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1 Differential Geometry

Example 1.1. Consider R? and the Laplacian A = 83—;2 + g—;. If f(z,y) = sin(t(z + y)), then
Af = —2t*f. Thus, the spectrum of A (eigenvalues) includes at least (—oo, 0].

However, consider a smooth, compact, connected Riemannian manifold (M, g), the Lapla-
cian defined as A = dd* 4+ d*d where d* is the formal adjoint of d. It is defined for differential
forms and in particular, smooth functions. But for a function, d*f = 0. Thus, Af = d*df.
It turns out that the spectrum is non-negative, discrete, and diverge to infinity (so there are
infinitely many). This last fact was proved by Hermann Weyl.

Example 1.2. This is the basic example of a closed but not exact form on R".

1 ;
w= @le(*dl')

where * is the Hodge-* operator. E.g. *dxy = —da' A da® A dx* A ... A da™.
It’s not hard to compute that dw = 0. Alternatively, if we let f(z1,...,z,) = 3(2f +... +22),
then X := Vf is the radially outward pointing vector field and w = Lx(ﬁd‘/ol). Thus,

dw = dbx(ﬁdVol) = £X(ﬁdV01) because d(dVol) = 0. I don’t know how to see from this that
the Lie derivative is zero.
To see that it is not exact, suppose that w = dn and let

= sz(*dx’)
Note that 1 is defined on all of R™ and that |gn—1 = w|gn—1. Also, dip = ndVol so then

nVol(B”):/ d@bz/ Y = w:/ da:/ n =0.
n Sn—1 Sn—1 Sn—1 osn—1

This is a contradiction. Observe that we used Stokes’ Theorem twice.

2 Riemannian Geometry

Example 2.1. [Cartan-Hadamard] Let (M, g) be a Riemannian manifold and u,v be two
linearly independent tangent vectors at the same point. The sectional curvature is defined as:

") — (R(u,v)v,u)
KU = o — (o

Here R is the Riemann curvature tensor.



The theorem asserts that the universal covering space of a connected complete Riemannian
manifold (M, g) of non-positive sectional curvature is diffeomorphic to R™. In fact, for complete
manifolds on non-positive curvature the exponential map based at any point of the manifold is
a covering map.

Example 2.2. [Bonnet-Myers| If Ricci curvature of an n-dimensional complete Riemannian
manifold (M, g) is bounded below by (n — 1)k > 0, then its diameter is at most 7/vk. In
particular, this shows that any such M is necessarily compact.

Example 2.3. [Gauss-Bonnet-Chern] Consider a closed, orientable 2n-dimensional Riemannian
manifold (M, g). Let Q be the curvature form of the Levi-Civita connection of g and Pf(€2),
the Pfaffian of €.

If we have a skew-symmetric matrix A, its determinant can always be written as the square
of an integer polynomial in the matrix entries; the polynomial only depends on the size of the
matrix. Then, the Pfaffian is defined as pf(A)? = det A; if Aisa (2n+ 1) x (2n + 1) matrixs,
the Pfaffian is zero. This is why we take even dimensions.

We can obviously define the Pfaffian for a 2-form as well since it is skew-symmetric. Now
let x(M) be the Euler characteristic and define the Euler class by e(2) = Pf(Q2)/(27)". The
theorem states that:

xn) = [ e,

Observe that in the case of odd-dimensional manifolds, the Euler characteristic is 0 which
agrees with the Pfaffian being zero.
Note that this is a generalization of the usual Gauss-Bonnet theorem for surfaces:

2—2g= KdA
Eg

where K is the Gaussian curvature defined as K = kiko, where these are the principal
curvatures.

3 Seiberg-Witten Theory

Example 3.1. Question: Consider the smooth manifold M = #,CP"#,CP". CP" is CP"
with reverse orientation. When does it admit a symplectic structure? When does it admit an
almost complex structure? When does it admit an integrable almost complex structure?

First, for a general smooth 4-manifolds M we can consider the intersection form on H?*(M;Z).
We may diagonalize them rationally at least and obtain a signature. Let b5 denote the number
of positive diagonal entries. It is a fact in Seiberg-Witten theory that if X = M# N, and both M
and N have by > 1, then SW(X) = 0. Also, b3 is additive; meaning, b3 (X) = by (M) + b5 (N).
Lastly, by (CP?) = 1 as H*(CP™,Z) = Z; in Dobeault cohomology, it is generated by the
Fubini-Study form w. Let us now turn to our case here.

For [ = 1, these are blowups of the projective plane, which are all Kahler and hence
symplectic. For [ > 1, these do not have symplectic structures. For if [ is even, then they
don’t even have almost complex structures (I don’t understand the reasons behind this), but
symplectic manifolds certainly are all almost complex. If [ > 1 is odd, then their Seiberg-Witten
invariants would vanish, since your manifolds decompose as a connected sum into pieces with
positive b5. For example, if | = 3,k = 0, then X = CP?#CP?*#CP? has by = 3 and
SW(X)=0.



But a famous theorem of Taubes says that symplectic 4-manifolds have non-vanishing
Seiberg-Witten invariants. Finally, if [ = 0, then b = 0, so your manifold cannot be sym-
plectic, since the cohomology class of the symplectic form has positive square.



