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We give an outline of ch. 10 of Morse Theory and Floer Homology. The goal of chapter 10
is to show that in the case of a nondegenerate autonomous Hamiltonian which is sufficiently
small in the C2 topology, if we can define a Morse and Floer complex, the two coincide.
Before we consider the case of time-dependent Hamiltonians, we discuss autonomous, C2 small
Hamiltonians.

0 Proof of Arnold’s Conjecture for autonomous C2 small

Hamiltonians

The following if a proposition from ch. 5. It says that if a critical point of an autonomous
Hamiltonian H is nondegenerate in the Floer theory sense, it is also nondegenerate in the Morse
theory sense.

Proposition 0.1 (5.4.5). If a critical point of H is nondegenerate as a periodic solution of the
Hamiltonian system, then it is nondegenerate as a critical point of the function H.

Proof. Let x be a critical point of H. First, we show that (d2H)x(Y, Z) = ωx([XH , Z], Y ). To
do this, extend the vector Y at x to a Hamiltonian vector field Xf in a neighborhood. Then in
this neighborhood at x (we’ll drop the x eventually),

ωx([XH , Z], Y ) = ωx([XH , Z], Xf )

= dfx([XH , Z])

= [XH , Z] · f
= XH · (Z · f)− Z · (XH · f)

In the second term, we have XH · f = df(XH) = ω(XH , Xf ) = −ω(Xf , XH) = −dH(Xf ) =
−Xf · H. Also, the first term is 0 since x is a critical point: XH(x) = 0 since ωx(XH , Y ) =
−dHx(Y ) = 0,∀Y . As ω is nondegenerate, XH(x) = 0. Thus, the last line gives us that
ωx([XH , Z], Y ) = Z · (Xf ·H) = Z · dHx(Xf ) = (d2H)x(Xf (x), Z) = (d2H)x(Y, Z). This proves
the first step.

Next, since we’re supposing x to be nondegenerate as a periodic orbit, (dψ1)x does not have
eigenvalue 1. Thus, for all Z 6= 0, (dψ1)x(Z)−Z 6= 0. However, ψ0 = id so (dψ0)x(Z)−Z = 0.
This means, that (dψt)x(Z)− Z must go from 0 to something nonzero as t changes; i.e. there
is a t ∈ (0, 1) such that d

dt
(dψt)x(Z) 6= 0. But

d

dt
(dψt)x(Z) = lim

h→0

(dψt+h)x(Z)− (dψt)x(Z)

h
= (dψt)x lim

h→0

(dψh)x(Z)− Z
h

.
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The last limit is the Lie derivative of Z with respect to XH (the ψt is the flow of XH). But
LXH

Z = [XH , Z]. So there is a t such that (dψt)x([XH , Z]) 6= 0 which means [XH , Z] 6= 0.
Lastly, for any fixed Z and every Y , (d2H)x(Y, Z) = ωx([XH , Z], Y ). The nondegeneracy of
the RHS assures the nondegeneracy of the LHS. So x is nondegenerate in the Morse theory
sense.

The following two propositions are from ch. 6. They show, in two steps, that periodic orbits
for autonomous C2 small Hamiltonians are constant. If we further assume H is nondegenerate,
then these critical points coincide with the Morse critical points; i.e. Crit(AH) = Crit(H).
Thus, H is a Morse function.

Proposition 0.2 (6.1.5). Let H be a function on R2n so that XH is a vector field on R2n. If
‖dXH‖L2 < 2π, then the only solutions of period 1 of the Hamiltonian system associated with
H are the constant solutions (critical points of H).

Proof. Consider a solution x of period 1 and take its Fourier expansion (it’s a vector in Cn) as
well as those of its derivatives ẋ, ẍ:

x(t) =
∑
n

cn(x)e2πint; ẋ(t) =
∑
n

2niπcn(x)e2πint; ẍ(t) = −
∑
n

4π2n2cn(x)e2πint

Since cn(ẋ) = 2πincn(x) and c0(ẋ) = 0, Parseval’s Identity gives us

‖ẍ‖2L2 = 4π2
∑

n2|cn(ẋ)|2 ≥ 4π2
∑
|cn(ẋ)|2 = 4π2‖ẋ‖2L2 .

Therefore, 2π‖ẋ‖L2 ≤ ‖ẍ‖L2 . Since ẍ = (dXH)x · ẋ, the condition ‖dXH‖ < 2π gives that
‖ẍ‖2 ≤ ‖dXH‖2‖ẋ‖2 < 2π‖ẋ‖2 if ẋ 6= 0. So then combining these, ‖ẋ‖2 < ‖ẋ‖2 which is
impossible so it must be that ẋ = 0 and x is constant.

Observe that if H is time dependent, then ẍ = (dXH)x · ẋ + extra terms depending on d
dt
Ht.

Unless we have some conditions on the bounds of these derivatives, the proof can’t follow
through.

However, Floer homology is an invariant that doesn’t depend on the type of Hamiltonian. We
may homotope any arbitrary Hamiltonian to one that is both autonomous and C2 small.

Proposition 0.3 (6.1.6). Let (M,ω) be a compact symplectic manifold and let H : M → R be
a function. If H is sufficiently C2 small, then the only solutions of period 1 of the Hamiltonian
system are the constant solutions.

Proof. If we look at a Hamiltonian vector field XH on a disk D2n ∈ R2n, then ∀x ∈ D, ∀t ∈ [0, 1],
‖ϕt(x)− x‖ ≤ supy∈D ‖XH(y)‖.

The way to prove this claim is by the following: let us fix an x ∈ D and consider f(t) :=
‖ϕt(x)− x‖. Note that f(0) = 0. By the Mean Value Theorem, there is an s such that

|f(t)− f(0)|
|t− 0|

=
f(t)

t
= f ′(s).

Let’s compute f ′(s). In terms of its component functions,

f(t) =

√√√√ 2n∑
i

(ϕit(x)− x)2
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so then by Chain Rule,

d

dt
f(t)

∣∣∣∣
t=s

=
1

2‖ · ‖

2n∑
2(ϕis(x)− x) · ϕ̇is(x).

Applying the Cauchy-Schwarz inequality, we have that the derivative above has norm less than

‖ · ‖
‖ · ‖

√
2n∑

(ϕ̇is)
2 = ‖XH‖ = sup

y∈D
‖XH(y)‖.

Putting this all together and the fact that t ≤ 1, we have

f(t) ≤ t sup
y∈D
‖XH(y)‖ =⇒ ‖ϕt(x)− x‖ ≤ sup

y∈D
‖XH(y)‖.

In particular, if we consider a Hamiltonian orbit, because the above holds for t ∈ [0, 1], the
orbit cannot be very large; it’s bounded by supy∈D ‖XH(y)‖. Also, M is compact so we can
cover M by a finite number of relatively compact Darboux charts.

Thus, if H : M → R is sufficiently C2 small, then this places a bound on ‖dXH‖ which
places a bound on ‖XH‖. We can make ‖dXH‖ small enough (in particular, smaller than
2π) that the period 1 orbits are forced into a Darboux chart and we can apply the previous
proposition to show that the orbits must in fact be constants.

1 The Theorems and an Outline

Let J be an almost complex structure on symplectic manifold (W,ω) and CF∗(H, J) denote
the Floer complex associated to a Hamiltonian H and J . Let CM∗(H, J) denote the Morse
complex associated to the Morse function H and the vector field ∇H with respect to the metric
defined by ω and J .

Theorem 1.1 (Main Theorem). [10.1.1] There exists a nondegenerate, sufficiently small (in
the C2 sense) Hamiltonian H for which CF∗(H, J) = CM∗+n(H, J).

This theorem is saying that the complexes coincide and that there is an H such that both
the complexes are well-defined. Note that the Maslov index can be negative and for C2 small
Hamiltonians, the indices fall inside [−n, n] where dimM = 2n. Thus, the shift in indices
between the two complexes is no issue. Also, to reiterate section 0, when H is C2 small, its
periodic trajectories are constants; hence Crit(AH) = Crit(H) (prop. 6.1.5). On the other
hand, prop. 5.4.5 shows that if a critical point of H is nondegenerate as a periodic trajectory,
it is nondegenerate as a critical point. This implies that H is a Morse function.

If x is a critical point of H, then HessxH has no eigenvalues in 2πZ. Then prop 7.2.1 allows
us to compare the Morse and Maslov indices of x as a critical point and x viewed as a constant
periodic orbit: IndH(x) = µ(x) + n.

To define the differential of the Morse complex, we need a Smale pseudo-gradient field X
adapted to the Morse function H. But we also want a relationship between the trajectories of
X and solutions of the Floer equation; i.e. we want a relationship between solutions to

du

ds
+X(u) = 0 and

∂u

∂s
+ J(u)

∂u

∂t
+∇H(u) = 0.

It’s natural to let X = ∇H; then the PDE’s are closely related. Since H is small, we’ll show
that a solution u has ∂u/∂t = 0. Here are some theorems we’ll prove along the way:
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Theorem 1.2 (10.1.2). Let H be a Morse function on symplectic manifold (W,ω). There is
a dense subset, call it Jreg(H), consisting of almost complex structures J calibrated by ω such
that the pair (H,−JXH) is Morse-Smale.

To prove this theorem, we take two steps. First, look at a general Morse function f with
adapted vector field X. We linearize the equation du/ds + X(u) = 0 of the flow of −X along
a solution u. We obtain from this, an operator Lu and we’re looking at the equation LuY = 0.
We then prove the following result:

Theorem 1.3 (10.1.3). When f is Morse and u is a trajectory connecting critical points x and
y, Lu is Fredholm with index equal to Ind(x)− Ind(y) (we’re taking Morse index).

Corollary 1.4. For nondegenerate autonomous H and trajectories u of −JXH , the Fredholm
operators (dF)u and Lu have the same index.

The proof is simply using that Ind(x) − Ind(y) = µ(x) + n − µ(y) − n. We also show the
following:

Theorem 1.5 (10.1.5). X is Smale if and only if the operators Lu are surjective.

The second step is to prove a transversality result similar to in ch. 8. Next, we prove a
proposition:

Proposition 1.6 (10.1.7). If H is sufficiently small, then ker(dF)u = kerLu.

Since the time independent solutions to the Floer equation are precisely the trajectories of
JXH , this proposition tells us that the elements in the kernel of (dF)u are independent of t.
Then, since JXH is Smale by the regularity thm 10.1.2, Lu is surjective. Lu and (dF)u have the
same kernel and index. Thus, (dF)u must be surjective as well. Moreover, if we let Hk = H/k,
then we get a result:

Proposition 1.7 (10.1.9). If k is sufficiently large, the solutions of the Floer equation for Hk

connecting critical points x and y with IndHk
(x)− IndHk

(y) ≤ 2 are all independent of t.

The conclusion is thus: Let Hk be our Hamiltonian of interest for large enough k and let
J ∈ Jreg. When Ind(x) − Ind(y) ≤ 2, trajectories of the Floer equation associated with
(Hk, J) that connect critical points x and y are exactly the trajectories of the Smale vector
field X = −JXH . The Floer operator linearized along these trajectories is surjective. Such
a regularity condition implies that M(x, y, J,Hk) is a manifold. We can therefore, define the
Floer complex. From our discussions, the Morse and Floer complexes do indeed coincide.

2 Linearization of the Flow of a Pseudo-Gradient Field

Let V be a smooth manifold with Morse function f ; embed V into some (Rm, g) with a metric.
Consider the space M = {u : R → V : du/ds + ∇f = 0,

∫
R |du/ds|

2 < ∞}. These are
trajectories with finite energy. When V is compact, all trajectories have finite energy. This can
be seen in the following way: define energy by

E(u) = −
∫ ∞
−∞

u∗df = −
∫ ∞
−∞

df(du/ds) = −
∫ ∞
−∞

df(−∇f) = +

∫ ∞
−∞
‖∇f‖2 =

∫ ∞
−∞
|du/ds|2.

On a compact manifold V , the finite energy trajectories must connect critical points; if they
don’t, the trajectory just keeps going and thus, can’t have finite energy. Similarly, even on a
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non-compact manifold V , the trajectories with finite energy must connect critical points of f .
Now, d

ds
f(u(s)) = df ◦ du/ds = u∗df . Thus, if lims→−∞ u(s) = a and lims→+∞ u(s) = b, then

E(u) = −
∫ ∞
−∞

u∗df = −
∫ ∞
−∞

d

ds
f(u(s)) ds = f(a)− f(b) <∞.

Claim: M is compact when V is compact.

Proof. This is proven by Arzelà-Ascoli. In general, on a compact space, if we have a sequence
of functions, then if they are equicontinuous and uniformly bounded, there exists a subsequence
which converges. However, if we’re looking at differentiable functions, if the derivatives of the
functions are uniformly bounded, then they converge. Well, the derivative of a solution u is
du/dt = −∇f and so they are all bounded by ‖∇f‖. Thus, by Arzelà-Ascoli,M is compact.

2.1 Linearization of the Equation

The upshot is that when we use an embedding into some large Rn and properly chosen trivial-
izations, we obtain an operator

Lu : W 1,2(R,Rn)→ L2(R,Rn), Y 7→ dY

ds
+ A(s)Y.

This A is some operator and lims→−∞A(s) = Hessx(f) and lims→+∞A(s) = Hessy(f); these
are symmetric matrices. Notice the 2; since the dimension of the domain is 1, W 1,2 ⊂ C0.

2.2 The Exponential Decay of the Solutions

If our trivialization is given as (Zi), then we may write a W 1,2 section Y =
∑
yiZi. Then,

at ±∞, we have that A is converging to the Hessians which are nondegenerate and we may
assume to be diagonal under our trivializations. Say, when s → −∞, A(s) = diag(λi) and
when s→ +∞, A(s) = diag(µi). We’ll just assume s→ −∞ as the +∞ case is similar. Then

dY

ds
= −AY =⇒ dyi

ds
= −λiyi =⇒ yi(s) = yi(0)e−λis.

For Y to be W 1,2, it decays exponentially at ±∞. In more detail,

‖Y ‖21,2 =

∫ ∞
−∞
|Y |2 + |dY/ds|2 ds

Therefore, as s → −∞, we need the integrand to go to zero. This means that the λi < 0. It
appears that this is a contradiction because as s → −∞, A approaches Hessxf , which may
have positive eigenvalues. However, we must remember that we linearized along a solution u
and we can only go backwards, along u, towards x in the unstable manifold W u(x). Hence, A
converges towards diag(λi) and will always be in the negative eigenspace of Hessxf .

2.3 The Fredholm Property

We wish to show that Lu is Fredholm. The proof is quite similar to the Floer theory case (see
chapter 8). In particular, we make use of prop. 8.7.4 which deals with an operator and compact
operator together giving some bound. If the hypothesis holds, we automatically find that Lu
has finite kernel and closed image. To obtain the compact operator, we split the domain into
two pieces: [−T, T ] and R− [−T, T ]. In this way, we’re able to apply the proposition. To show
that the cokernel is finite dimensional, we consider L∗u and show its kernel is finite dimensional.
A lot of this theory only depends on W 1,2 and thus, L2, a self-dual Hilbert space.
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2.4 Index of Lu

Let dimM = 2n. The authors prove that for an autonomous C2 small Hamiltonian H, the
Maslov index and Morse index of a critical point x of H have the following relation: IndH(x) =
µ(x)+n. Then, they show that Lu has index Ind(x)−Ind(y) = µ(x)+n−(µ(y)+n) = µ(x)−µ(y)
which is the index of (dF)u. This is done by considering the dimensions of stable and unstable
manifolds. Thus, Thm 10.1.3 and its corollary are proved. Thm 10.1.5 is also proved in the
course of the computation of the index.

3 Regularity: Perturbations of the Almost Complex Struc-

ture

The goal of this section is to prove theorem 10.1.2 (see the introduction above). We be-
gin by considering a fixed Morse function H and consider two of its critical points x, y. Let
Z(x, y,H) = {(u, J)} where J is an ω-compatible ACS and u is a trajectory of −JXH con-
necting x, y. Now, if we consider the space of ω-compatible ACS Jc(ω), it can be given smooth
structure since Jc(ω) is a subspace of smooth sections for the bundle End(TW ). Then, the
tangent space at J is

TJJc(ω) = {S ∈ End(TW ) : JS + SJ = 0, ω(Sx, y) + ω(x, Sy) = 0}.

Just to justify this, note that if we have a path J(t) ∈ Jc(ω) (and call J := J(0)), then
J(t)2 = − id. Differentiating both sides, we get J ′(t)J(t) + J(t)J ′(t) = 0. Letting t = 0 and
calling S = J ′(0), we have SJ+JS = 0. As for the second equation, the compatibility condition
gives us a family of Riemannian metrics gt(x, y) = ω(x, J(t)y). They are symmetric so we have
that 0 = gt(x, y) − gt(y, x) = ω(x, J(t)y) − ω(y, J(t)x). Differentiating and letting t = 0, we
have ω(x, Sy) + ω(Sx, y) = 0.

Now, fix such an S and let Jt = J exp(−tJS). With some linear algebra, we can prove that
Jt ∈ Jc(ω) for small t.

Recall that C∞ε is a space of perturbations of some object and has a specially defined
norm. In ch. 8, we perturbed the Hamiltonians. Here, we’ll perturb an ACS. Let J0(δ) =
{J0 exp(−J0S) : S ∈ C∞ε (J0), ‖S‖ε < δ}. Now let Z0(x, y) be a subset of Z(x, y,H) consisting
of pairs (u, J) where J ∈ J0(δ).

Proposition 3.1 (10.3.3). Z0(x, y) is a Banach manifold.

Once this is established, we conclude the proof of theorem 10.1.2 by considering the pro-
jection π : Z0(x, y) → J0(δ), (u, J) 7→ J . π is Fredholm and the Sard-Smale theorem gives us
a countable intersection of dense open sets in J0(δ), consisting of regular values. Call this set
of regular values Jreg(x, y). Note that this is dependent on the critical points x, y. However,
we can apply Sard-Smale to all pairs of critical points and thus, take an intersection of all the
Jreg(x, y) to obtain a dense set of regular values. We state this result as an important lemma:

Lemma 3.2 (10.3.6). If J ∈ Jreg(x, y), then for every trajectory u of the vector field −JXH

connecting x and y, the linearized operator Lu is surjective.

4 Morse and Floer Trajectories Coincide

The goal of this section is to prove prop. 10.1.7. Let’s first focus on trajectories that do not
depend on t. Then it is clear that kerLu ⊂ ker(dF)u. To get the opposite inclusion, suppose
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Y ∈ ker(dF)u and Y is independent of t. Then∫ 1

0

J
∂Y

∂t
dt = 0 =⇒ Ŷ (s) :=

∫ 1

0

Y (s, t) dt ∈ kerLu.

To show the last claim that Ŷ ∈ kerLu, just consider how

LuŶ =
dŶ

ds
+ A(s)Ŷ =

∫ 1

0

∂Y

∂s
dt+ A(s)Ŷ .

Since Y is a solution of the linearized Floer equation, this means ∂Y
∂s

= −J ∂Y
∂t
− A(s)Y . Sub-

stituting, we find

LuŶ = −
∫ 1

0

J
∂Y

∂t
dt−

∫ 1

0

A(s)Y dt+ A(s)

∫ 1

0

Y dt = 0.

This last equality holds because Y is independent of t and so is A(s); i.e. we can move

A(s) inside the integral. Through a lemma, we can show that in fact, Y − Ŷ = 0 and so

Y = Ŷ ∈ kerLu. Thus, kerLu = ker(dF)u for trajectories that are independent of t.
Next, we show that all trajectories for autonomous C2 small Hamiltonians are independent

of t. We only really need to show this for the cases when the index of critical points differ by 1
or 2 (all we need to define the chain complexes). In showing this, we will have shown that the
Floer and Morse trajectories coincide for such Hamiltonians.

When the indices differ by 1, take Hk := H/k, k ∈ Z+. Suppose in each case, we have
a trajectory uk dependent on t. We can then produce a v which is the limit for a translated
sequence of the uk. Showing v is independent of t would give us a contradiction. v has the
property of being periodic in t with period 1/k for all k. This forces v to be independent of t,
giving us the proper contradiction.

In the case of indices differing by 2, we use some gluing techniques to show that the Floer
gluing and Morse gluing coincide eventually by the uniqueness of gluing. This concludes the
proof to show that Morse and Floer trajectories coincide in this autonomous C2 small Hamil-
tonian case. Therefore, the main theorem 10.1.1. is proved.
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