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This is an outline of ch. 8 of Morse Theory and Floer Homology. “Proofs” are more of sketches.
Let (M,ω) be our closed symplectic manifold. We will, at many points, need to consider

TM but we prefer to look locally at (U ⊂ M,ω) ∼= (R2n, ω0). In this case, we can then take a
local trivialization of the tangent bundle and consider U × R2n as our tangent bundle.

We begin with some brief remarks about the spaces we’ll be dealing with. We need to
consider the Sobolev space W 1,p(R × S1,M): it may be viewed as the completion of C∞(R ×
S1,M) under the norm ‖ · ‖1,p. Take Y ∈ W 1,p(R× S1, TM). Then

‖Y ‖1,p :=

(∫
R×S1

|Y |p +

∣∣∣∣∂Y∂s
∣∣∣∣p +

∣∣∣∣∂Y∂t
∣∣∣∣p ds dt)1/p

<∞.

The best point of view to take here is that elements of W 1,p are distributions so that they
have derivatives in the sense of distributions. But in general, if we have W k,p(Rn), we need
kp > n = dim(domain) in order for the elements to be continuous (Sobolev/Reillich Theorems).
Here, the space is R × S1 so n = 2. Thus, we would like p > 2. Another complication is that
the variable s is varying over the noncompact space R.

The second space of interest is that of C∞ε (H0). We fix a nondegenerate Hamiltonian H0;
the space C∞ε (H0) is all the perturbations of H0 by some h : M → R such that H = H0 + h
has the same periodic orbits and is also nondegenerate. The point is that we wish to perturb
the Floer equation so that M(x, y, J,H) is a manifold of dimension µ(x) − µ(y). In general,
a given Hamiltonian does not produce such a manifold but arbitrarily small perturbations will
show the moduli space of solutions to be a manifold.

1 The Main Theorems

1.1 Spaces We’ll Work With

Recall that the space P(x, y) is comprised of maps of the form (s, t) 7→ expw(s,t) Y (s, t) where
Y ∈ W 1,p(w∗TM) and w ∈ C∞↘(x, y). The definition of C∞↘(x, y) is as follows: it consists of
maps u : R × S1 → M such that u limits to periodic orbits x and y and there exist K, δ > 0
such that ∣∣∣∣∂u∂s (s, t)

∣∣∣∣ ≤ Ke−δ|s|
∣∣∣∣∂u∂t (s, t)−Ht(u)

∣∣∣∣ ≤ Ke−δ|s|.

Consider the fiber bundle E → P(x, y) × C∞ε (H0) with the total space defined as E =
{(u, h, Y ) : Y ∈ Lp(u∗TM)}. Let E0 be the zero section. Let σ be a section of this bundle
which sends

(u, h) 7→ ∂u

∂s
+ J(u)

∂u

∂t
+∇u(H0 + h).
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The differential is (dσ)(u,h)(Y, η) = (dF)u(Y ) + ∇uη; the extra ∇uη comes from the h we
added to obtain H = H0 +h. Note also that σ−1(E0) = Z(x, y, J) = {(u,H) : h ∈ C∞ε (H0), u ∈
M(x, y, J,H)} as sets. If σ is transverse to E0, then we would have that σ−1(E0) = Z(x, y, J) is
a manifold by the Implicit Function Theorem. This transversality condition is equivalent to a
certain projection of (dσ)(u,h) being surjective. The projection is from Tσ(u,h)E onto the tangent
space of the fiber at σ(u, h) ∈ E0. Call it Π.

1.2 Theorems

Theorem 1.1 (8.1.5). For every nondegenerate Hamiltonian H, every almost complex structure
J compatible with ω, and every u ∈ M(x, y, J,H), (dF)u is a Fredholm operator of index
µ(x)− µ(y).

The first theorem says that F restricted to M(x, y, J,H) is a Fredholm map as the differ-
ential at each point is a Fredholm operator. Note that the index is independent of u in the
moduli space.

Fix ACS J . Let Z(x, y, J) be the space of solutions connecting x and y for all Floer maps
corresponding to the different perturbations of H0. The next theorem states:

Theorem 1.2 (8.1.4). Let (u,H) ∈ Z(x, y, J), where H = H0 +h and FH is the corresponding
Floer operator. Then

Γ : W 1,p(R× S1,R2n)× C∞ε (H0)→ Lp(R× S1,R2n)

(Y, h) 7→ (dFH)u(Y ) +∇uh

is surjective and admits a continuous right inverse.

In this second theorem, Γ is the composition of Π ◦ dσ. We prove this in section 3. A corollary
is:

Theorem 1.3 (8.1.3). Z(x, y, J) is a Banach manifold.

This theorem follows immediately from the Implicit Function Theorem and our prior results.
Now that we know that Z(x, y, J) ⊂ P(x, y)×C∞ε (H0) is a manifold, we wish to understand its
submanifolds M(x, y, J,H). Let π : Z(x, y, J) → C∞ε (H0) be the projection map (u, h) 7→ h.
It is smooth. Setting H = H0 + h, the tangent map is

(dπ)(u,H) : T(u,H)Z(x, y, J)→ ThC
∞
ε (H0) = C∞ε (H0)

which maps (Y, η) 7→ η; (dπ)(u,H) is surjective. In fact, this tangent space T(u,H)Z(x, y, J) =
ker(dσ)(u,h) because σ−1(E)0 = Z(x, y, J). Then one can see that ker(dπ)(u,H0+h) consists of
elements (Y, 0) where (dF)uY = 0. Thus, ker(dπ)(u,H) = ker(dF)u.

Let’s write L = (dF)u. Grant, for now, that F is a Fredholm map. Then kerL =
ker(dπ)(u,H) have finite dimension. Similarly, if T : C∞ε (H0) → Lp(u∗TM) is the map sending
η 7→ ∇uη, then Im (dπ)(u,H) = T−1(Im L). This follows from the observation that since (Y, η)
satisfy LY +∇η, being in ker dσ, LY = −∇uη and so T−1(LY ) = η = dπ(Y, η). Since the cok-
ernel of L has finite dimension, so does (dπ)(u,H). Here’s a diagram that hopefully illuminates
some of this discussion.

E

M(x, y, J,H) Z(x, yJ) P(x, y × C∞ε (H0)

C∞ε (H0) Lp(u∗TM)

π

σ

T
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By the Sard-Smale theorem, since π is Fredholm, the set of regular values of π is dense in
C∞ε (H0). Then take an H ∈ Hreg. We will find that π−1(H) =M(x, y, J,H) is a submanifold
and has dimension µ(x)− µ(y). The next two theorems summarize what we just said.

Theorem 1.4 (8.1.1). Let H0 be a fixed nondegenerate Hamiltonian. There exists a neighbor-
hood of 0 ∈ C∞ε (H0) and a countable intersection of dense open subsets Hreg in this neighborhood
such that if h ∈ Hreg, then H = H0 + h is nondegenerate and the map (dF)u is surjective for
every u ∈M(x, y, J,H).

Theorem 1.5 (8.1.2). For every h ∈ Hreg and for all contractible orbits x and y of period 1 of
H0, M(x, y, J,H0 + h) is a manifold of dimension µ(x)− µ(y).

2 Linearization

Linearization of any differential equation usually amounts to finding a map L and considering
solutions to Lu = 0. In our case, we have the Floer map F ; because we want to consider
Banach spaces, we extend to the larger space W 1,p.

We’ll take L = (dF)u(Y ) = (∂̄ +S)Y where lims→±∞ S(s, t) = S±(t) uniformly in t; S± are
symmetric operators.

3 Transversality

As mentioned, the transversality condition is equivalent to showing that Γ is surjective. Thus,
let us suppose that Γ is not surjective. By linear algebra, the image of Γ is a closed subspace.
Then by the Hahn-Banach theorem, there exists a functional ϕ : Lp → R such that ϕ|Im Γ = 0.
By the Riesz Representation theorem, if q satisfies 1/p + 1/q = 1, there exists a nonzero
Z ∈ Lq(R× S1;R2n) such that ϕ(Y ) = 〈Y, Z〉 where this pairing is understood to be

〈Y, Z〉 =

∫
R×S1

〈Y (s, t), Z(s, t)〉 ds dt.

Lemma 3.1 (8.5.1). Let Z be as above. Z is in fact of class C∞ and for every h ∈ C∞ε (H0)
and for every Y ∈ W 1,p(R× S1,R2n), we have

〈Z, (dF)u(Y )〉 = 0 and 〈Z,∇uh〉 = 0.

Proof. Since Z ⊥ Im Γ, then when Y = 0, this implies 〈Z, (dF)uY +∇uh〉 = 〈Z,Π ◦∇uh〉 = 0.
Similarly, we see that 〈Z, (dF)uY 〉 = 0 when we let h be constant.

To see that Z is smooth, we consider the adjoint of L := ∂̄ + S, which is just dF : L∗ =
−∂/∂s + J0∂/∂t + tS. Then, ∀Y ∈ W 1,p, 0 = 〈LY,Z〉 = 〈Y, L∗Z〉. This means that L∗Z = 0.
Since L∗ is elliptic, Z must be of class C∞.

The next lemma tells us more about this vector field Z.

Lemma 3.2 (8.5.3). If Z ∈ Lq is of class C∞ and 〈Z,∇uh〉 = 0 for all h ∈ C∞ε (H0), then
there is a C∞ function λ : S1 → R such that Z(s, t) = λ(t)∂u

∂s
.

Proof. The start of the proof requires the notion that a solution u be “somewhere injective.”
The result we ultimately want from this “somewhere injectivity” is for the regular points of
u—call the set R(u)—to form a dense open set in R×S1. We’ll show this somewhere injective
result later. These regular points are not quite defined the usual way. A point (s0, t0) is regular
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if it is not a critical point and also satisfies u(s0, t0) 6= u(s, t0) for all s ∈ R∪ {±∞} (note that
t0 appears in both).

Granted this density result, we show that Z and ∂u/∂s are linearly dependent. If they were
independent, we may construct an h ∈ C∞ε (H0) such that 〈Z,∇uh〉 6= 0; this is a contradiction.
So then the two are linearly dependent, meaning Z(s, t) = λ(s, t)∂u

∂s
on R(u) for some λ :

R(u)→ R. But R(u) is dense so we may extend λ to R× S1.
Lastly, we show that λ is independent of s. If ∂λ/∂s 6= 0 for some (s0, t0), we can again

construct a perturbation h such that 〈Z,∇uh〉 6= 0. Thus, λ(t) is independent of s.

We continue with the proof to show Γ is surjective. If Γ is not surjective, we can produce
this Z(s, t) = λ(t)∂u

∂s
.

1. First, we show that λ(t) 6= 0 for any t. If not, we have a t0 such that λ(t0) = 0 so then
Z(s, t0) = 0 for all s. Then for all k ∈ Z≥0, ∂kZ/∂sk = 0. But 0 = L∗Z = −∂Z/∂s +
J0∂Z/∂t + tS(s, t)Z; at (s, t0), the first and last term equal zero means J0∂Z/∂t = 0
implying that ∂Z/∂t = 0. By induction, then all derivatives of Z as well as Z itself
vanish on R× {t0}. Z is a solution of a perturbed Cauchy-Riemann equation and it and
all its derivatives vanish on this line. By the Continuation Principle, in fact, Z = 0
everywhere. This is the contradiction we need.

2. We may then assume λ(t) > 0. Then, we may define a function in terms of s:

f(s) =

∫ 1

0

〈
∂u

∂s
(s, t), Z(s, t)

〉
dt =

∫ 1

0

λ(t)

∣∣∣∣∂u∂s (s, t)

∣∣∣∣2 dt > 0,∀s ∈ R.

Since ∂u/∂s→ 0 as s→ ±∞, f(s) tends to zero. If we show that f is constant, we would
get a contradiction. Thus, we aim to show f is constant.

Recall that Y = ∂u/∂s is a solution of LY = 0 by the following argument: if u is a
solution of the Floer equation, then so is its translates u · s. Hence, F(u · s) = 0 and

0 =
d

ds
F(u · s) = (dF)u

(
∂u

∂s

)
.

Also, L∗Z = 0. Thus, we get the following relations

∂Y

∂s
= −J0

∂Y

∂t
− SY and

∂Z

∂s
= J0

∂Z

∂t
+ tSZ.

The derivative of f is

d

ds

∫ 1

0

〈Y, Z〉 dt =

∫ 1

0

(〈
∂Y

∂s
, Z

〉
+

〈
Y,
∂Z

∂s

〉)
dt

=

∫ 1

0

(〈
−J0

∂Y

∂t
, Z

〉
− 〈SY, Z〉+

〈
Y, J0

∂Z

∂t

〉
+ 〈Y, tSZ〉

)
dt

= −
∫ 1

0

(〈
J0
∂Y

∂t
, Z

〉
+

〈
J0Y,

∂Z

∂t

〉)
dt

= −
∫ 1

0

∂

∂t
〈J0Y, Z〉 dt = 0.

The last line holds because 〈J0Y, Z〉 = λ(t)〈J ∂u
∂s
, ∂u
∂s
〉 = λ(t)ω(J ∂u

∂s
, J ∂u

∂s
) = 0. Thus, f is

constant and not going to 0. This is our final contradiction which allows us to conclude
that Γ must be surjective.
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Γ has a continuous right inverse from the following abstract lemma:

Lemma 3.3 (8.5.6). Let E,F , and G be Banach spaces and

L1 : E → G, L2 : F → G

be linear operators. Assume that L1 is Fredholm and that Γ : E ⊕ F → G defined by
Γ(x, y) = L1(x) + L2(y), is surjective. Then Γ admits a continuous right inverse.

Proof. Write G = Im (L1) ⊕H, where H is closed and finite-dimensional. Let E ′ be a closed
subspace of E such that E = kerL1⊕E ′. Clearly L1 : E ′ → Im L1 is bijective. Let L−1

1 denote
the composition L−1

1 : Im L1 → E ′ ⊂ E ⊂ E ⊕ F .
Let h1, ..., hr be a basis of H and x1, ..., xr ∈ E ⊕ F be such that Γ(xi) = hi. Define

ν : H → E ⊕ F by ν(hi) = xi. This is a continuous map, since its image is finite-dimensional.
Now the map

Π : Im L1 ⊕H → E ⊕ F ; (z, h) 7→ (L−1
1 (z), 0) + ν(h)

is a right inverse of Γ as Γ ◦Π = id is easy to check. Moreover, Π is continuous since it can
be written as Π = (L−1

1 ◦ prIm L1 , 0) + ν ◦ prH .

We remarked earlier that this immediately gives us that Z(x, y, J) is a Banach manifold.
Also, we had shown that π : Z(x, y, J)→ C∞ε (H0) is a Fredholm map. Then, we can apply the
Sard-Smale theorem.

Theorem 3.4 (Sard-Smale; 8.5.7). Let E and F be two separable Banach spaces, let U ⊂ E
be open and let L : U → F be a smooth Fredholm map. Then the set of regular values of L is a
countable intersection of dense open subsets.

Remark: The separability is essential. It guarantees that we can extract a countable subcover
from any open cover. This way, we can obtain a countable intersection of dense open subsets.
Baire’s Category theorem then says that the intersection is also dense because E is a complete
metric space.

To obtain Theorem 1.4, we prove a lemma which immediately implies the theorem.

Lemma 3.5 (8.5.9). The regular values of π are exactly the h ∈ C∞ε (H0) such that for every
u ∈M(x, y, J,H0 + h), the map (dF)u is surjective.

Proof. Let h be a regular value of π and u a solution for the Floer equation with H = H0 + h.
If (dF)u is not surjective, then there exists a vector field Z ∈ Lq such that ∀Y ∈ W 1,p,
〈(dF)u(Y ), Z〉 = 0.

Now, (dπ)(u,H) is surjective (H = H0 +h). By the discussion above, following after Theorem
1.3, we see that for every η ∈ C∞ε (H0), there exists a vector field Y such that LY +∇uη = 0.
This implies that 〈Z,∇uη〉 = 0. The proof of the surjectivity of Γ, in particular the part dealing
with the existence of Z, also showed that Z = 0, Thus, the only thing orthogonal to the image
of (dF)u iz zero, which means it must be surjective.

Conversely, given h, if (dF)u is surjective for every u ∈M(J,H0 + h), let’s show any given
η ∈ C∞ε (H0) is in the image of dπ. Choose Y ∈ W 1,p such that (dF)u(Y ) = −∇uη. Then, (Y, η)
is in ker dσ = T(u,H)Z(x, y, J), the domain of dπ. Our chosen pair (Y, η) satisfies dπ(Y, η) = η
and so (dπ)(u,H) is surjective, implying that h is a regular value.

With Sard-Smale, we have proven Theorem 1.4 (admitting “somewhere injective”). Let us
prove the last main Theorem 1.5.
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Proof. Let h be a regular value of F . Lemma 3.5 says that it is also a regular value of π.
Consequently, π−1(h) is a manifold and its dimension equals the Fredholm index of π which is

dim ker(dπ)(u,H) = dim ker(dF)u

= Ind(dF)u

= µ(x)− µ(y).

The elements of π−1(h) are solutions in P1,p (see p. 227 for a reminder of the definition of this
space). Elliptic regularity gives that π−1(h) ⊂ M(x, y, J,H0 + h). A proposition in the book
gives that M(x, y) ⊂ P1,p. Thus, M(x, y, J,H) ⊂ π−1(h) and so π−1(h) =M(x, y, J,H0 + h).
The tangent space T(u,h)M(x, y, J,H0 + h) = ker dπ(u,h).

4 The Solutions of the Floer Equation are “Somewhere

Injective”

We now discuss this notion of “somewhere injective” as well as the continuation principle. We
begin with a proposition which is something of a trick to turn our perturbed equation into a
Cauchy-Riemann equation.

Proposition 4.1 (8.6.1). Let u : R× S1 →M be a solution of the equation

∂u

∂s
+ J(t, u)

(
∂u

∂t
−X(t, u)

)
= 0

So X is periodic in t. There exists an almost complex structure J̃ and a diffeomorphism ϕ on
M , as well as a smooth map v : R2 →M such that

∂v

∂s
+ J̃

∂v

∂t
= 0

v(s, t+ 1) = ϕ(v(s, t))

and for (s, t) ∈ R × [0, 1). C(u) = C(v) and R(u) = R(v). So u and v have the same critical
points and also the same regular points which do not admit multiples; i.e. there is no pair of
points (s, t), (s′, t) (same t!) such that v(s, t) = v(s′, t).

Proof. M × S1 is compact so we have a family of isotopies (almost a flow) ψt of Xt defined for
all of M . Let v(s, t) = ψ−1

t (u(s, t)). Then

∂u

∂s
= (dψt)

(
∂v

∂s

)
;
∂u

∂t
= (dψt)

(
∂v

∂t

)
+Xt(u).

Consequently,

0 =
∂u

∂s
+ J

(
∂u

∂t
−Xt(u)

)
= (dψt)

(
∂v

∂s

)
+ J(u)(dψt)

(
∂v

∂t

)
= (dψt)

(
∂v

∂s
+ (dψt)

−1J(u)(dψt)

(
∂v

∂t

))
Let ψ∗t J(v) := (dψt)

−1J(u)(dψt). Then
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∂v

∂s
+ ψ∗t J(v)

∂v

∂t
= 0

Let ϕ = ψ1 and J̃ = ψ∗1J(v). The other properties are easy to verify. ϕ is a diffeomorphism so
the critical and regular values u remain unchanged. And ϕ = ψ1 is 1-periodic.

The main proposition of this section is:

Proposition 4.2 (8.6.3). Let v be a smooth solution of the Cauchy-Riemann equation with

respect to J (we’ll rename J̃ from before and just call it J) satisfying the periodicity condition
v(s, t+ 1) = ϕ(v(s, t)), and such that ∂v/∂s 6≡ 0. Then R(v) is an open dense subset of R2.

Remark: That R(v) is open is easy since being a critical value is a closed condition as is
injectivity; so R(v) is defined by open conditions. However, density is difficult. At one point
in the proof, we need the Continuation Principle for the perturbed Cauchy-Riemann equation:

∂Y

∂s
+ J0

∂Y

∂t
+ S · Y = 0.

Proposition 4.3 (Continuation Principle; 8.6.6). Let Y be a solution of the perturbed Cauchy-
Riemann equation on an open subset U ⊂ R2. Then the set C of points (s, t) ∈ U such that
Y has an infinite order at (s, t) is open and closed in U . If U is connected and Y is zero on a
nonempty open subset of U , then Y is identically zero on U .

The Continuation Principle is a consequence of the following lemma:

Lemma 4.4 (Similarity Principle; 8.6.8). Let Y : Bε → Cn be a smooth solution of the perturbed
Cauchy-Riemann equation; let p > 2. Then there is a positive δ < ε, A ∈ W 1,p(Bδ, GL(R2n)),
and holomorphic map σ : Bδ → Cn s.t. for all (s, t) ∈ Bδ, Y (s, t) = A(s, t)σ(s + it) and
J0A(s, t) = A(s, t)J0; i.e. A is C-linear.

Remark: We can actually assume Y ∈ W 1,p and S ∈ Lp(Bε, EndR(R2n)) for p > 2.
Let’s use the Similarity Principle to prove the continuation principle.

Proof. The set C of infinite order zeros of Y is closed; if (sk, tk) is a sequence of infinite order
zeros of Y converging to (s, t), since p > 2, Y is continuous and then (s, t) is an infinite order
zero of Y .

Let z0 ∈ C. By the Similarity Principle, Y (z) = A(z)σ(z) on some Bδ(z0). Every point of
Bδ(z0) is an infinite order zero of Y if and only if every point is an infinite order zero of σ. Now

sup
|z−z0|≤r

|σ(z)| = sup
|z−z0|≤r

|A−1(z)Y (z)| ≤ K sup
|z−z0|≤r

|Y (z)|.

The last inequality holds because A is continuous and invertible (again, p > 2); by the Open
Mapping Theorem, A−1 is also continuous and has operator norm K. Then

lim
r→0

sup|z−z0|≤r |σ(z)|
rk

≤ K lim
r→0

sup|z−z0|≤r |Y (z)|
rk

= 0.

The equality with 0 is just what it means for Y to have an infinite order zero at z0. So then
z0 is an infinite order zero for σ. But σ is holomorphic and thus analytic; therefore, it must be
that σ ≡ 0 on Bδ(z0). Hence, Bδ(z0) ⊂ C. So C is also open.

How do we prove the Similarity Principle? To establish that A is C-linear and σ is holo-
morphic, we need the following theorem:
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Theorem 4.5 (8.6.11). For p > 1, ∂̄ : W 1,p(S2,Cn) → Lp(
∧0,1 T ∗S2 ⊗ Cn) is a surjective

Fredholm operator.

Proof. If we grant the surjectivity of ∂̄, then it’s easy to show it is Fredholm. The index would
equal dim ker ∂̄ if it is finite. Now if ∂̄Y = 0, then

∂Y

∂s
= −J0

∂Y

∂t

which means ‖∂Y
∂s
‖ = ‖∂Y

∂t
‖. Recall that g(∂Y

∂s
, ∂Y
∂s

) = ω(∂Y
∂s
, J0

∂Y
∂s

) = ω(∂Y
∂s
, ∂Y
∂t

). Let S2 =
C ∪ {∞}; recall ω = dλ on C. Consider then∫

R2

∥∥∥∥∂Y∂s
∥∥∥∥2

ds dt =

∫
S2

Y ∗ω =

∫
∂S2

Y ∗λ = 0.

Then ∂Y
∂s

= ∂Y
∂t

= 0. So Y is constant if it is in the kernel of ∂̄. Hence ker ∂̄ = Cn and has real
dimension 2n. Hence ∂̄ is Fredholm with index 2n.

Using this, we prove parts of the Similarity Principle. Consider

D : W 1,p(S2,Cn)→ Lp((Λ0,1T ∗S2)n ⊕ Cn); Y 7→ (∂̄Y, Y (0)).

This is the sum of two operators: (∂̄, 0) and the map Y 7→ (0, Y (0)). The first is Fredholm
with index 0. The second is compact because inclusion of W 1,p into L∞ is continuous. Thus,
D is Fredholm with index zero. However, kerD = (a constant Y, Y (0) = 0); so kerD = {0}.
Having zero index means D is surjective and hence, bijective.

Let Dδ be a small perturbation of D defined by Dδ(Y ) = (∂̄Y +Sδ ·Y dZ̄, Y (0)). Sδ = S on
Bδ and rapidly decays elsewhere. Then for small enough δ, Dδ is still bijective. A Y satisfying
DδY = (0, v0) satisfies the perturbed Cauchy-Riemann equations and some initial conditions.
We then use such Y to build the columns of A. Through another lemma, A is C-linear and σ
is holomorphic.

5 The Fredholm Property

Let S±(t) = lims→±∞ S(s, t) and R±t the solution of Ṙ = J0S
±R with R±0 = id.

The goal of this section is to prove the following proposition:

Proposition 5.1 (8.7.1). If det(id−R±1 ) 6= 0, then L = ∂̄ + S(s, t) : W 1,p → Lp is Fredholm,
for all p > 1.

We give an outline of the proof:

1. We make the assumption that S(s, t) = S(t); i.e. S is independent of s. Let D = ∂̄+S(t);
we show the stronger result that D is bijective and thus, Fredholm.

a. We show this for p = 2 and take advantage of Hilbert space tools.

b. We show this for p > 2. The basic idea of showing injectivity is to obtain the
following inequality: ‖Y ‖1,p ≤ C‖DY ‖p for all Y , some constant C > 0. Then, if
Y 6= 0, ‖DY ‖ 6= 0 so DY 6= 0. For surjectivity, show the image is dense and closed.

c. We consider 1 < p < 2. The adjoint D∗ : W 1,q → Lq is defined q > 2; we apply the
techniques from (1b) to show D∗ is Fredholm, as D∗ has all the relevant properties
that D has for p > 2. If an operator is Fredholm, so is its adjoint.
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2. Since S(s, t) converges to something independent of s, then outside a compact set [−C,C]×
S1, L = D. Apply the following proposition 5.2 involving compact operators. It estab-
lishes finite dimensional kernel and closed image.

3. Using the Hahn-Banach and Riesz Representation Theorems, we can prove cokerL <∞.

The following proposition is probably the most important tool in the section:

Proposition 5.2 (8.7.4). Let E,F,G be Banach spaces with L : E → F an operator, K :
E → G a compact operator. Suppose there is a constant C > 0 s.t. ∀x ∈ E, ‖x‖E ≤
C(‖Lx‖F + ‖Kx‖G). Then dim kerL <∞ and the image of L is closed.

To show that dim coker L <∞, we identify coker L with kerL∗: since Im L ⊥ kerL∗, Lp =
kerL∗ ⊕ Im L. So then kerL∗ = W/Im L = coker L. Now, we need only show dim kerL∗ <∞
but since we have the previous proposition, once we show L∗ satisfies the hypothesis, we can
achieve this. This discussion also applies to D.

Let us omit the proof that D is continuous and bijective and just assume these results.
The inverse of D is continuous by the Open Mapping Theorem. Then, there is a B > 0 s.t.
‖Y ‖1,p = ‖D−1DY ‖1,p ≤ B‖DY ‖p.

Since S → S± as s → ±∞, there are constants M,C < 0 such that if Y (s, t) = 0 when
|s| ≤M − 1, then ‖Y ‖1,p ≤ C‖LY ‖p. This is because, outside of [−M,M ], ‖S − S±‖ is small;
one can increase M if needed. Then, outside this compact set, LY = DY .

Let β : R→ [0, 1] be a bump function which is 1 on [1−M,M − 1] and 0 on R− [−M,M ].
Write Y = βY + (1−β)Y . The derivative |β′(s)| is bounded so we’re able to show ‖L(βY )‖p ≤
‖LY ‖p +K‖Y ‖Lp[−M,M ] for some K > 0. Finally, we obtain the inequality with some C2 > 0

‖Y ‖1,p ≤ C2(‖Y ‖|Lp[−M,M ] + ‖LY ‖p).
We’re almost in position to use Prop 5.2. We just need to confirm that we have a compact

operator:

Theorem 5.3 (Rellich’s Theorem; Appendix C.4.6). Let U ⊂ Rn be an open, bounded Lipschitz
domain (the boundary is the graph of a Lipschitz function). Let p > n. Then W 1,p(U ;Rm) is a
subspace of C0(U,Rm) and the injection W 1,p ↪→ C0 is a compact operator.

Rellich’s theorem implies that the restriction operator to [−M,M ]× S1 is a compact oper-
ator. So we can apply Proposition 5.2. Thus, L has finite dimensional kernel and closed image.
The last thing to show is that the cokernel is finite dimensional. The main step is to identify
coker L = kerL∗.

Let L∗ : W 1,q → Lq be the adjoint of L (1/p + 1/q = 1) and F ⊂ Lq be the subspace
of vector fields Z orthogonal to the image of L: 〈Im L,Z〉 = 0. By elliptic regularity, since
L∗Z = 0, Z ∈ W 1,q. Thus, F ⊂ kerL∗. L∗ satisfies the same conditions as L so we can conclude
that dim kerL∗ <∞.

Now, the Hahn-Banach theorem allows us to find linear forms ϕ : Lp → R that are zero on
Im L. We want to show the space of these forms is finite-dimensional as that will show coker L
is finite-dimensional. The Riesz Representation Theorem allows us to write a linear form with
a representative U ∈ Lq, as ϕ(V ) = 〈U, V 〉. Since ϕ vanishes on Im L, then U ∈ F . But
dimF <∞ so the space of these forms is finite-dimensional and consequently, cokerL <∞.

6 Computing the Index of L

It may be more enlightening to refer to D. Salamon’s Lectures on Floer Homology and see how to
use spectral flow to compute the index. However, Audin and Damian also have a computation.
Recall that L = ∂̄ + S(s, t) where S(s, t)→ S±(t) as s→ ±∞, uniformly in t.
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To compute the index, we:

1. Replace L by L0 which has the same formula except we replace S by a matrix S̃ which
is exactly S− for some s ≤ −σ0 and exactly S+ for some s ≥ σ0. The index is invariant
under small perturbations for sufficiently large σ0. So L0 and L will have the same index.

2. Replace L0 by L1 which has the same formula except S̃ is replaced by a diagonal matrix
S(s) that is independent of t and is constant for |s| > σ0. L1 will have the same index as
L0 because of the invariance of index under homotopy. We are able to compute the index
because we can describe the kernel and cokernel of L1. Of course, there is no reason for
the dimensions to be invariant. It is the index which is invariant.

7 Exponential Decay

Recall the definition of C∞↘(x, y). It consists of maps u : R × S1 → M such that u limits to
periodic orbits x and y and there exist K, δ > 0 such that∣∣∣∣∂u∂s (s, t)

∣∣∣∣ ≤ Ke−δ|s|
∣∣∣∣∂u∂t (s, t)−Ht(u)

∣∣∣∣ ≤ Ke−δ|s|.

Proposition 7.1 (8.2.3). If x and y are contractible loops and nondegenerate critical points of
AH , then M(x, y) ⊂ C∞↘(x, y).

The proof of this proposition relies on proving:

Theorem 7.2 (8.9.1). If Y is a C2 solution of the Floer equation linearized at a finite energy
solution, then:

• Either
∫
‖Y ‖2 dt tends to +∞ when s→ ±∞

• Or Y satisfies ‖Y (s, t)‖ ≤ Ce−δ|s| for certain constants δ and C and for every t.

The idea of the proof begins by defining a C2 function f : R → R, f(s) = 1
2
‖Y ‖2

L2(S1).

We show that f ′′ ≥ δ2f for some constant δ, and then show that such functions must satisfy
an analogous exponential decay theorem as above. This will guarantee that for all s ∈ R and
fixed t, ‖Y ‖2

L2(S1) ≤ e−δ|s|. However, we are not yet there as we want to show that for all

(s, t) ∈ R× S1, ‖Y (s, t)‖ ≤ Ce−δ|s|.
We’ll need two results:

Lemma 7.3 (8.9.5). Let Y be a C2 solution of the linearized Floer equation. There exists a
constant a > 1 such that ∆‖Y ‖2 ≥ −a‖Y ‖2.

Proposition 7.4 (8.9.6). Let w : R2 → R be a positive C2 function such that ∆w ≥ −aw for
a constant a > 1. We then have

∀(s0, t0) ∈ R2, w(s0, t0) ≤ 8a

π

∫
B1(s0,t0)

w(s, t) ds dt.

Remark: This is something like a Mean Value Inequality for maps that satisfy a harmonic
relation.

When we let w = ‖Y (s, t)‖2, then the proposition says that

‖Y (s0, t0)‖2 ≤ C

∫
B1(s0,t0)

‖Y (s, t)‖2 ds dt = C‖Y ‖2
L2(B1(s0,t0))
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On the other hand, we know that

‖Y ‖2
L2(S1) =

∫ 1

0

‖Y (s, t)‖2 dt ≤ e−δ|s|

Note that for a fixed s0, the circle going through s0 is contained in B1(s0, t0) for any t0 ∈ S1.
If we consider the square Q = [s0 − 1, s0 + 1]× [t0 − 1, t0 + 1] centered at (s0, t0), we now have
an upper bound

‖Y ‖2
L2(B1(s0,t0)) ≤ ‖Y ‖2

L2(Q) =

∫ s0+1

s0−1

f(s) ds ≤
∫ s0+1

s0−1

e−δ|s| ds

Say s0 ≥ 1. Then the last integral equals

−1

δ
(e−δ(s0+1))− e−δ(s0−1)) =

(e− e−1)

δ
e−δs0 = Ce−δs0 ,

C being the constant. The other cases are similar. As we change (s0, t0), the upper bound
changes like e−δ|s|.
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