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These notes are compiled mainly from Audin and Damien’s Théorie de Morse et homologie
de Floer. Hamiltonian Floer homology aims to answer one rendition of Arnold’s conjecture:
The number of periodic solutions of period 1 of a nondegenerate time-dependent Hamiltonian
system on a compact 2n-symplectic manifold (W,ω) is greater than or equal to the sum∑

i

dimHMi(W ;Z2).

1 Basics for Setting up the Conjecture

Let us first consider an autonomous Hamiltonian function H : W → R. The Hamiltonian
vector field XH of H is defined by ω(Y,XH) = dH(Y ). More concisely, iXH

ω = −dH. Since
ω is nondegenerate, one can immediately see that x is a critical point of H if and only if
XH(x) = 0. Moreover, we have the following proposition:

Proposition 1.1. The time t flow of a Hamiltonian vector field is a diffeomorphism that
preserves the symplectic form. It is called a Hamiltonian diffeomorpshim.

Proof. Recall that if η is a k-form, the Lie derivative has a simple form: LXη = diXη + iXdη.
Also,

d

dt
(ψt)∗ω = lim

h→0

(ψt+h)∗ω − (ψt)∗ω

h

= (ψt)∗ lim
h→0

(ψh)∗ω − ω
h

= (ψt)∗LXH
ω.

The last line is simply the definition of the Lie derivative. Then we have

d

dt
(ψt)∗ω = (ψt)∗LXH

ω

= (ψt)∗(diXH
ω)

= (ψt)∗(−ddH) = 0.

Thus, this family of pullbacks is independent of time. Since ψ0 = id, (ψt)∗ω = (ψ0)∗ω = ω for
all t.

We now consider H : R × W → R, the time-dependent Hamiltonian; we have a family
of Hamiltonians Ht. Then we can consider a family of Hamiltonian vector fields Xt := XHt .
Though we don’t get a family of flows, we still have a family of isotopies; in fact, they are
symplectomorphisms ψt such that

d

dt
ψt = Xt ◦ ψt and ψ0 = id .
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What is missing: this family doesn’t necessarily satisfy the group law.
Now, for both the autonomous and time-dependent Hamiltonian, the associated differential

system is:
ẋ(t) = Xt(x(t)).

Obvious but important point: If x(t) is a periodic solution to this differential system with
period 1 (x(0) = x(1)), then x(t) corresponds to a fixed point of the diffeomorphism ψ1.

Definition 1.2. A periodic solution x(t) to the Hamiltonian system is called nondegenerate
if the differential of ψ1 at x(0) does not have eigenvalue 1.

If we can prove that there are finitely many such fix points for ψ1, then there are finitely
many periodic solutions to the Hamiltonian system. The way to prove this is the following: let
∆ = {(x, x) : x ∈ W} be the diagonal of W ×W and Γ(ψ1) = {(x, ψ1(x)) : x ∈ W} be the
graph of ψ1. Then the intersection points of ∆ and Γ represent the fixed points. If the periodic
solutions are all nondegenerate, then the intersection is transverse. Thus, codim ∆+codim Γ =
codim (∆ ∩ Γ) which is 2n + 2n = 4n. So the dimension of the intersection, which is a
submanifold, is zero. Since W ×W is compact, there must be finitely many such points and
therefore, finitely many periodic solutions.

Two assumptions we make about (W,ω) moving forward:

1. For every smooth f : S2 → W ,
∫
S2 f

∗ω = 0. This assumption is often denoted π2(ω) = 0.

2. For every smooth f : S2 → W , there exists a symplectic trivialization of f ∗TW . This
means that c1(f

∗TW ) = 0 for all such f . Here c1 is the first Chern class.

By the way, recall that isomorphism classes of rank 2k symplectic vector bundles over a man-
ifold M are in 1-1 correspondence with homotopy classes of maps M → BSp(2k). BSp(2k) is
the classifying space for symplectic vector bundles. However, since Sp(2n) deformation retracts
to U(n), symplectic and complex vector bundles have the same classifying space. Therefore,
symplectic bundles are equivalent to complex vector bundles and every symplectic manifold is
an almost complex manifold. c1 classifies complex line bundles.

2 Background on the Arnold Conjecture

This section is by Liviu Nicolaescu. Let’s consider a trivial example from a survey article
written by Arnold in the late 80s.

Consider T ∗S1, the cotangent bundle of S1. We can identify it with the product S1×R since
its orientable and there are only two real line bundles over S1 up to isomorphism (as given by
the first Stiefel-Whitney class. The other one is the Möbius bundle). The obvious coordinates
on one chart of this cylinder are (θ, t). Like any cotangent bundle, T ∗S1 carries a symplectic
structure (I believe ω = dt ∧ dθ), and in this case, any curve on this symplectic manifold is a
Lagrangian submanifold. There are different types of curves, however.

The curves Cτ := {t = τ}, (τ 6= 0 a constant) are disjoint from the zero section and are
deformations of the zero section via the symplectic flow (θ, t) 7→ Φτ (θ, t) = (θ, t + τ); i.e.
Φ∗τω = ω. The vector field giving rise to this flow is rather boring: at each point of the cylinder
S1 × R, assign a unit vector pointing along the R direction.

Consider next a smooth function θ 7→ f(θ). Its differential is a section of T ∗S1, and its
graph Γdf = (θ, f ′(θ)) intersects the zero section along the critical points of f .

The Lagrangian submanifold Γdf is a rather special deformation of the zero section: it is a
Hamiltonian deformation. The points of intersection of Γdf with the zero section correspond
to the periodic orbits of the Hamiltonian deformation.
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Why is this fascinating? Certain pairs of Lagrangian subspaces intersect in more points than
predicted by topology alone, which is in itself an indication that symplectic topology is a
bit more rigid than smooth topology alone. What I mean by this is that a Hamiltonian
diffeomorphism is isotopic to the identity and so the Lefschetz number (from the Lefschetz
Fixed Point Theorem) predicts a lower bound sum with alternating signs rather than just the
sum: χ(M) =

∑
k(−1)kbk. Usually, we need to consider the index of the fixed points but since

we’re dealing with Hamiltonian diffeomorphisms, the index of each fixed point is ±1. Mark
says that the Poincaré-Hopf index is equal to (−1)CZ , where CZ is the Conley-Zehnder index.

Otherwise, on S2, we could come up with a vector field which has only one fixed point of
index 2 = χ(S2) in the following way. Consider some translation of R2 and extend this to
S2; the point at infinity is the fixed point. This map is homotopic to the identity but it must
be degenerate; My guess is that if we look at the graph of it in S2 × S2 and consider how it
intersects the diagonal, there will be some sort of order 2 tangency (not transverse). Also, this
map is not volume preserving.

How does the above trivial example fit the general picture? A Lagrangian submanifold
L of a symplectic manifold has a tubular neighborhood symplectomorphic to T ∗L. Thus,
the case of cotangent bundles can be viewed as local situations of the more general cases of
Lagrangian submanifolds and their Hamiltonian perturbations. Given a Hamiltonian flow Φt

on a symplectic manifold X, the graph of the time 1-map is a Lagrangian submanifold in
X ×X. As we saw above, its fixed points correspond to the intersection of the graph with the
diagonal in X×X, which is another Lagrangian submanifold. Thus the problem of intersection
of Lagrangian submanifolds contains as a special case the problem of existence of periodic
solutions of hamiltonian systems.

Leaving aside the mysterious rigidity of symplectic topology alluded to above, the problem
of existence of periodic orbits of Hamiltonian systems has fascinated many classics, such as
Poincaré, because of its obvious connection to the many body problem and the philosophical
question: does the history of our planetary system repeat itself?

3 Floer Theory

Conley and Zehnder took inspiration from Morse theory and was able to resolve the conjecture
for all even dimension tori. The genius of Andreas Floer (1956-1991) comes from combining
the variational approach of Conley and Zehnder with Gromov’s elliptic methods. The outline
of the proof is given here.

1. Consider the space of free smooth contractible loops in W : LW ; it is in fact a Banach
manifold. We’re looking for periodic solutions so it makes sense to consider loops. Critical
points are solutions in the autonomous case so it makes sense to consider contractible
loops. A tangent vector at a point x ∈ LW is a vector field. Formally, consider x : S1 →
W and the pullback bundle x∗TW . Thus, a tangent vector to x is a section of x∗TW .

2. Define an action functional AH on LW whose critical points (loops) are the solutions to
the time-dependent Hamiltonian system. The action functional is well-defined because
π2(ω) = 0.

3. Fix a compatible almost complex structure J for W . We get the Riemannian metric
g(·, ·) = ω(·, J ·) on W which induces a metric 〈·, ·〉 on LW . We can then study the
trajectories of the negative gradient of AH . These trajectories are smooth maps u :
R × S1 → W (a path of loops). They are also solutions to a PDE called the Floer
equation. Thus, we can define an energy E(u) for each u which is nonnegative and equals
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zero if and only if u(s, t) is independent of s. Show that if E(u) <∞, lims→±∞ u(s, t) are
critical points of AH .

4. In the setup till now, one important fact we need comes from Gromov: let M be the
space of finite energy, smooth contractible solutions of the Floer equation. Under the
assumption π2(ω) = 0, M is compact. If we don’t have this assumption, a phenomenon
called “bubbling” appears.

5. We define a chain complex analogous to the Morse complex with these critical points.
The Maslov index serves this purpose.

6. The differential ∂ for the complex is defined from −∇AH ; it sends a critical point along
a trajectory to another criticial point (when the trajectory has finite energy). As in the
Morse case, we need a way to count the trajectories.

7. Also as in the Morse case, we’ll like the space of trajectories to be a manifold and we’ll also
need genericness properties such as the Smale property. In the Morse case, the Smale
property was for all stable and unstable manifolds to intersect transversally. We may
thus need to consider a different vector field. It suffices to perturb the gradient slightly
by perturbing the metric via the almost complex structure J .

8. We need ∂2 = 0. Just as in the Morse case, we’ll need a gluing property to prove this.

9. We show that the homology defined from this Floer complex is independent of the func-
tional and vector field.

10. By choosing a C2-small Hamiltonian and relying on the independence of the Floer homol-
ogy, we find that Floer homology coincides with Morse homology. Thus, we get analogous
results to the Morse inequalities.
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