Ch. 8 Outline: Linearization and Transversality

Sam Auyeung

August 31, 2019

This is an outline of ch. 8 of Morse Theory and Floer Homology. "Proofs" are more of sketches.

Let (M, ω) be our closed symplectic manifold. We will, at many points, need to consider TM but we prefer to look locally at $(U \subset M, \omega) \cong (\mathbb{R}^{2n}, \omega_0)$. In this case, we can then take a local trivialization of the tangent bundle and consider $U \times \mathbb{R}^{2n}$ as our tangent bundle.

We begin with some brief remarks about the spaces we'll be dealing with. We need to consider the Sobolev space $W^{1,p}(\mathbb{R} \times S^1, M)$: it may be viewed as the completion of $C^{\infty}(\mathbb{R} \times S^1, M)$ under the norm $\|\cdot\|_{1,p}$. Take $Y \in W^{1,p}(\mathbb{R} \times S^1, TM)$. Then

$$\|Y\|_{1,p} := \left(\int_{\mathbb{R}\times S^1} |Y|^p + \left|\frac{\partial Y}{\partial s}\right|^p + \left|\frac{\partial Y}{\partial t}\right|^p ds \, dt\right)^{1/p} < \infty.$$

The best point of view to take here is that elements of $W^{1,p}$ are distributions so that they have derivatives in the sense of distributions. But in general, if we have $W^{k,p}(\mathbb{R}^n)$, we need $kp > n = \dim(\text{domain})$ in order for the elements to be continuous (Sobolev/Reillich Theorems). Here, the space is $\mathbb{R} \times S^1$ so n = 2. Thus, we would like p > 2. Another complication is that the variable s is varying over the noncompact space \mathbb{R} .

The second space of interest is that of $C_{\epsilon}^{\infty}(H_0)$. We fix a nondegenerate Hamiltonian H_0 ; the space $C_{\epsilon}^{\infty}(H_0)$ is all the perturbations of H_0 by some $h: M \to \mathbb{R}$ such that $H = H_0 + h$ has the same periodic orbits and is also nondegenerate. The point is that we wish to perturb the Floer equation so that $\mathcal{M}(x, y, J, H)$ is a manifold of dimension $\mu(x) - \mu(y)$. In general, a given Hamiltonian does not produce such a manifold but arbitrarily small perturbations will show the moduli space of solutions to be a manifold.

1 The Main Theorems

1.1 Spaces We'll Work With

Recall that the space $\mathcal{P}(x, y)$ is comprised of maps of the form $(s, t) \mapsto \exp_{w(s,t)} Y(s, t)$ where $Y \in W^{1,p}(w^*TM)$ and $w \in C^{\infty}_{\searrow}(x, y)$. The definition of $C^{\infty}_{\searrow}(x, y)$ is as follows: it consists of maps $u : \mathbb{R} \times S^1 \to M$ such that u limits to periodic orbits x and y and there exist $K, \delta > 0$ such that

$$\left|\frac{\partial u}{\partial s}(s,t)\right| \le K e^{-\delta|s|} \qquad \left|\frac{\partial u}{\partial t}(s,t) - H_t(u)\right| \le K e^{-\delta|s|}.$$

Consider the **fiber** bundle $\mathcal{E} \to \mathcal{P}(x, y) \times C^{\infty}_{\epsilon}(H_0)$ with the total space defined as $\mathcal{E} = \{(u, h, Y) : Y \in L^p(u^*TM)\}$. Let \mathcal{E}_0 be the zero section. Let σ be a section of this bundle which sends

$$(u,h) \mapsto \frac{\partial u}{\partial s} + J(u)\frac{\partial u}{\partial t} + \nabla_u (H_0 + h).$$

The differential is $(d\sigma)_{(u,h)}(Y,\eta) = (d\mathcal{F})_u(Y) + \nabla_u \eta$; the extra $\nabla_u \eta$ comes from the h we added to obtain $H = H_0 + h$. Note also that $\sigma^{-1}(\mathcal{E}_0) = \mathcal{Z}(x, y, J) = \{(u, H) : h \in C^{\infty}_{\epsilon}(H_0), u \in \mathcal{M}(x, y, J, H)\}$ as sets. If σ is transverse to \mathcal{E}_0 , then we would have that $\sigma^{-1}(\mathcal{E}_0) = \mathcal{Z}(x, y, J)$ is a manifold by the Implicit Function Theorem. This transversality condition is equivalent to a certain projection of $(d\sigma)_{(u,h)}$ being surjective. The projection is from $T_{\sigma(u,h)}\mathcal{E}$ onto the tangent space of the **fiber** at $\sigma(u, h) \in \mathcal{E}_0$. Call it Π .

1.2 Theorems

Theorem 1.1 (8.1.5). For every nondegenerate Hamiltonian H, every almost complex structure J compatible with ω , and every $u \in \mathcal{M}(x, y, J, H)$, $(d\mathcal{F})_u$ is a Fredholm operator of index $\mu(x) - \mu(y)$.

The first theorem says that \mathcal{F} restricted to $\mathcal{M}(x, y, J, H)$ is a Fredholm map as the differential at each point is a Fredholm operator. Note that the index is independent of u in the moduli space.

Fix ACS J. Let $\mathcal{Z}(x, y, J)$ be the space of solutions connecting x and y for all Floer maps corresponding to the different perturbations of H_0 . The next theorem states:

Theorem 1.2 (8.1.4). Let $(u, H) \in \mathcal{Z}(x, y, J)$, where $H = H_0 + h$ and \mathcal{F}^H is the corresponding Floer operator. Then

$$\Gamma: W^{1,p}(\mathbb{R} \times S^1, \mathbb{R}^{2n}) \times C^{\infty}_{\epsilon}(H_0) \to L^p(\mathbb{R} \times S^1, \mathbb{R}^{2n})$$
$$(Y, h) \mapsto (d\mathcal{F}^H)_u(Y) + \nabla_u h$$

is surjective and admits a continuous right inverse.

In this second theorem, Γ is the composition of $\Pi \circ d\sigma$. We prove this in section 3. A corollary is:

Theorem 1.3 (8.1.3). $\mathcal{Z}(x, y, J)$ is a Banach manifold.

This theorem follows immediately from the Implicit Function Theorem and our prior results. Now that we know that $\mathcal{Z}(x, y, J) \subset \mathcal{P}(x, y) \times C^{\infty}_{\epsilon}(H_0)$ is a manifold, we wish to understand its submanifolds $\mathcal{M}(x, y, J, H)$. Let $\pi : \mathcal{Z}(x, y, J) \to C^{\infty}_{\epsilon}(H_0)$ be the projection map $(u, h) \mapsto h$. It is smooth. Setting $H = H_0 + h$, the tangent map is

$$(d\pi)_{(u,H)}: T_{(u,H)}\mathcal{Z}(x,y,J) \to T_h C^{\infty}_{\epsilon}(H_0) = C^{\infty}_{\epsilon}(H_0)$$

which maps $(Y,\eta) \mapsto \eta$; $(d\pi)_{(u,H)}$ is surjective. In fact, this tangent space $T_{(u,H)}\mathcal{Z}(x,y,J) = \ker(d\sigma)_{(u,h)}$ because $\sigma^{-1}(\mathcal{E})_0 = \mathcal{Z}(x,y,J)$. Then one can see that $\ker(d\pi)_{(u,H_0+h)}$ consists of elements (Y,0) where $(d\mathcal{F})_u Y = 0$. Thus, $\ker(d\pi)_{(u,H)} = \ker(d\mathcal{F})_u$.

Let's write $L = (d\mathcal{F})_u$. Grant, for now, that \mathcal{F} is a Fredholm map. Then ker $L = \ker(d\pi)_{(u,H)}$ have finite dimension. Similarly, if $T : C^{\infty}_{\epsilon}(H_0) \to L^p(u^*TM)$ is the map sending $\eta \mapsto \nabla_u \eta$, then Im $(d\pi)_{(u,H)} = T^{-1}(\operatorname{Im} L)$. This follows from the observation that since (Y, η) satisfy $LY + \nabla \eta$, being in ker $d\sigma$, $LY = -\nabla_u \eta$ and so $T^{-1}(LY) = \eta = d\pi(Y, \eta)$. Since the cokernel of L has finite dimension, so does $(d\pi)_{(u,H)}$. Here's a diagram that hopefully illuminates some of this discussion.

$$\mathcal{M}(x, y, J, H) \longleftrightarrow \mathcal{Z}(x, yJ) \longleftrightarrow \mathcal{P}(x, y \times C^{\infty}_{\epsilon}(H_0))$$

$$\downarrow^{\pi}$$

$$C^{\infty}_{\epsilon}(H_0) \xrightarrow{T} L^{p}(u^{*}TM)$$

By the Sard-Smale theorem, since π is Fredholm, the set of regular values of π is dense in $C^{\infty}_{\epsilon}(H_0)$. Then take an $H \in \mathcal{H}_{\text{reg}}$. We will find that $\pi^{-1}(H) = \mathcal{M}(x, y, J, H)$ is a submanifold and has dimension $\mu(x) - \mu(y)$. The next two theorems summarize what we just said.

Theorem 1.4 (8.1.1). Let H_0 be a fixed nondegenerate Hamiltonian. There exists a neighborhood of $0 \in C^{\infty}_{\epsilon}(H_0)$ and a countable intersection of dense open subsets \mathcal{H}_{reg} in this neighborhood such that if $h \in \mathcal{H}_{reg}$, then $H = H_0 + h$ is nondegenerate and the map $(d\mathcal{F})_u$ is surjective for every $u \in \mathcal{M}(x, y, J, H)$.

Theorem 1.5 (8.1.2). For every $h \in \mathcal{H}_{reg}$ and for all contractible orbits x and y of period 1 of H_0 , $\mathcal{M}(x, y, J, H_0 + h)$ is a manifold of dimension $\mu(x) - \mu(y)$.

2 Linearization

Linearization of any differential equation usually amounts to finding a map L and considering solutions to Lu = 0. In our case, we have the Floer map \mathcal{F} ; because we want to consider Banach spaces, we extend to the larger space $W^{1,p}$.

We'll take $L = (d\mathcal{F})_u(Y) = (\bar{\partial} + S)Y$ where $\lim_{s \to \pm \infty} S(s, t) = S^{\pm}(t)$ uniformly in $t; S^{\pm}$ are symmetric operators.

3 Transversality

As mentioned, the transversality condition is equivalent to showing that Γ is surjective. Thus, let us suppose that Γ is not surjective. By linear algebra, the image of Γ is a closed subspace. Then by the Hahn-Banach theorem, there exists a functional $\varphi : L^p \to \mathbb{R}$ such that $\varphi|_{\text{Im }\Gamma} = 0$. By the Riesz Representation theorem, if q satisfies 1/p + 1/q = 1, there exists a nonzero $Z \in L^q(\mathbb{R} \times S^1; \mathbb{R}^{2n})$ such that $\varphi(Y) = \langle Y, Z \rangle$ where this pairing is understood to be

$$\langle Y, Z \rangle = \int_{\mathbb{R} \times S^1} \langle Y(s, t), Z(s, t) \rangle \, ds \, dt.$$

Lemma 3.1 (8.5.1). Let Z be as above. Z is in fact of class C^{∞} and for every $h \in C^{\infty}_{\epsilon}(H_0)$ and for every $Y \in W^{1,p}(\mathbb{R} \times S^1, \mathbb{R}^{2n})$, we have

$$\langle Z, (d\mathcal{F})_u(Y) \rangle = 0 \text{ and } \langle Z, \nabla_u h \rangle = 0.$$

Proof. Since $Z \perp \text{Im } \Gamma$, then when Y = 0, this implies $\langle Z, (d\mathcal{F})_u Y + \nabla_u h \rangle = \langle Z, \Pi \circ \nabla_u h \rangle = 0$. Similarly, we see that $\langle Z, (d\mathcal{F})_u Y \rangle = 0$ when we let h be constant.

To see that Z is smooth, we consider the adjoint of $L := \bar{\partial} + S$, which is just $d\mathcal{F}$: $L^* = -\partial/\partial s + J_0\partial/\partial t + {}^tS$. Then, $\forall Y \in W^{1,p}$, $0 = \langle LY, Z \rangle = \langle Y, L^*Z \rangle$. This means that $L^*Z = 0$. Since L^* is elliptic, Z must be of class C^{∞} .

The next lemma tells us more about this vector field Z.

Lemma 3.2 (8.5.3). If $Z \in L^q$ is of class C^{∞} and $\langle Z, \nabla_u h \rangle = 0$ for all $h \in C^{\infty}_{\epsilon}(H_0)$, then there is a C^{∞} function $\lambda : S^1 \to \mathbb{R}$ such that $Z(s,t) = \lambda(t) \frac{\partial u}{\partial s}$.

Proof. The start of the proof requires the notion that a solution u be "somewhere injective." The result we ultimately want from this "somewhere injectivity" is for the regular points of u—call the set R(u)—to form a dense open set in $\mathbb{R} \times S^1$. We'll show this somewhere injective result later. These regular points are not quite defined the usual way. A point (s_0, t_0) is **regular** if it is not a critical point **and** also satisfies $u(s_0, t_0) \neq u(s, t_0)$ for all $s \in \mathbb{R} \cup \{\pm \infty\}$ (note that t_0 appears in both).

Granted this density result, we show that Z and $\partial u/\partial s$ are linearly dependent. If they were independent, we may construct an $h \in C^{\infty}_{\epsilon}(H_0)$ such that $\langle Z, \nabla_u h \rangle \neq 0$; this is a contradiction. So then the two are linearly dependent, meaning $Z(s,t) = \lambda(s,t) \frac{\partial u}{\partial s}$ on R(u) for some λ : $R(u) \to \mathbb{R}$. But R(u) is dense so we may extend λ to $\mathbb{R} \times S^1$.

Lastly, we show that λ is independent of s. If $\partial \lambda / \partial s \neq 0$ for some (s_0, t_0) , we can again construct a perturbation h such that $\langle Z, \nabla_u h \rangle \neq 0$. Thus, $\lambda(t)$ is independent of s.

We continue with the proof to show Γ is surjective. If Γ is not surjective, we can produce this $Z(s,t) = \lambda(t) \frac{\partial u}{\partial s}$.

- 1. First, we show that $\lambda(t) \neq 0$ for any t. If not, we have a t_0 such that $\lambda(t_0) = 0$ so then $Z(s, t_0) = 0$ for all s. Then for all $k \in \mathbb{Z}_{\geq 0}$, $\partial^k Z / \partial s^k = 0$. But $0 = L^*Z = -\partial Z / \partial s + J_0 \partial Z / \partial t + {}^tS(s,t)Z$; at (s,t_0) , the first and last term equal zero means $J_0 \partial Z / \partial t = 0$ implying that $\partial Z / \partial t = 0$. By induction, then **all** derivatives of Z as well as Z itself vanish on $\mathbb{R} \times \{t_0\}$. Z is a solution of a perturbed Cauchy-Riemann equation and it and **all its derivatives vanish** on this line. By the Continuation Principle, in fact, Z = 0 everywhere. This is the contradiction we need.
- 2. We may then assume $\lambda(t) > 0$. Then, we may define a function in terms of s:

$$f(s) = \int_0^1 \left\langle \frac{\partial u}{\partial s}(s,t), Z(s,t) \right\rangle \, dt = \int_0^1 \lambda(t) \left| \frac{\partial u}{\partial s}(s,t) \right|^2 \, dt > 0, \forall s \in \mathbb{R}$$

Since $\partial u/\partial s \to 0$ as $s \to \pm \infty$, f(s) tends to zero. If we show that f is constant, we would get a contradiction. Thus, we aim to show f is constant.

Recall that $Y = \partial u / \partial s$ is a solution of LY = 0 by the following argument: if u is a solution of the Floer equation, then so is its translates $u \cdot s$. Hence, $\mathcal{F}(u \cdot s) = 0$ and

$$0 = \frac{d}{ds} \mathcal{F}(u \cdot s) = (d\mathcal{F})_u \left(\frac{\partial u}{\partial s}\right).$$

Also, $L^*Z = 0$. Thus, we get the following relations

$$\frac{\partial Y}{\partial s} = -J_0 \frac{\partial Y}{\partial t} - SY \text{ and } \frac{\partial Z}{\partial s} = J_0 \frac{\partial Z}{\partial t} + {}^t SZ.$$

The derivative of f is

$$\frac{d}{ds} \int_{0}^{1} \langle Y, Z \rangle \, dt = \int_{0}^{1} \left(\left\langle \frac{\partial Y}{\partial s}, Z \right\rangle + \left\langle Y, \frac{\partial Z}{\partial s} \right\rangle \right) \, dt$$
$$= \int_{0}^{1} \left(\left\langle -J_{0} \frac{\partial Y}{\partial t}, Z \right\rangle - \left\langle SY, Z \right\rangle + \left\langle Y, J_{0} \frac{\partial Z}{\partial t} \right\rangle + \left\langle Y, ^{t}SZ \right\rangle \right) \, dt$$
$$= -\int_{0}^{1} \left(\left\langle J_{0} \frac{\partial Y}{\partial t}, Z \right\rangle + \left\langle J_{0}Y, \frac{\partial Z}{\partial t} \right\rangle \right) \, dt$$
$$= -\int_{0}^{1} \frac{\partial}{\partial t} \langle J_{0}Y, Z \rangle \, dt = 0.$$

The last line holds because $\langle J_0 Y, Z \rangle = \lambda(t) \langle J \frac{\partial u}{\partial s}, \frac{\partial u}{\partial s} \rangle = \lambda(t) \omega(J \frac{\partial u}{\partial s}, J \frac{\partial u}{\partial s}) = 0$. Thus, f is constant and not going to 0. This is our final contradiction which allows us to conclude that Γ must be surjective.

 Γ has a continuous right inverse from the following abstract lemma:

Lemma 3.3 (8.5.6). Let E, F, and G be Banach spaces and

$$L_1: E \to G, \quad L_2: F \to G$$

be linear operators. Assume that L_1 is Fredholm and that $\Gamma : E \oplus F \to G$ defined by $\Gamma(x,y) = L_1(x) + L_2(y)$, is surjective. Then Γ admits a continuous right inverse.

Proof. Write $G = \text{Im}(L_1) \oplus H$, where H is closed and finite-dimensional. Let E' be a closed subspace of E such that $E = \ker L_1 \oplus E'$. Clearly $L_1 : E' \to \text{Im} L_1$ is bijective. Let L_1^{-1} denote the composition $L_1^{-1} : \text{Im} L_1 \to E' \subset E \subset E \oplus F$.

Let $h_1, ..., h_r$ be a basis of H and $x_1, ..., x_r \in E \oplus F$ be such that $\Gamma(x_i) = h_i$. Define $\nu : H \to E \oplus F$ by $\nu(h_i) = x_i$. This is a continuous map, since its image is finite-dimensional. Now the map

 $\Pi: \operatorname{Im} L_1 \oplus H \to E \oplus F; (z,h) \mapsto (L_1^{-1}(z), 0) + \nu(h)$

is a right inverse of Γ as $\Gamma \circ \Pi = id$ is easy to check. Moreover, Π is continuous since it can be written as $\Pi = (L_1^{-1} \circ pr_{\operatorname{Im} L_1}, 0) + \nu \circ pr_H$.

We remarked earlier that this immediately gives us that $\mathcal{Z}(x, y, J)$ is a Banach manifold. Also, we had shown that $\pi : \mathcal{Z}(x, y, J) \to C^{\infty}_{\epsilon}(H_0)$ is a Fredholm map. Then, we can apply the Sard-Smale theorem.

Theorem 3.4 (Sard-Smale; 8.5.7). Let E and F be two separable Banach spaces, let $U \subset E$ be open and let $L: U \to F$ be a smooth Fredholm map. Then the set of regular values of L is a countable intersection of dense open subsets.

Remark: The separability is essential. It guarantees that we can extract a countable subcover from any open cover. This way, we can obtain a countable intersection of dense open subsets. Baire's Category theorem then says that the intersection is also dense because E is a complete metric space.

To obtain Theorem 1.4, we prove a lemma which immediately implies the theorem.

Lemma 3.5 (8.5.9). The regular values of π are exactly the $h \in C^{\infty}_{\epsilon}(H_0)$ such that for every $u \in \mathcal{M}(x, y, J, H_0 + h)$, the map $(d\mathcal{F})_u$ is surjective.

Proof. Let h be a regular value of π and u a solution for the Floer equation with $H = H_0 + h$. If $(d\mathcal{F})_u$ is not surjective, then there exists a vector field $Z \in L^q$ such that $\forall Y \in W^{1,p}$, $\langle (d\mathcal{F})_u(Y), Z \rangle = 0$.

Now, $(d\pi)_{(u,H)}$ is surjective $(H = H_0 + h)$. By the discussion above, following after Theorem 1.3, we see that for every $\eta \in C^{\infty}_{\epsilon}(H_0)$, there exists a vector field Y such that $LY + \nabla_u \eta = 0$. This implies that $\langle Z, \nabla_u \eta \rangle = 0$. The proof of the surjectivity of Γ , in particular the part dealing with the existence of Z, also showed that Z = 0, Thus, the only thing orthogonal to the image of $(d\mathcal{F})_u$ iz zero, which means it must be surjective.

Conversely, given h, if $(d\mathcal{F})_u$ is surjective for every $u \in \mathcal{M}(J, H_0 + h)$, let's show any given $\eta \in C^{\infty}_{\epsilon}(H_0)$ is in the image of $d\pi$. Choose $Y \in W^{1,p}$ such that $(d\mathcal{F})_u(Y) = -\nabla_u \eta$. Then, (Y, η) is in ker $d\sigma = T_{(u,H)}\mathcal{Z}(x, y, J)$, the domain of $d\pi$. Our chosen pair (Y, η) satisfies $d\pi(Y, \eta) = \eta$ and so $(d\pi)_{(u,H)}$ is surjective, implying that h is a regular value.

With Sard-Smale, we have proven Theorem 1.4 (admitting "somewhere injective"). Let us prove the last main Theorem 1.5.

Proof. Let h be a regular value of \mathcal{F} . Lemma 3.5 says that it is also a regular value of π . Consequently, $\pi^{-1}(h)$ is a manifold and its dimension equals the Fredholm index of π which is

$$\dim \ker(d\pi)_{(u,H)} = \dim \ker(d\mathcal{F})_u$$
$$= \operatorname{Ind}(d\mathcal{F})_u$$
$$= \mu(x) - \mu(y).$$

The elements of $\pi^{-1}(h)$ are solutions in $\mathcal{P}^{1,p}$ (see p. 227 for a reminder of the definition of this space). Elliptic regularity gives that $\pi^{-1}(h) \subset \mathcal{M}(x, y, J, H_0 + h)$. A proposition in the book gives that $\mathcal{M}(x, y) \subset \mathcal{P}^{1,p}$. Thus, $\mathcal{M}(x, y, J, H) \subset \pi^{-1}(h)$ and so $\pi^{-1}(h) = \mathcal{M}(x, y, J, H_0 + h)$. The tangent space $T_{(u,h)}\mathcal{M}(x, y, J, H_0 + h) = \ker d\pi_{(u,h)}$.

4 The Solutions of the Floer Equation are "Somewhere Injective"

We now discuss this notion of "somewhere injective" as well as the continuation principle. We begin with a proposition which is something of a trick to turn our perturbed equation into a Cauchy-Riemann equation.

Proposition 4.1 (8.6.1). Let $u : \mathbb{R} \times S^1 \to M$ be a solution of the equation

$$\frac{\partial u}{\partial s} + J(t, u) \left(\frac{\partial u}{\partial t} - X(t, u)\right) = 0$$

So X is periodic in t. There exists an almost complex structure \widetilde{J} and a diffeomorphism φ on M, as well as a smooth map $v : \mathbb{R}^2 \to M$ such that

$$\frac{\partial v}{\partial s} + \tilde{J}\frac{\partial v}{\partial t} = 0$$
$$v(s, t+1) = \varphi(v(s, t))$$

and for $(s,t) \in \mathbb{R} \times [0,1)$. C(u) = C(v) and R(u) = R(v). So u and v have the same critical points and also the same regular points which do not admit multiples; i.e. there is no pair of points (s,t), (s',t) (same t!) such that v(s,t) = v(s',t).

Proof. $M \times S^1$ is compact so we have a family of isotopies (almost a flow) ψ_t of X_t defined for all of M. Let $v(s,t) = \psi_t^{-1}(u(s,t))$. Then

$$\frac{\partial u}{\partial s} = (d\psi_t) \left(\frac{\partial v}{\partial s}\right); \frac{\partial u}{\partial t} = (d\psi_t) \left(\frac{\partial v}{\partial t}\right) + X_t(u).$$

Consequently,

$$0 = \frac{\partial u}{\partial s} + J\left(\frac{\partial u}{\partial t} - X_t(u)\right)$$

= $(d\psi_t)\left(\frac{\partial v}{\partial s}\right) + J(u)(d\psi_t)\left(\frac{\partial v}{\partial t}\right)$
= $(d\psi_t)\left(\frac{\partial v}{\partial s} + (d\psi_t)^{-1}J(u)(d\psi_t)\left(\frac{\partial v}{\partial t}\right)\right)$

Let $\psi_t^* J(v) := (d\psi_t)^{-1} J(u)(d\psi_t)$. Then

$$\frac{\partial v}{\partial s} + \psi_t^* J(v) \frac{\partial v}{\partial t} = 0$$

Let $\varphi = \psi_1$ and $\tilde{J} = \psi_1^* J(v)$. The other properties are easy to verify. φ is a diffeomorphism so the critical and regular values u remain unchanged. And $\varphi = \psi_1$ is 1-periodic.

The main proposition of this section is:

Proposition 4.2 (8.6.3). Let v be a smooth solution of the Cauchy-Riemann equation with respect to J (we'll rename \tilde{J} from before and just call it J) satisfying the periodicity condition $v(s, t+1) = \varphi(v(s,t))$, and such that $\frac{\partial v}{\partial s} \neq 0$. Then R(v) is an open dense subset of \mathbb{R}^2 .

Remark: That R(v) is open is easy since being a critical value is a closed condition as is injectivity; so R(v) is defined by open conditions. However, density is difficult. At one point in the proof, we need the Continuation Principle for the perturbed Cauchy-Riemann equation:

$$\frac{\partial Y}{\partial s} + J_0 \frac{\partial Y}{\partial t} + S \cdot Y = 0.$$

Proposition 4.3 (Continuation Principle; 8.6.6). Let Y be a solution of the perturbed Cauchy-Riemann equation on an open subset $U \subset \mathbb{R}^2$. Then the set C of points $(s,t) \in U$ such that Y has an infinite order at (s,t) is open and closed in U. If U is connected and Y is zero on a nonempty open subset of U, then Y is identically zero on U.

The Continuation Principle is a consequence of the following lemma:

Lemma 4.4 (Similarity Principle; 8.6.8). Let $Y : B_{\epsilon} \to \mathbb{C}^n$ be a smooth solution of the perturbed Cauchy-Riemann equation; let p > 2. Then there is a positive $\delta < \epsilon$, $A \in W^{1,p}(B_{\delta}, GL(\mathbb{R}^{2n}))$, and holomorphic map $\sigma : B_{\delta} \to \mathbb{C}^n$ s.t. for all $(s,t) \in B_{\delta}$, $Y(s,t) = A(s,t)\sigma(s+it)$ and $J_0A(s,t) = A(s,t)J_0$; i.e. A is \mathbb{C} -linear.

Remark: We can actually assume $Y \in W^{1,p}$ and $S \in L^p(B_{\epsilon}, End_{\mathbb{R}}(\mathbb{R}^{2n}))$ for p > 2.

Let's use the Similarity Principle to prove the continuation principle.

Proof. The set C of infinite order zeros of Y is closed; if (s_k, t_k) is a sequence of infinite order zeros of Y converging to (s, t), since p > 2, Y is continuous and then (s, t) is an infinite order zero of Y.

Let $z_0 \in C$. By the Similarity Principle, $Y(z) = A(z)\sigma(z)$ on some $B_{\delta}(z_0)$. Every point of $B_{\delta}(z_0)$ is an infinite order zero of Y if and only if every point is an infinite order zero of σ . Now

$$\sup_{|z-z_0| \le r} |\sigma(z)| = \sup_{|z-z_0| \le r} |A^{-1}(z)Y(z)| \le K \sup_{|z-z_0| \le r} |Y(z)|.$$

The last inequality holds because A is continuous and invertible (again, p > 2); by the Open Mapping Theorem, A^{-1} is also continuous and has operator norm K. Then

$$\lim_{r \to 0} \frac{\sup_{|z-z_0| \le r} |\sigma(z)|}{r^k} \le K \lim_{r \to 0} \frac{\sup_{|z-z_0| \le r} |Y(z)|}{r^k} = 0$$

The equality with 0 is just what it means for Y to have an infinite order zero at z_0 . So then z_0 is an infinite order zero for σ . But σ is holomorphic and thus analytic; therefore, it must be that $\sigma \equiv 0$ on $B_{\delta}(z_0)$. Hence, $B_{\delta}(z_0) \subset C$. So C is also open.

How do we prove the Similarity Principle? To establish that A is \mathbb{C} -linear and σ is holomorphic, we need the following theorem:

Theorem 4.5 (8.6.11). For p > 1, $\overline{\partial} : W^{1,p}(S^2, \mathbb{C}^n) \to L^p(\bigwedge^{0,1} T^*S^2 \otimes \mathbb{C}^n)$ is a surjective Fredholm operator.

Proof. If we grant the surjectivity of $\bar{\partial}$, then it's easy to show it is Fredholm. The index would equal dim ker $\bar{\partial}$ if it is finite. Now if $\bar{\partial}Y = 0$, then

$$\frac{\partial Y}{\partial s} = -J_0 \frac{\partial Y}{\partial t}$$

which means $\|\frac{\partial Y}{\partial s}\| = \|\frac{\partial Y}{\partial t}\|$. Recall that $g(\frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial s}) = \omega(\frac{\partial Y}{\partial s}, J_0 \frac{\partial Y}{\partial s}) = \omega(\frac{\partial Y}{\partial s}, \frac{\partial Y}{\partial t})$. Let $S^2 = \mathbb{C} \cup \{\infty\}$; recall $\omega = d\lambda$ on \mathbb{C} . Consider then

$$\int_{\mathbb{R}^2} \left\| \frac{\partial Y}{\partial s} \right\|^2 \, ds \, dt = \int_{S^2} Y^* \omega = \int_{\partial S^2} Y^* \lambda = 0.$$

Then $\frac{\partial Y}{\partial s} = \frac{\partial Y}{\partial t} = 0$. So Y is constant if it is in the kernel of $\bar{\partial}$. Hence ker $\bar{\partial} = \mathbb{C}^n$ and has real dimension 2n. Hence $\bar{\partial}$ is Fredholm with index 2n.

Using this, we prove parts of the Similarity Principle. Consider

$$D: W^{1,p}(S^2, \mathbb{C}^n) \to L^p((\Lambda^{0,1}T^*S^2)^n \oplus \mathbb{C}^n); \qquad Y \mapsto (\bar{\partial}Y, Y(0)).$$

This is the sum of two operators: $(\bar{\partial}, 0)$ and the map $Y \mapsto (0, Y(0))$. The first is Fredholm with index 0. The second is compact because inclusion of $W^{1,p}$ into L^{∞} is continuous. Thus, D is Fredholm with index zero. However, ker D = (a constant Y, Y(0) = 0); so ker $D = \{0\}$. Having zero index means D is surjective and hence, bijective.

Let D_{δ} be a small perturbation of D defined by $D_{\delta}(Y) = (\bar{\partial}Y + S_{\delta} \cdot Y d\bar{Z}, Y(0))$. $S_{\delta} = S$ on B_{δ} and rapidly decays elsewhere. Then for small enough δ , D_{δ} is still bijective. A Y satisfying $D_{\delta}Y = (0, v_0)$ satisfies the perturbed Cauchy-Riemann equations and some initial conditions. We then use such Y to build the columns of A. Through another lemma, A is \mathbb{C} -linear and σ is holomorphic.

5 The Fredholm Property

Let $S^{\pm}(t) = \lim_{s \to \pm \infty} S(s, t)$ and R_t^{\pm} the solution of $\dot{R} = J_0 S^{\pm} R$ with $R_0^{\pm} = \text{id}$.

The goal of this section is to prove the following proposition:

Proposition 5.1 (8.7.1). If det(id $-R_1^{\pm}$) $\neq 0$, then $L = \bar{\partial} + S(s,t) : W^{1,p} \to L^p$ is Fredholm, for all p > 1.

We give an outline of the proof:

- 1. We make the assumption that S(s,t) = S(t); i.e. S is independent of s. Let $D = \partial + S(t)$; we show the stronger result that D is bijective and thus, Fredholm.
 - a. We show this for p = 2 and take advantage of Hilbert space tools.
 - b. We show this for p > 2. The basic idea of showing injectivity is to obtain the following inequality: $||Y||_{1,p} \leq C||DY||_p$ for all Y, some constant C > 0. Then, if $Y \neq 0$, $||DY|| \neq 0$ so $DY \neq 0$. For surjectivity, show the image is dense and closed.
 - c. We consider $1 . The adjoint <math>D^* : W^{1,q} \to L^q$ is defined q > 2; we apply the techniques from (1b) to show D^* is Fredholm, as D^* has all the relevant properties that D has for p > 2. If an operator is Fredholm, so is its adjoint.

- 2. Since S(s,t) converges to something independent of s, then outside a compact set $[-C, C] \times S^1$, L = D. Apply the following proposition 5.2 involving compact operators. It establishes finite dimensional kernel and closed image.
- 3. Using the Hahn-Banach and Riesz Representation Theorems, we can prove coker $L < \infty$.

The following proposition is probably the most important tool in the section:

Proposition 5.2 (8.7.4). Let E, F, G be Banach spaces with $L : E \to F$ an operator, $K : E \to G$ a compact operator. Suppose there is a constant C > 0 s.t. $\forall x \in E, ||x||_E \leq C(||Lx||_F + ||Kx||_G)$. Then dim ker $L < \infty$ and the image of L is closed.

To show that dim coker $L < \infty$, we identify coker L with ker L^* : since Im $L \perp$ ker L^* , $L^p = \ker L^* \oplus \operatorname{Im} L$. So then ker $L^* = W/\operatorname{Im} L = \operatorname{coker} L$. Now, we need only show dim ker $L^* < \infty$ but since we have the previous proposition, once we show L^* satisfies the hypothesis, we can achieve this. This discussion also applies to D.

Let us omit the proof that D is continuous and bijective and just assume these results. The inverse of D is continuous by the Open Mapping Theorem. Then, there is a B > 0 s.t. $||Y||_{1,p} = ||D^{-1}DY||_{1,p} \le B||DY||_p$.

Since $S \to S^{\pm}$ as $s \to \pm \infty$, there are constants M, C < 0 such that if Y(s,t) = 0 when $|s| \leq M - 1$, then $||Y||_{1,p} \leq C ||LY||_p$. This is because, outside of [-M, M], $||S - S^{\pm}||$ is small; one can increase M if needed. Then, outside this compact set, LY = DY.

Let $\beta : \mathbb{R} \to [0, 1]$ be a bump function which is 1 on [1 - M, M - 1] and 0 on $\mathbb{R} - [-M, M]$. Write $Y = \beta Y + (1 - \beta)Y$. The derivative $|\beta'(s)|$ is bounded so we're able to show $||L(\beta Y)||_p \le ||LY||_p + K||Y||_{L^p[-M,M]}$ for some K > 0. Finally, we obtain the inequality with some $C_2 > 0$

$$||Y||_{1,p} \le C_2(||Y|||_{L^p[-M,M]} + ||LY||_p).$$

We're almost in position to use Prop 5.2. We just need to confirm that we have a compact operator:

Theorem 5.3 (Rellich's Theorem; Appendix C.4.6). Let $U \subset \mathbb{R}^n$ be an open, bounded Lipschitz domain (the boundary is the graph of a Lipschitz function). Let p > n. Then $W^{1,p}(U; \mathbb{R}^m)$ is a subspace of $C^0(U, \mathbb{R}^m)$ and the injection $W^{1,p} \hookrightarrow C^0$ is a compact operator.

Rellich's theorem implies that the restriction operator to $[-M, M] \times S^1$ is a compact operator. So we can apply Proposition 5.2. Thus, L has finite dimensional kernel and closed image. The last thing to show is that the cokernel is finite dimensional. The main step is to identify coker $L = \ker L^*$.

Let $L^*: W^{1,q} \to L^q$ be the adjoint of L(1/p + 1/q = 1) and $F \subset L^q$ be the subspace of vector fields Z orthogonal to the image of L: $\langle \text{Im } L, Z \rangle = 0$. By elliptic regularity, since $L^*Z = 0, Z \in W^{1,q}$. Thus, $F \subset \ker L^*$. L^* satisfies the same conditions as L so we can conclude that dim ker $L^* < \infty$.

Now, the Hahn-Banach theorem allows us to find linear forms $\varphi : L^p \to \mathbb{R}$ that are zero on Im L. We want to show the space of these forms is finite-dimensional as that will show coker L is finite-dimensional. The Riesz Representation Theorem allows us to write a linear form with a representative $U \in L^q$, as $\varphi(V) = \langle U, V \rangle$. Since φ vanishes on Im L, then $U \in F$. But dim $F < \infty$ so the space of these forms is finite-dimensional and consequently, coker $L < \infty$.

6 Computing the Index of L

It may be more enlightening to refer to D. Salamon's *Lectures on Floer Homology* and see how to use spectral flow to compute the index. However, Audin and Damian also have a computation. Recall that $L = \bar{\partial} + S(s,t)$ where $S(s,t) \to S^{\pm}(t)$ as $s \to \pm \infty$, uniformly in t. To compute the index, we:

- 1. Replace L by L_0 which has the same formula except we replace S by a matrix \tilde{S} which is *exactly* S^- for some $s \leq -\sigma_0$ and *exactly* S^+ for some $s \geq \sigma_0$. The index is invariant under small perturbations for sufficiently large σ_0 . So L_0 and L will have the same index.
- 2. Replace L_0 by L_1 which has the same formula except \widetilde{S} is replaced by a *diagonal* matrix S(s) that is independent of t and is constant for $|s| > \sigma_0$. L_1 will have the same index as L_0 because of the invariance of index under homotopy. We are able to compute the index because we can describe the kernel and cokernel of L_1 . Of course, there is no reason for the dimensions to be invariant. It is the index which is invariant.

7 Exponential Decay

Recall the definition of $C^{\infty}_{\searrow}(x, y)$. It consists of maps $u : \mathbb{R} \times S^1 \to M$ such that u limits to periodic orbits x and y and there exist $K, \delta > 0$ such that

$$\left|\frac{\partial u}{\partial s}(s,t)\right| \le K e^{-\delta|s|} \qquad \left|\frac{\partial u}{\partial t}(s,t) - H_t(u)\right| \le K e^{-\delta|s|}.$$

Proposition 7.1 (8.2.3). If x and y are contractible loops and nondegenerate critical points of \mathcal{A}_H , then $\mathcal{M}(x,y) \subset C^{\infty}_{\searrow}(x,y)$.

The proof of this proposition relies on proving:

Theorem 7.2 (8.9.1). If Y is a C^2 solution of the Floer equation linearized at a finite energy solution, then:

- Either $\int ||Y||^2 dt$ tends to $+\infty$ when $s \to \pm \infty$
- Or Y satisfies $||Y(s,t)|| \leq Ce^{-\delta|s|}$ for certain constants δ and C and for every t.

The idea of the proof begins by defining a C^2 function $f : \mathbb{R} \to \mathbb{R}$, $f(s) = \frac{1}{2} \|Y\|_{L^2(S^1)}^2$. We show that $f'' \ge \delta^2 f$ for some constant δ , and then show that such functions must satisfy an analogous exponential decay theorem as above. This will guarantee that for all $s \in \mathbb{R}$ and fixed t, $\|Y\|_{L^2(S^1)}^2 \le e^{-\delta|s|}$. However, we are not yet there as we want to show that for all $(s,t) \in \mathbb{R} \times S^1$, $\|Y(s,t)\| \le Ce^{-\delta|s|}$.

We'll need two results:

Lemma 7.3 (8.9.5). Let Y be a C^2 solution of the linearized Floer equation. There exists a constant a > 1 such that $\Delta ||Y||^2 \ge -a||Y||^2$.

Proposition 7.4 (8.9.6). Let $w : \mathbb{R}^2 \to \mathbb{R}$ be a positive C^2 function such that $\Delta w \ge -aw$ for a constant a > 1. We then have

$$\forall (s_0, t_0) \in \mathbb{R}^2, \quad w(s_0, t_0) \le \frac{8a}{\pi} \int_{B_1(s_0, t_0)} w(s, t) \, ds \, dt.$$

Remark: This is something like a Mean Value Inequality for maps that satisfy a harmonic relation.

When we let $w = ||Y(s,t)||^2$, then the proposition says that

$$||Y(s_0, t_0)||^2 \le C \int_{B_1(s_0, t_0)} ||Y(s, t)||^2 \, ds \, dt = C ||Y||^2_{L^2(B_1(s_0, t_0))}$$

On the other hand, we know that

$$\|Y\|_{L^2(S^1)}^2 = \int_0^1 \|Y(s,t)\|^2 \, dt \le e^{-\delta|s|}$$

Note that for a fixed s_0 , the circle going through s_0 is contained in $B_1(s_0, t_0)$ for any $t_0 \in S^1$. If we consider the square $Q = [s_0 - 1, s_0 + 1] \times [t_0 - 1, t_0 + 1]$ centered at (s_0, t_0) , we now have an upper bound

$$\|Y\|_{L^2(B_1(s_0,t_0))}^2 \le \|Y\|_{L^2(Q)}^2 = \int_{s_0-1}^{s_0+1} f(s) \, ds \le \int_{s_0-1}^{s_0+1} e^{-\delta|s|} \, ds$$

Say $s_0 \ge 1$. Then the last integral equals

$$-\frac{1}{\delta}(e^{-\delta(s_0+1)}) - e^{-\delta(s_0-1)}) = \frac{(e-e^{-1})}{\delta}e^{-\delta s_0} = Ce^{-\delta s_0},$$

C being the constant. The other cases are similar. As we change (s_0, t_0) , the upper bound changes like $e^{-\delta|s|}$.