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The goal of this note is to classify all finite fields. For each prime p and n ∈ Z+, there
exists a unique field up to isomorphism with pn elements. These are in fact, all of them. So for
example, there is no field with 10 elements. We’ll also talk about the Galois group of GF (pn)
over Fp and other extensions.

1 The Characteristic of a Finite Field is Prime

Suppose that we have a field F . If it has characteristic zero, then there is a field embedding
Q → F and so F cannot be finite. Thus, let F be a finite field. It must have positive
characteristic, say k. Consider the set S = {0, 1, 1 + 1, ..., 1 + 1 + ... + 1} where the last sum
is 1 added to itself k − 1 times. It’s clear that S is closed under addition as a sum of 1’s with
another sum of 1’s is still a sum of 1’s. The cyclic nature here ensures we stay in S. It is also
closed under multiplication. If we have (1 + ...+ 1)(1 + ...+ 1) where the first sum consists of
a copies of 1 and the second has b copies, then the product is ab copies of 1. Thus, S is in fact
a subring isomorphic to Zk. But F has no zero divisors so in fact, we need p := k to be prime.

2 Some Basic Definitions and Lemmas

Recall that a splitting field E of a polynomial f(x) ∈ F [x] is the minimal field in which f(x)
splits into linear terms. That is, there are no proper subfields in which f splits. Splitting fields
must contain the base field and it’s an interesting question to ask what are the automorphisms
on E that fix the base field F . We give some useful theorems and lemmas but we don’t always
give proofs.

Theorem 2.1. The splitting field of a polynomial f(x) ∈ F [x] exists and is unique up to
isomorphism.

Lemma 2.2. A polynomial f(x) ∈ F [x] has multiplicity of zeros in its splitting field E if and
only if f(x) and f ′(x), its formal derivative, share common factors of positive degree.

Example 2.3. A trivial example is that of p(x) = (x + 1)2 over Q; p′(x) = 2(x + 1) and so
they share a common factor.

Lemma 2.4. In a field F of characteristic p, if x, y ∈ F , then (x+ y)p = xp + yp.

Proof. Using the binomial theorem, we can expand to get

(x+ y)p = xp +

(
p

1

)
xp−1y + ...+

(
p

p− 1

)
xyp−1 + yp.
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We just need to show that
(
p
k

)
for 1 < k < p is divisible by p. Then the characteristic of F

being p ensures those terms vanish. Now,(
p

k

)
=

p!

k!(p− k)!
=⇒ p! = k!(p− k)!

(
p

k

)
.

Clearly, p divides the LHS and p does not divide k! and does not divide (p − k)!. But one of
the defining properties of a prime is that if p|ab, then p|a or p|b. The contrapositive tells us
that p cannot divide the product k!(p− k)!. Thus, p divides

(
p
k

)
.

3 Classification of Finite Fields

We first show that for every prime p and n ∈ Z+, we have a unique field of order pn (up to
isomorphism). Then we show that there can be no other orders for finite fields.

Let us fix p and n and let f(x) = xp
n − x over Fp. This polynomial is clearly reducible.

We’ll let E be the splitting field of f over Fp. Thus, it contains all the roots of f . We first
show that the roots of f are all distinct and hence, there are pn distinct roots of f .

This is simply an application of the multiplicity lemma above. f ′(x) = pnxp
n−1− 1 = −1 as

pn vanishes. Thus, f ′(x) has zero degree and thus, there can’t be multiplicity of roots. Thus,
E has at least pn elements.

Now consider K ⊂ E be the set containing all the roots of f . We will show that K is in
fact closed under +,−,×,÷ and also contains 0 and 1. Hence, it is a subfield. So suppose
α, β ∈ K.

1. +: We have that f(α+β) = (α+β)p
n−(α+β). By the lemma above, (α+β)p

n
= αpn+βpn .

Thus, f(α + β) = f(α) + f(β) = 0.

2. −: We need only show that f(−α) = 0. If p is an odd prime, then (−1)p
n

= −1 and so
f(−α) = −f(α). If p = 2, then −1 = +1 and so the result also holds.

3. ×: Consider f(αβ) = αpnβpn − αβ (by commutativity). Since f(α) = 0, this means
αpn = α. Thus, f(αβ) = αf(β) = 0.

4. ÷: We only need to check

f(1/α) =
1

αpn
− 1

α
.

Multiplying on both sides by αpn+1, we get αpn+1f(1/α) = α − αpn = −f(α) = 0. Since
there are no zero divisors in a field and αpn+1 is not zero, then f(1/α) = 0.

Lastly, it is clear that f(0) = f(1) = 0. Thus, K is a subfield but also contains all the roots
of f . So in fact, E = K because K is the splitting field and it is unique up to isomorphism.

Next, we show that there can be no fields of any other type of order. Recall that there is
a classification theorem for finitely generated abelian groups. In particular, if G is finite and
abelian, then

G ∼= Zp
a1
1
⊕ Zp

a2
2
⊕ ...⊕ Zp

ak
k

where pi are primes, not necessarily distinct. It is a finite field of characteristic p is, under
addition, a finite abelian group. It’s clear that it should be isomorphic to some number of
copies of Zp because any other combination will give elements with additive order other than
p. Thus, we’ve given a full classification of finite fields.
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Thus, the way to construct a field of order pn is to take a properly chosen irreducible part
of f(x), call it p(x), and consider Fp[x]/〈p(x)〉. One may wonder whether it depends on the
choice of irreducible part. We address this below.

In honor of Galois, the finite field of order pn is often denoted by GF (pn). We also denote
this by Fpn .

4 Roots of f (x)

We see that f(x) = xp
n − x = x(x − 1)(xp

n−2 + xp
n−3 + ... + x + 1). The last part may be

further reducible. Thus, we should choose a irreducible piece p(x) which does not split over Fp

and form a quotient of the polynomial ring in this fashion.
Above, we showed that roots form a field themselves. Of course, if k ∈ Fp, then kp−1 = 1

by Lagrange’s theorem. Thus, kp = k. And thus, kp
n

= k. We’ve shown that elements of the
base field are roots of f(x). In fact, we have the following result: Let α be any root of f(x).
Then for any k ∈ Fp, kα is also a root because f(kα) = kf(α).

However, we’ll like to see that the group of units F×pn is cyclic (and hence Zpn−1).

Proof. Let G = F×pn ; it is finite and abelian and so we can apply the structure theorem for finite
abelian groups. We use the other version:

G ∼= Zn1 ⊕ Zn2 ⊕ ...⊕ Znk

where each ni+1 divides ni. Let a = (a1, ..., ak) be an element. Then an1 = (n1a1, ..., n1ak) = 0;
here 0 is the additive identity of the direct sum of cyclic groups but it corresponds to the
element 1 ∈ G. Thus, the polynomial xn−1 − 1 has pn − 1 roots in Fpn . The number of zeros
cannot exceed the degree of the polynomial so pn − 1 ≤ n1. On the other hand, G has a
subgroup isomorphic to Zn1 . Thus n1 ≤ pn − 1 and so they equal. Thus, F×pn ∼= Zpn−1.

Thus, we see that we can find some root which generates all the other roots. Say we have such
a generating root α. We also have that [Fpn : Fp] = n and so α is algebraic over Fp of degree
n because Fp(α) ∼= Fpn . This means, the minimal polynomial of α is degree n. We just need
to look for an irreducible piece p(x) of f(x) of degree n. Such a polynomial p(x) might not be
unique as seen in the following example.

Example 4.1. We consider p = 3, n = 2. Then, because we’re taking mod 3,

f(x) = x9 − x = x(x− 1)(x+ 1)(x2 + 1)(x2 + x+ 2)(x2 + 2x+ 2).

The quadratic formula shows us that the six roots we get from the irreducible pieces are
±
√
−1, 2(±1±

√
−1). Adjoining

√
−1 is enough to generate all the other roots with addition

and multiplication. However, if we wish to generate all the roots multiplicatively, we can’t
choose ±

√
−1 as it will generate only 4 things. However, adjoining any of the other 4 will

give us roots that multiplicatively, generate all the nonzero roots (and we expect this because
the Euler-Totient φ(32 − 1) = φ(8) = 4). So we could adjoin, say 2 + 2

√
−1 which should

have multiplicative order 8. This example shows that though
√
−1 has a minimal polynomial

of degree 2, adjoining it may not give us all the roots through multiplicative generation,
though certainly it will generate everything if we allow for all four operations. Also, note that
since 2 ≡ −1 (mod 3),

√
−1 =

√
2.
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5 Subfields of Finite Fields

The subfields of Fpn are quite easy to consider. They are precisely the Fpm where m divides n.

Example 5.1. Consider F224 . The divisors of 24 are 1, 2, 3, 4, 6, 8, and 12. So we have the
following subfield chains: F2 ⊂ F4 ⊂ F16 ⊂ F512 ⊂ F224 and also F2 ⊂ F8 ⊂ F64 ⊂ F212 ⊂ F224 .
Note that F4 is not contained in F8.

6 More Examples

Example 6.1. Consider the polynomial p(x) = (x2−2)(x2−3) over F5. Note that the elements
of F5 square to 0,1, or 4. Thus, nothing squares to 2 or 3. What is the splitting field of this
quartic?

We see that if we adjoin
√

2 and
√

3, p(x) splits. But also, 2
√

2 squares to 8 ≡ 3 (mod 5).
Thus, the splitting field is F5(

√
2) ∼= F25.

7 The Fröbenius Automorphism and Galois Group

Let G be the Galois group of Fpn over Fp. Let ϕ : Fpn → Fpn be the automorphism sending
x 7→ xp. This clearly permutes the roots because, from above, we say that if β is a root, then
so is βp. Moreover, ϕ fixes the base field Fp.

This field automorphism ϕ is quite important and is called the Fröbenius automorphism.
It is quite easy to show that ϕn = id. Moreover, suppose α generates F×pn . We can completely
define element of the Galois group (an automorphism) by determining where α is sent. It’s
clear that since the base field is fixed, α can only be sent to powers of α of the form pk. This
means that in fact, the Fröbenius automorphism generates our Galois group G and proves that
G ∼= Zn.

With some standard Galois theory, we can now also see what the Galois group of Fpn over
Fpm is when m divides n. They are subgroups of Zn and should be Zn/m.

8 Algebraic Closure of Fp
The algebraic closure of any field is simply the union of all the finite extensions. For any two
elements a ∈ Fpn , b ∈ Fpm , their product ab ∈ Fpnm . Thus, letting Fp denote the algebraic
closure of Fp,

Fp =
⋃
n

Fpn .

It may be interesting to apply the Fröbenius automorphism ϕ to Fp. Since the algebraic closure
is this union, then we see that applying ϕ will move the elements of Fpn only within itself. In
other words, if α ∈ Fpn , its orbit is contained in Fpn . However, ϕ does not have finite order
now because every n ∈ Z+ is represented.

The Galois group Gal(Fp/Fp) is something called the profinite completion of the integers
(inverse limit):

Ẑ = lim
←

Zn.

We take this limit of the Zn as those are the Galois groups of the finite extensions over Fp.

Thus, an interesting fact is that Gal(Fp/Fp) = Ẑ does not depend on p. The Galois group is
the same for every p.
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