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1 Differential Geometry

Example 1.1. Consider R2 and the Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2
. If f(x, y) = sin(t(x + y)), then

∆f = −2t2f . Thus, the spectrum of ∆ (eigenvalues) includes at least (−∞, 0].
However, consider a smooth, compact, connected Riemannian manifold (M, g), the Lapla-

cian defined as ∆ = dd∗ + d∗d where d∗ is the formal adjoint of d. It is defined for differential
forms and in particular, smooth functions. But for a function, d∗f = 0. Thus, ∆f = d∗df .
It turns out that the spectrum is non-negative, discrete, and diverge to infinity (so there are
infinitely many). This last fact was proved by Hermann Weyl.

Example 1.2. This is the basic example of a closed but not exact form on Rn.

ω =
1

|~x|

n∑
i

xi(∗dxi)

where ∗ is the Hodge-* operator. E.g. ∗dx2 = −dx1 ∧ dx3 ∧ dx4 ∧ ... ∧ dxn.
It’s not hard to compute that dω = 0. Alternatively, if we let f(x1, ..., xn) = 1

2
(x2

1 + ...+x2
n),

then X := ∇f is the radially outward pointing vector field and ω = ιX( 1
|x|dV ol). Thus,

dω = dιX( 1
|x|dV ol) = LX( 1

|x|dV ol) because d(dV ol) = 0. I don’t know how to see from this that
the Lie derivative is zero.

To see that it is not exact, suppose that ω = dη and let

ψ =
n∑
i

xi(∗dxi).

Note that ψ is defined on all of Rn and that ψ|Sn−1 = ω|Sn−1 . Also, dψ = n dV ol so then

nV ol(Bn) =

∫
Bn

dψ =

∫
Sn−1

ψ =

∫
Sn−1

ω =

∫
Sn−1

dα =

∫
∂Sn−1

η = 0.

This is a contradiction. Observe that we used Stokes’ Theorem twice.

2 Riemannian Geometry

Example 2.1. [Cartan–Hadamard] Let (M, g) be a Riemannian manifold and u, v be two
linearly independent tangent vectors at the same point. The sectional curvature is defined as:

K(u, v) =
〈R(u, v)v, u〉
|u|2|v|2 − 〈u, v〉2

Here R is the Riemann curvature tensor.
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The theorem asserts that the universal covering space of a connected complete Riemannian
manifold (M, g) of non-positive sectional curvature is diffeomorphic to Rn. In fact, for complete
manifolds on non-positive curvature the exponential map based at any point of the manifold is
a covering map.

Example 2.2. [Bonnet-Myers] If Ricci curvature of an n-dimensional complete Riemannian
manifold (M, g) is bounded below by (n − 1)k > 0, then its diameter is at most π/

√
k. In

particular, this shows that any such M is necessarily compact.

Example 2.3. [Gauss-Bonnet-Chern] Consider a closed, orientable 2n-dimensional Riemannian
manifold (M, g). Let Ω be the curvature form of the Levi-Civita connection of g and Pf(Ω),
the Pfaffian of Ω.

If we have a skew-symmetric matrix A, its determinant can always be written as the square
of an integer polynomial in the matrix entries; the polynomial only depends on the size of the
matrix. Then, the Pfaffian is defined as pf(A)2 = detA; if A is a (2n + 1)× (2n + 1) matrixs,
the Pfaffian is zero. This is why we take even dimensions.

We can obviously define the Pfaffian for a 2-form as well since it is skew-symmetric. Now
let χ(M) be the Euler characteristic and define the Euler class by e(Ω) = Pf(Ω)/(2π)n. The
theorem states that:

χ(M) =

∫
M

e(Ω).

Observe that in the case of odd-dimensional manifolds, the Euler characteristic is 0 which
agrees with the Pfaffian being zero.

Note that this is a generalization of the usual Gauss-Bonnet theorem for surfaces:

2− 2g =

∫
Σg

KdA

where K is the Gaussian curvature defined as K = κ1κ2, where these are the principal
curvatures.

3 Seiberg-Witten Theory

Example 3.1. Question: Consider the smooth manifold M = #lCP n#kCP
n
. CP n

is CP n

with reverse orientation. When does it admit a symplectic structure? When does it admit an
almost complex structure? When does it admit an integrable almost complex structure?

First, for a general smooth 4-manifoldsM we can consider the intersection form onH2(M ;Z).
We may diagonalize them rationally at least and obtain a signature. Let b+

2 denote the number
of positive diagonal entries. It is a fact in Seiberg-Witten theory that ifX = M#N , and bothM
and N have b+

2 ≥ 1, then SW (X) = 0. Also, b+
2 is additive; meaning, b+

2 (X) = b+
2 (M)+ b+

2 (N).
Lastly, b+

2 (CP 2) = 1 as H2(CP n;Z) = Z; in Dobeault cohomology, it is generated by the
Fubini-Study form ω. Let us now turn to our case here.

For l = 1, these are blowups of the projective plane, which are all Kähler and hence
symplectic. For l > 1, these do not have symplectic structures. For if l is even, then they
don’t even have almost complex structures (I don’t understand the reasons behind this), but
symplectic manifolds certainly are all almost complex. If l > 1 is odd, then their Seiberg-Witten
invariants would vanish, since your manifolds decompose as a connected sum into pieces with
positive b+

2 . For example, if l = 3, k = 0, then X = CP 2#CP 2#CP 2 has b+
2 = 3 and

SW (X) = 0.
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But a famous theorem of Taubes says that symplectic 4-manifolds have non-vanishing
Seiberg-Witten invariants. Finally, if l = 0, then b+

2 = 0, so your manifold cannot be sym-
plectic, since the cohomology class of the symplectic form has positive square.
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