up to gauge equivalence, there is only one solution to F+

A = −iη+(1/2)
and /∂Aψ = 0; namely this (A, 0).
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Note: Nicolescu claims that the reducible solution, though it is a singularity forM(P, 1/2),
it is regular for M. Not sure why...

4. This single reducible solution gives a cone over CP d/2 where d is the dimension of all the
moduli spaces M(P, t), t 6= 1/2. Thus, cutting out the singularity, we get a cobordism
with a “hole” in it. It has boundary M(P, 1)−M(P, 0) + CP d/2.

5. Somehow, we can show that µ is the negative of the generator of the cohomology ring
H∗(B∗(P );Z) and so integrating µd/2 over CP d/2 gives (−1)d/2.

6. Hence,

0 =

∫
M

d(µd/2) =

∫
M(P,1)

µd/2−
∫
M(P,0)

µd/2+

∫
CP d/2

µd/2 = SW+(P )−SW−(P )+(−1)d/2.

7. We conclude that the wall-crossing formula is: SW−(P ) = SW+(P ) + (−1)d/2

What does this theorem say about the geometry? Suppose that d = 0 (which means that
(−1)d = +1) so we’re literally just counting finitely many solutions. When you cross the wall,
it says that generically, we lose exactly one solution. Hence, we have this −1 appearing. If
d > 0, then we have, instead of a single solution vanishing, a whole CP d’s worth of solutions
vanishing and by looking at orientation and all that, we have ±1 appearing in the formula.
Aleksander Doan says that if you want to understand this vanishing, you should study the 2nd
cohomology of the elliptic complex and see that it vanishes. Somehow, studying the elliptic
complex tells us something something obstructions, something something Kuranishi model.

So, by keeping track of a little more information about the chambers, it is still possible to
use information from the Seiberg-Witten invariants to distinguish exotic pairs. For example,

CP 2 has b+2 = 1. We can look for exotic CP 2#nCP 2
using a blow-up formula. In particular,

when n = 9, we obtain infinitely many non-diffeomorphic smooth structures.
However, if b+2 = 0, then we can’t say anything as then its not clear that the invariant is

independent of the metric (and seems like it will be dependent). Thus, SW has nothing to say
about S4 and the smooth Poincaré conjecture for S4 remains open.

4.4 An Involution in the Theory

It should be noted that we have complex conjugation on Spinc which preserves the Spin piece
but acts on S1. Thus, given a Spinc bundle P and its determinant line bundle L, we may
produce, using this complex conjugation, another Spinc bundle, call it −P . This is done by
pulling back P → F × L∗ a map ι induced by complex conjugation.

P

F ×X L F ×X L∗ι

Here, F is the frame bundle and L∗ the dual of L. Using all the orientations from before, we
have that SW (−P ) = (−1)ε(X)SW (P ). ε(X) = (1 + b+2 − b1)/2 which is an integer because
we’re assuming b+2 + b1 is odd and thus, b+2 + b1 − 2b1 is also odd.
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5 Some Properties of the Seiberg-Witten Invariant

Here are some properties of the Seiberg-Witten invariant which is an integral function SW :
Sc(X)→ Z from the set of Spinc structures of a Riemannian 4-manifold. This section is taken
from a survey paper of M. Hutchings and C. Taubes.

1. (Invariance) If b+2 (X) > 1, then SW (P̃ ) depends only on P̃ and gives an orientation-
preserving diffeomorphism invariant SW : ScX → Z.

2. (Naturality) If X and Y are compact, oriented smooth 4-manifolds with b+ ≥ 2, f :

X → Y is an orientation-preserving diffeomorphism, and P̃ ∈ Sc(Y ), then SWX(f ∗P̃ ) =

SWY (P̃ ).

3. (Dimension) Every basic class c (the 1st Chern class of the determinant line bundle
of a Spinc structure that SW doesn’t vanish on) of X satisfies c · c ≥ 2χ(X) + 3σ(X).

4. (Finiteness) SW (P̃ ) = 0 for all but finitely many P̃ .

5. (Symmetry) There is a charge conjugation involution induced by conjugation c 7→ c̄
on Cl(V )⊗ C. This involution acts on the set of Spinc structures (which sends c1(L) to

−c1(L)), and SW (−P̃ ) = (−1)εSW (P̃ ) (ε is defined above in the involution subsection).

6. (Blowup) The Seiberg-Witten invariant for Y = X#CP 2
contains similar information as

that of X. We can sort of think that the original Spinc structures stick around after blow

up but this needs to be made precise (see the statement below). X#CP 2
will generally

have additional Spinc structures coming from CP 2
; let E be the (−1)-curve CP 1 ⊂ CP 2

.
This E contributes more Spinc structures. Thus, the full SW invariants differ.

The more general statement is as follows:

If X and Y have b+2 (X) ≥ 2 and b1(Y ) = b+2 (Y ) = 0 and P̃Y ∈ Sc(Y ) and P̃X ∈ Sc(X)

are Spinc structures whose characteristic classes c = c1(det P̃X) ∈ H2(X,Z) and e =

c1(det P̃Y ) ∈ H2(Y,Z) satisfy

c · c− 2χ(X)− 3σ(X) + e · e+ b2(Y ) ≥ 0

then SWX#Y (P̃X#P̃Y ) = SWX(P̃X). In particular, the basic classes of X#Y have the
form c′ = c+e where c ∈ H2(X,Z) is a basic class of X and e ∈ H2(Y,Z) is a characteristic
vector (generator).

7. (Connected Sum) If X = Y#Z and b+2 (Y ), b+2 (Z) > 0 then SWX ≡ 0. (This does not

contradict (6) because b+2 (CP 2
) = 0.)

8. (Scalar Curvature) If X has a metric of positive scalar curvature, then all the Seiberg-
Witten invariants of X are zero.

9. (Genus) Let X have b+2 ≥ 2 and Σ ⊂ X be a compact connected oriented embedded
2-manifold which represents a nontorsion homology class. Suppose that Σ · Σ ≥ 0. Then
the genus of Σ satisfies 2g(Σ)− 2 ≥ Σ · Σ + |c · Σ| for every basic class c of X.

10. (Symplectic) Let (X,ω) be a compact symplectic 4-manifold with b+2 ≥ 1 and P̃J ∈
Sc(X) be the canonical Spinc structure of an almost complex structure J compatible

with ω. Then SW (P̃J) = 1. There are many such J but they may give rise to isomorphic
Spinc structures.
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Here is a brief idea of how to prove the connected sum result.

Proof. Let Y and Z be as above and X = Y#Z. Note that X has b+2 ≥ 2 and so its SW
invariant is independent of metric. Then there is a neck, diffeomorphic to S3 × (0, 1) which
connects the two; it has positive scalar curvature. If we perturb the metric to lengthen this
neck, we get that the SW invariant should vanish on the neck (because of its positive scalar
curavture). It also turns out that if PX is a Spinc structure on X, there is a way to construct
it from Spinc structures PY and PZ on Y and Z in some fashion. In fact, the Spinc structures
have the following relationship: SX ∼=set SY × SZ .

Anyways, we have M(PX) = M(PY ) ×M(PZ). On the other hand, let’s compute the
dimension of M(PX). cl(LX)2 = c1(LY )2 + c1(LZ)2, σ(X) = σ(Y ) + σ(Z), and χ(X) =
χ(Y ) + χ(Z) − 2. Thus, dimM(PX) = dimM(PY ) +M(PZ) + 1. Keep in mind that the
virtual dimensions could be negative. For simplicity, suppose the dimension of M(PX) is 0.
Then on the RHS, one of the dimensions must be negative and hence, the space is empty.
Thus,M(PX) is empty. If dimM(PX) > 0, we need some more argument but it the result still
holds.

6 Applications

Here are a few applications. First, note that if (M4, ω) is a symplectic manifold, then ω ∧ ω
is a volume form; the Poincaré dual of this is that the self intersection ω∗ · ω∗ > 0. Hence,
b+2 > 0. It was shown that the SW invariants of symplectic manifolds are nontrivial. Thus,
using the connected sum vanishing result, we see that symplectic manifolds cannot be a smooth
connected sum of two manifolds both with b+2 > 0. Of course, by Freedman’s work, M could
be topologically a connect sum.

6.1 Blowups of CP2

For 0 ≤ n ≤ 8, CP 2#nCP 2
is obtained as blowups and these give rational complex surfaces.

P1 × P1 is also a rational surface. As it turns out, all of these admit a Hitchins metric which
has positive scalar curvature. So the Seiberg-Witten invariants vanish. However, there are
constructions of smooth manifolds which are homeomorphic to these blowups for n = 6, 7, 8
but have nonvanishing SW invariant. Hence, those are somewhat “exotic” as their smooth
structures do not allow for positive scalar metrics.

Now, a compact complex surface is rational if and only if its field of meromorphic functions
is isomorphic to C(u, v). Donaldson theory and SW theory can be used to show that if a
complex surface is diffeomorphic to a rational surface, then it itself is rational.

6.2 K3 Blown-up

Consider the K3 surface (its unique in the smooth category but not algebraic category). It has
only two Spinc structure ±PJ from the complex structure, which gives us a nontrivial moduli
space. Note that c1(detP ) = 0 and χ(K3) = 24, σ(K3) = −16. Also, SWK3(±PJ) = +1; both
are +1 because 1 + b+2 − b1 = 4.

Now let X = K3#CP 2
and Y = 3CP 2#20CP 2

. These two manifolds both have indefinite
intersection forms (so neither positive nor negative definite) and neither is spin (by Rohklin’s
theorem). Also, the intersection forms have the same rank, signature, and type. The type of
an intersection form is even if D ·D is even for all D ∈ H2 and is odd otherwise. Here, we have
the signature is 3− 20 = −17 for both and the type is odd for both.
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From the work of Serre, Milnor, and Husemoller, the rank, signature, and type form a
complete set of invariants for indefinite unimodular symmetric forms.

It is the work of M. Freedman that compact, simply connected topological 4-manifolds are
in 1-1 correspondence with pairs {(Q,α)} where Q is the intersection form and α the Kirby-
Siebenmann obstruction (mostly easily described as α(M) = 0 if M×S1 is smoothable and is 1,
if not). When Q is even, we further require that σ(Q)/8 ≡ α (mod 2). However, Q is odd for X
and Y and of both are compact and simply connected. Thus, X and Y are homeomorphic.
Note that Freedman’s result shows that every unimodular, symmetric bilinear form is the
intersection form of some topological 4-manifold.

However, SWX is nontrivial because the Seiberg-Witten invariant on a K3 of the standard
Spinc structure coming from the complex structure is +1 and X has basic classes coming from

E (arises from CP 2
). Thus, SWX 6= 0. However, SWY ≡ 0 because we can apply property (6)

and (7) to Y . Thus, X and Y are not diffeomorphic. This fact was established by Donaldson
using different methods but it’s nice to confirm it with Seiberg-Witten theory.

Important point: Having this example proves that the Seiberg-Witten invariant can detect
different smooth structures in some cases. But of course, it does so in a negative way: if two
smooth manifolds have different SW invariants, then they are not diffeomorphic. But there
are examples of 4-manifolds with the same SW invariants that are not diffeomorphic; seen by
other means (e.g. Yamabe invariant). Of course, SW is also unable to do anything for us with,
say S4, which admits a positive scalar metric.

By the way, recall that every closed, orientable 4-manifold is Spinc and also cobordant to a

connected sum of CP 2 and CP 2
. Donaldson’s Diagonalization establish that if M is a closed,

simply connected smooth 4-manifold with definite intersection form, the intersection form is
diagonalizable over Z. This means that if Q is a non-diagonalizable unimodular, symmetric,
bilinear form, though there is a topological 4-manifold M with Q as its intersection form, M
does not admit any smooth structures.

6.3 More Kähler Surfaces

On a Kähler surface X, the canonical bundle Ω2,0
X has 1st Chern class c1(X). We call it positive

if there exists a Kähler form ω ∈ Ω1,1
X,R such that [ω] = c1(X). Negative if [ω] = −c1(X), and

null if c1(X) = 0 in H2(X,C); so it could have torsion.
Yao showed that if X is a negative surface, then X admits a Kähler-Einstein metric g with

negative Ricci curvature. Let λ be the scalar curvature.

Claim: On a negative surface with canonical Spinc structure coming from the complex struc-
ture, there exists a irreducible solution to the SW equations; it comes from the KE-metric g.
Examples of such surfaces: degree 2k + 1-hypersurfaces in P3 with k ≥ 2. On the other hand,

Freedman showed that such surfaces are topologically nCP 2#mCP 2
with m > 1.

Furthermore, by Gromov-Lawson, a manifold of standard smooth type nCP 2#mCP 2
with

m ≥ 1 has positive scalar curvature metrics and hence, no solutions to the SW equations. This
shows that the negative surfaces of Yau must have exotic smooth structure.

6.4 Simple Type Conjecture

We end by stating a conjecture. Consider a closed, orientable smooth 4-manifold X. Let BX
denote the support of SW ; that is, the set of Spinc structures on which SW does not vanish.
Furthermore, assume now that b+2 (X) > 1. X is said to be of SW -simple type if for every
P ∈ BX , the dimension of the moduli space is zero. Contrapositively, if the moduli space has
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positive dimension, then SW vanishes on it. As of 2019, all the 4-manifolds with b+2 > 1 and
computed SW invariants are of simple type.

Conjecture (Witten): All closed, orientable, smooth 4-manifolds with b+2 > 1 are of simple
type.
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