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We give an outline of ch. 11 of Morse Theory and Floer Homology.

1 Introduction

The main goal of this chapter is to show that the Floer homology does not depend on the choice
of regular pair (H, J) ∈ (H×J )reg. Suppose we have (Ha, Ja) and (Hb, J b) in (H×J )reg.

Since we wish to show that both of these give rise to the same Floer homology, we consider
a smooth homotopy Γ(s) between these two, such that for some R > 0, when s ≤ −R, the
homotopy is stationary at (Ha, Ja) and when s ≥ R, it is stationary at (Hb, J b). This will
produce for us, a chain morphism ΦΓ between the two Floer complexes.

The proof of invariance has two main steps:

1. We define from this homotopy Γ, a morphism of complexes ΦΓ : CF∗(H
a, Ja)→ CF∗(H

b, J b).
For a Γ which just stays on (Ha, Ja), we will show that ΦΓ is the identity.

2. Suppose we have three pairs (Ha, Ja), (Hb, J b), (Hc, J c) and homotopies Γ,Γ′,Γ′′ connect-
ing a to c, a to b and b to c, respectively, then the morphisms

ΦΓ′′ ◦ ΦΓ′
,ΦΓ : CF∗(H

a, Ja)→ CF∗(H
c, J c)

are chain homotopic and thus, induce the same morphisms on the homology level. Letting
(Ha, Ja) = (Hc, J c) and Γ = id, then ΦΓ′

and ΦΓ′′
are isomorphisms. This shows the

invariance of Floer homology.

Therefore, we may take any Hamiltonian and form a homotopy to a C2 small Hamiltonian
and the Floer homology of the two will be isomorphic. In ch. 10, we saw that a C2 small
Hamiltonian gives us Floer homology which coincides with Morse homology and of course,
Morse homology is isomorphic to singular homology.

Also, we have a lower bound on the number of periodic orbits: the sum of the dimension of
the Floer homology groups. This lower bound comes about in the same way as in the Morse
inequalities (the definition of the Floer complex is very similar to the Morse complex). From
the prior discussion, the lower bound is in fact the sum of the Betti numbers. This proves the
Arnold conjecture in our special case of symplectically aspherical manifolds.

2 The Morphism ΦΓ

Let Γ(s) = (Hs,t, Js) and consider the equation

FΓu =
∂u

∂s
+ Js(u)

∂u

∂t
+∇uHs,t = 0.
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Though H and J now depend on s, this is not really a parametrized Floer equation since s
was already a parameter. But it is a new Floer equation. When s ≤ −R, the equation is the
Floer equation with (Ha, Ja) and when s ≥ R, it is the Floer equation with (Hb, J b). We can
once again consider the energy of a solution u and consider the moduli space of finite energy
solutions MΓ.

It is our hope that such solutions connect criticals points but instead of having critical
points of only one action functional, we have two: AHa ,AHb .

Theorem 2.1 (11.1.1, paraphrased). For every u ∈MΓ, there exists a critical point x of AHa

and a critical point y of AHb such that lims→−∞ u(s, ·) = x(·) and lims→+∞ u(s, ·) = y(·).

We also have the strong result that there is a constant C > 0 such that for any u ∈ MΓ,
E(u) < C. This is enough to give us compactness:

Theorem 2.2 (11.1.4). MΓ is compact in the C∞loc topology.

Moreover, it turns out that all the solutions in MΓ connect critical points of AHa to AHb .
There are no trajectories from critical points of AHa to other critical points of AHa as a result
of the new Floer equation moving from a to b. The same holds for Hb.

Also, we can look for perturbations h : R×S1×W → R to apply to our homotopy Γ = (H, J)
so that we obtain transversality and find that MΓ is a smooth manifold. It turns out, this
can be generically done when h is regular. Then, given any pair of critical points x and y of
AHa and AHb respectively, the dimension ofMΓ(x, y) is computed by considering the Fredholm
index of dF where F is the Floer map for the new Floer equation. The index is µ(x) − µ(y).
This is a nice result as, remember, x and y are critical points for different action functionals.

However, we do not quotient by R because a solution to FΓ, when translated, may no
longer be a solution. If we take a sequence un ∈ MΓ and translate by a sequence sn → +∞,
then we could make it so that un converges to something in Mb which is then not an element
of MΓ. This does not contradict the compactness of MΓ because here, we’re trying to do
something extra: translate the sequence.

The definition of ΦΓ : CF∗(H
a, Ja)→ CF∗(H

b, J b) is as follows: map x ∈ Critk(AHa) to

Φγ(x) =
∑

y∈Critk(A
Hb

)

nΓ(x, y)y.

To prove that this is a chain morphism, we need to prove:

1. nΓ(x, y) which is the number of trajectories connecting x and y (same index but for
different action functionals) taken mod 2, is finite. This requires compactness ofMΓ(x, y)
and some regularity.

2. We need to show that ∂b ◦ΦΓ = ΦΓ ◦ ∂a. Since everything is taken mod 2, we can instead
show that ∂b ◦ ΦΓ + ΦΓ ◦ ∂a = 0; we need the sum of these to be even.

See the picture which illustrates what is going on.
In the picture, the horizontal trajectories between x and y and y′ and z are counted by

ΦΓ while the vertical ones are counted by ∂. We also see trajectories converging to broken
trajectories. This is, of course, an artifact of how we’re presenting the geometry; there’s no
mathematical notion of a “horizontal trajectory” other than one that connects critical points
of the same index on the a and b side.

For (2), as stated above, this amounts to showing that∑
nb(x, y′)nΓ(y′z) +

∑
nΓ(x, y)na(y, z) = 0 (mod 2) (2.1)
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Geometry Behind the Chain Complex Algebra

.
We have two terms here. What does it mean geometrically? The fact that there are two terms
suggests that the trajectories break in only two ways: either to the upper right or lower left in
the picture. A priori, this is not clear; potentially, it seems there are many more ways to break
with critical points of higher or lower index.

However, the geometry prevents such behavior in the form of the following compactness
theorem:

Theorem 2.3 (11.1.10, paraphrased). Let (un) ∈ MΓ(x, y) be a sequence. There exists a
subsequence, still denoted un and

• Critical points x = x0, x1, ..., xk of AHa;

• Critical points y0, y1, ..., y` = y of AHb;

• Real sequences sin for 0 ≤ i ≤ k − 1 that tend to −∞ and tjn for 0 ≤ j ≤ `− 1 that tend
to +∞;

• Elements ui ∈Ma(xi, xi+1) and vj ∈Mb(yj, yj+1) for the i and j as above;

• An element w ∈MΓ(xk, y0);

such that for the i’s and j’s,

lim
n→+∞

un · sin = ui, lim
n→+∞

un · tjn = vj

and limn→+∞ un = w.

This theorem tells us how trajectories from x to y can break. Moreover, this theorem and
also transversality give us a corollary: If we have a broken trajectory where it breaks k
times on the Ha side and ` times on the Hb side, there is an extremely useful inequality:
µ(x) − µ(y) ≥ k + `. We have this because by transversality, all other breaks will come from
moduli spaces of negative formal dimension which are empty.

So in the case that µ(x) = µ(y), there is no breaking. In the case that µ(x) = µ(z) + 1,
there are only two ways to break: k = 1, ` = 0 or k = 0, ` = 1. Compare this to when we’re
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looking at only one (H, J); then µ(x)−µ(y) > # number of breaks; note the strict inequality.
For MΓ, we have ≥ because we have one extra dimension of room from lack of quotienting by
R.

Before we continue to prove (2), let us state how we can prove (1), now that we have this
inequality. We need to show that MΓ(x, y) is compact. Let un be a sequence in here. The
inequality we just saw shows that when µ(x) = µ(y), there are no breaks in the trajectories.
So x = xk and y = y0 as in Theorem 11.1.10. But the theorem also tells us that un → w ∈
MΓ(x, y), hence we have sequential compactness.

Lastly, since dimMΓ(x, y) = 0, this shows that we only have a finite number of trajectories
to count and hence, ΦΓ is well-defined.

Returning our attention back to proving (2), in order to verify equation 2.1, it suffices to
verify that the number of points of the compact manifold of dimension 0

ΠΓ(x, z) =
⋃

y′∈CritAHa
µ(x)−µ(y′)=1

La(x, y′)×MΓ(y′, z) ∪
⋃

y∈CritA
Hb

µ(x)=µ(y′)

MΓ(x, y)× Lb(y, z)

is even. This is a consequence of the following theorem:

Theorem 2.4. For x ∈ CritAHa and z ∈ CritAHb with µ(x)− µ(z) = 1, the space MΓ(x, z)∪
ΠΓ(x, z) is a compact manifold of dimension 1 with boundary, and its boundary is ΠΓ(x, z).

By theorem 11.1.6, we know that MΓ(x, z) is a 1-manifold without boundary. Using con-
vergence toward broken trajectories, we can define a topology on MΓ(x, z) ∪ ΠΓ(x, z) that is
compatible with MΓ(x, z) (see the picture above). This topology is Hausdorff and compact.
But we need to show that it is indeed a manifold with boundary. Thus, we need a gluing
theorem.

3 Gluing

Previously, we had a gluing theorem to show that the moduli space for the standard Floer
equation is a manifold with boundary of some dimension. Prior to gluing, we were able to
establish that the moduli space is compact and away from the boundary, is a manifold. The
difficulty was in knowing how to “glue” the boundary onto this moduli space.

The current situation is much the same but we’re considering the modified Floer equation
which involves both (Ha, Ja) and (Hb, J b). Here is the theorem:

Theorem 3.1 (11.1.16, Gluing). Let x be a critical point of AHa and let y, z be critical points
of AHb such that µ(x) = µ(y) = µ(z) + 1. Let u ∈MΓ(x, y) and let v̂ ∈ L(Hb,Jb)(y, z). Then:

• There exists an embedding ψ : [ρ0,+∞) → MΓ(x, z) (for some ρ0 > 0) such that
limρ→+∞ ψρ = (u, v̂).

• Moreover, if `n is a sequence of elements of MΓ(x, z) that tends to (u, v̂), then `n ∈ Imψ
for n sufficiently large.

The steps to proving this theorem are quite similar to the previous gluing theorem:

1. Define a pregluing wρ for u ∈MΓ(x, y) and v ∈Mb(y, z) (not v̂). It uses bump functions
and exponential maps to make it so that wρ = u for s ≤ −1 and wρ = v for s ≥ 1.

2. Consider an operator

FΓ
ρ =

∂

∂s
+ Js+ρ

∂

∂t
+∇Hs+ρ,t.

Then, FΓ
ρ (wρ)(s, t) = 0 for |s| ≥ 1.
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3. Define a nonlinear operator F Γ
ρ : B(0, r) ⊂ W 1,p(R × S1,R2n) → Lp(R × S1,R2n) by

considering unitary trivializations (the r here is some small positive constant dependent
on the exponential maps injective radius and some other quantity). If ξ =

∑
yiZρ

i ,
then F Γ

ρ (y1, ..., y2n) = FΓ
ρ (expwρ ξ). Observe that F Γ

ρ (0) = 0 for |s| ≥ 1 (hence the
nonlinearity).

4. Let Wρ = {0#ρβ : β ∈ ker(dF v)0}. Since we have an approximate solution for a zero of
F Γ
ρ , we may apply the Newton-Picard method to F Γ

ρ to obtain the following result: there
exists a ρ0 > 0 such that for all ρ ≥ ρ0, there exists a γ(ρ) ∈ W⊥

ρ with Fρ(γ(ρ)) = 0
(everywhere). γ is unique in B(0, ε) ∩W⊥

ρ and has properties we need in order to define
our gluing embedding ψ.

5. Define ϕρ = expwρ γ(ρ) and ψρ(s, t) = ϕρ(s− ρ, t). This ψ has all the properties claimed
in the theorem.

All this work finally gives us a moduli space which is a 1-manifold with boundary. The
chain map ΦΓ is well-defined and indeed a chain morphism. That is, the number of elements
of MΓ(x, y) is finite so that nΓ(x, y) gives a mod 2 count of the trajectories.

4 Invariance with respect to Γ

Our work so far has been to show that the Floer homology is independent of choice of regular
time-dependent Hamiltonian and almost complex structure. To show this, we chose a regular
homotopy Γ connecting (Ha, Ja) and (Hb, J b). However, what if this depends on our choice of
Γ? We need to show that the choice of Γ does not matter and thus, we take a homotopy of
homotopies. Let’s say we have homotopies Γ0,Γ1. We want to show they induce morphisms
ΦΓ0 and ΦΓ1 which coincide on the homology level. This amounts to showing that there exists
a map S : CF∗+1(Ha, Ja) → CF∗(H

b, J b) which satisfies ΦΓ0 − ΦΓ1 = S ◦ ∂a + ∂b ◦ S. Taken
mod 2, we can rewrite this as ΦΓ0 + ΦΓ1 + S ◦ ∂a + ∂b ◦ S = 0.

Let us define a homotopy (of homotopies) between Γ0 and Γ1 by Λ = (Γλ)λ∈[0,1]. We’ll define
a ΦΛ which will be our map S. We have the following situation with chain complexes:

. . . CFk+1(Ha, Ja) CFk(H
a, Ja) CFk−1(Ha, Ja) . . .

. . . CFk+1(Hb, J b) CFk(H
b, J b) CFk−1(Hb, J b) . . .

∂a ∂a

ΦΓ0 ,ΦΓ1

∂a

ΦΓ0 ,ΦΓ1
S

∂a

ΦΓ0 ,ΦΓ1
S

∂b ∂b ∂b ∂b

To reiterate, hidden in here is the fact that we’re using a Λ which is parametrized by λ, unlike
our previous situation where Γ was a fixed homotopy. To show invariance in this setting, we
need to show that

∑
nb(x, y′)nΛ(y′z) +

∑
nΛ(x, y)na(y, z) +

∑
nΓ0(x, z) +

∑
nΓ1(x, z) = 0 (mod 2).

These four terms correspond to the equation ∂b ◦ ΦΓ + ΦΓ ◦ ∂a + ΦΓ0 + ΦΓ1 = 0
An Important Interjection: Consider the following equations regarding chain complexes that
we’ve seen:

• ∂2 = 0

• ∂b ◦ ΦΓ + ΦΓ ◦ ∂a = 0
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• ∂b ◦ ΦΛ + ΦΛ ◦ ∂a + ΦΓ0 + ΦΓ1 = 0

To prove each of them, we need to count broken trajectories. Thus, the geometry really is
giving rise to the algebra.

Now, one may expect that having a homotopy of homotopies will give rise to a family of
moduli spaces MΓ(λ) → [0, 1] which forms a cobordism between MΓ0 and MΓ1 . This is a
good thought and is “almost” true. cf. Seiberg-Witten theory and wall-crossing. However, the
homotopy of homotopies might not pass through only regular homotopies. Thus, as we move
along [0, 1], we get additional types of boundary. However, as we’ll see below, the four terms
always give an even integer.

Another concern is that one might wish to ask if the choice of homotopy of homotopies matters.
But the goal is just to show that ΦΓ0 and ΦΓ1 induce the same morphisms on homology; it
doesn’t matter if the choice of homotopy of homotopies makes a difference on the chain level.

Now, back to showing invariance: we want to define ΦΓ where Γ is a homotopy of homotopies
and satisfies

∂b ◦ ΦΛ + ΦΛ ◦ ∂a + ΦΓ0 + ΦΓ1 = 0. (4.1)

Let us consider the family of Floer equations parametrized by λ; this time, λ is a brand
new parameter so this is a true family of equations, unlike last time when we just introduced
s into H and J :

∂u

∂s
+ Jλs (u)

∂u

∂t
+∇uH

λ
s,t = 0.

Fix a λ ∈ [0, 1] and letMΓλ be solutions of the parametrized Floer equation with finite energy.
Let x be a critical point of AHa and y a critical point of AHa . Then MΓλ(x, y) will be defined
as expected and MΛ(x, y) = {(λ, u) : u ∈ MΓλ(x, y)}. We also have a similar inequality as
before. If k is the number of breaking points in a trajectory on the a side and ` is the number
of breaking points on the b side, then µ(x)− µ(y) + 1 ≥ k + `.

Let x be a critical point of AHa of index i. For the sake of consistency with the book, let
us define S := ΦΛ by Si(x) =

∑
mΛ(x, y)y where these y range over all critical points y of AHb

with µ(y) = i+1. Of course, the dimension ofMΛ(x, y) is µ(x)−µ(y) +1 = i− (i+1) +1 = 0.
Then mΛ(x, y) is the number of points of MΛ(x, y) taken mod 2.

Now, let x, y′ ∈ Crit(AHa) and z, y ∈ Crit(AHb). x and z will be fixed critical points but y
and y′ may vary. We’ll have µ(x) = µ(z) = µ(y′) + 1 = µ(y)− 1. Define

ΠΛ(x, z) =

(⋃
y′

La(x, y′)×MΛ(y′, z)

)
∪

(⋃
y

MΛ(x, y)× Lb(y, z)

)
.

This is what we might naturally expect to be the boundary of MΛ(x, z) (which is an open
1-manifold because µ(x) = µ(z)); however, this is not true unless our homotopy always passes
through regular homotopies. To show that S := ΦΛ satisfies equation 4.1, we need to show,
essentially, thatMΛ(x, z)∪ΠΛ(x, z) is a 1-manifold with boundary. The terms ∂b◦ΦΓ+ΦΓ◦∂a in
equation 4.1 come from ΠΛ(x, z) while the other two terms come fromMΛ(x, z). The pictures
below suggest that ΠΛ(x, z) always comes with an even number of points. This is a misleading
feature of the pictures. In general, it is arbitrary how the points pair up and add to zero.

Of course, to show that MΛ(x, z) ∪ ΠΛ(x, z) is a 1-manifold with boundary is a gluing
problem. The techniques are similar as before, such as using Newton-Picard. But we now must
account for the parametrizations. Here is a picture which shows how the trajectories can break;
but the picture is drawn in a way to resemble what we’re seeing on the chain level.
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The geometry of broken trajectories reflects the algebra on the chain level

Note: in the case that Γ(λ) is a regular homotopy for each λ ∈ [0, 1], then in fact, ΠΛ(x, z) is
empty. In this case, MΛ(x, z) is a cobordism between MΓ0(x, z) and MΓ1(x, z). Here is a
figure from Audin and Damian.

When each Γλ is a regular homotopy, we have a cobordism (the picture uses Γ instead of Λ)

However, if there are some Γ(λ) which are not regular homotopies for λ ∈ (0, 1), then we get
something almost like a cobordism but will have some points coming from ΠΛ(x, z) which is
nonempty. This is expected because we’re looking at a family of Floer equations parametrized
by λ; we might run into non-regular pairs (H, J) because our generic condition only guarantees
that the non-regular pairs live in some codim 1 space; a path might cross the codim 1 wall (cf.
Seiberg-Witten theory). Here is a figure:

7



When some Γλ is not regular, ΠΓ(x, z) is nonempty (the picture uses Γ instead of Λ)

Let us suppose that this gluing can be done and that we’ve established equation 4.1. Thus, we
only have two steps left.

Let Γ′ = (H ′, J ′) link (Ha, Ja) to (Hb, J b) and Γ′′ = (H ′′, J ′′) link (Hb, J b) to (Hc, J c). We
may concatenate Γ′ and Γ′′ to form Γρ = (Hρ, Jρ). Here,

Hρ(s, t, ρ) =

{
H ′(s+ ρ, t, ρ), s ≤ 0

H ′′(s− ρ, t, ρ), s ≥ 0

Jρ(s, ρ) =

{
J ′(s+ ρ, ρ), s ≤ 0

J ′′(s− ρ, ρ), s ≥ 0.

Lemma 4.1. Γρ might not be regular but by perturbing Γ′ and Γ′′. After doing so, Γρ is regular
for large ρ.

Proposition 4.2. There exists ρ > 0 such that Γρ is regular and the morphism of complexes
ΦΓ′ ◦ ΦΓ′′

= ΦΓρ. Thus, they coincide on the homology level.

Let us summarize our results (the last one needs a bit of proof):

• On homology, ΦΓ induces a morphism independent of the homotopy Γ between (Ha, Ja)
and (Hb, J b).

• If Γ′ and Γ′′ are as above, linking regular pairs, then there exists Γ, linking (Ha, Ja) and
(Hc, J c), such that ΦΓ′ ◦ ΦΓ′′

= ΦΓρ on homology.

• When (Ha, Ja) = (Hc, J c) and Γ = id, then Φid = id. Proof: The Floer equation here is
just the regular one as Γ is stationary. There is only one trajectory from a critical point
x to x, namely x itself is a trajectory (it satisfies the Floer equation and has finite energy
equal to 0). Thus, Φid(x) = x.

With these results, ΦΓ′ ◦ΦΓ′′
= id on homology and so Floer homology is invariant under choice

of regular pairs (H, J). This proves Arnold’s conjecture in our symplectically aspherical case
because we can choose an autonomous C2 small Hamiltonian H.
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