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1 Complex Analysis

Example 1.1. Two Heuristic “Proofs” of the Fundamental Theorem of Algebra: Let p(z) be
a polynomial of degree n > 0; we can even assume it is a monomial. We also know that the
number of zeros is at most n. We show that there are exactly n.

1. Proof 1: Recall that polynomials are entire functions and that Liouville’s Theorem says
that a bounded entire function is in fact constant. Suppose that p has no roots. Then 1/p
is an entire function and it is bounded. Thus, it is constant which means p is a constant
polynomial and has degree 0. This contradicts the fact that p has positive degree. Thus,
p must have a root α1. We can then factor out (z − α1) from p(z) = (z − α1)q(z) where
q(z) is an (n − 1)-degree polynomial. We may repeat the above process until we have a
full factorization of p.

2. Proof 2: On the real line, an algorithm for finding a root of a continuous function is
to look for when the function changes signs. How do we generalize this to C? Instead
of having two directions, we have a whole S1 worth of directions. If we use colors to
depict direction and brightness to depict magnitude, we can plot a graph of a continuous
function f : C → C. Near a zero, we’ll see all colors represented. If we travel in a loop
around any point, we can keep track of whether it passes through all the colors; around
a zero, we’ll pass through all the colors, possibly many times. Thus, the winding number
of a zero is a nonzero integer.

For z with large norm, p(z) ≈ zn. We know that the winding number of the loop
γ(t) = Reit (for any R > 0) around 0 is n. Moreover, suppose we have two bounded
regions with piecewise smooth boundary and they share a nonempty piece of boundary.
Then the winding numbers of the two regions add up to the winding number of the
boundary of the union of the two regions.

For example, if we consider a large rectangle that has been cut into two rectangles, the two
rectangles share a side. However, when we compute the winding numbers of each smaller
rectangle and add them together, we find the shared side contributes some positive amount
from one rectangle and the negative amount from the other rectangle, thereby canceling
any contribution. What remains then is the winding number of the large rectangle. This
is a special instance of phenomena which appears in Stokes Theorem.

This means for a large enough loop γ, it’s winding number is n and when we split the disk
that γ bounds into two pieces X and Y . Suppose the two pieces have boundary loops
with winding numbers x, y such that x + y = n. Suppose y is zero. Then the region Y
has no zeros and we can focus on X and further subdivide it. In this fashion, we may
iterate and converge towards the zeros.
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Since n is an integer and winding numbers are integers, we can eventually find n small
regions all with winding number 1. There is no fear of some of the winding numbers being
negative as polynomials are orientation preserving maps.

2 Examples of Complex Manifolds/Varieties

Example 2.1. Consider the two curves in CP 2 cut out by the following equations:

C1 := {x2 + y2 + z2 = 0}
C2 := {xy + yz + xz = 0}

The two curves have genus 0 by the genus-degree formula and are smooth since the partial
derivatives only vanish at (0, 0, 0) which is not in CP 2. So they’re embedded spheres. By
Bézout’s theorem, we expect four intersection points.

I’m sure there is a general principle for finding solutions. But as a guess, we see that the
3rd roots of unity sum up to 0. Moreover, the squares of the 3rd roots of unity are again, the
3rd roots of unity. Thus, let x = ω := e2πi/3, y = ω2, z = ω3 = 1. It’s easy to see that [x : y : z]
satisfy both equations. We get one additional solution by permuting: [x : z : y] but no more
because in CP 2, [x : y : z] = λ[x : y : z] for any λ ∈ C∗.

The other two solutions come from the 6th roots of unity. Let x = η := eπi/3, y = η3,
z = η5. Then, x2 +y2 +z2 = η2 +η6 +η10 = ω+ω2 +ω3 = 0. And xy+yz+xz = η4 +η8 +η6 =
ω + ω2 + ω4 = 0. As before, we get two solutions because we can get an additional solution by
permuting.

Example 2.2. There’s a common algebraic geometric way of thinking of blowing up CP 2

at a point; you add in some P1 and you get a bundle where the total space is contained in
C2 ×CP 2. We’re just introducing all the directions (lines) one can move in through the point.

Topologically, you can think of a blowing up as connect summing: CP 2#CP 2
.

A third way to view the blow up, which I learned from Martin Roček, is to consider the
Fubini-Study form. We can consider, in M = C3 − {0}, the function log(|z1|2 + |z2|2 + |z3|2)
and apply ∂∂̄ to it. However, let’s choose α, β ∈ C3 − {0} and consider now log(|z1|2 + |z2|2 +
|z3|2) + log(|α · z1|2 + |β · z2|2). For example, if α = (1, 0, 0), β = (0, 1, 0), then we’re just adding
log(|z1|2 + |z2|2). Applying ∂∂̄ and letting it descend to CP 2 = M/C∗ gives us a metric which
behaves singularly at a point defined by α and β (it’s like a pair of lines crossing). Blowing
up at that point resolves the issue. We need a pair α, β since P1 is defined from C2 − {0}.
The form we get might not be Kähler as it might be negative; it depends on the α and β but
generically, it should be Kähler.

If we wish to blow-up at more points, take

log(|z1|2 + |z2|2 + |z3|2) +
∑̀
j=1

log |αj · z1|2 + |βj · z2|2.

Here, ` = 0, ..., 8; if ` = 9, then we have strange behaviors. I think the result is no longer Fano
and the underlying topological manifold can admit infinitely many smooth structures. 9 may
be the magic number because the dimension of cubic curves in CP 2 is 9. This corresponds, I
think, to looking at polynomials p(x, y, z) = αx3 + βy3 + γz3 + δx2y + εx2z + ζy2z + ηy2z +
θz2x + ιz2y + κxyz. That’s 10 variables but then we projectivize or something to get 9. If
someone knows why 9 is so special, please tell me.

Example 2.3. Consider a hyperplane through the origin in Cn+1. Then under the quotient
map q : Cn+1−{0} → CP n, q(H) is homeomorphic to CP n−1 and the complement of this image
is Cn. So an alternative construction of CP n comes recursively: attach a 2n-cell to CP n−1.
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Let’s take CP 2 for concreteness. For any ζ ∈ C, we claim that the holomorphic embedding
uζ : C → C2 : z 7→ (z, ζ) extends naturally to a holomorphic embedding of CP 1 in CP 2.
Indeed, using ι2 to include C2 in CP 2, uζ(z) becomes the point [z : ζ : 1] = [1 : ζ/z : 1/z], and
as z →∞, this converges to the point x0 := [1 : 0 : 0] in the sphere at infinity.

One can check using alternate charts that this extension is indeed a holomorphic map. The
collection of all these embeddings uζ : CP 1 → CP 2 thus gives a very nice decomposition of
CP 2: together with the sphere at infinity, they foliate the region CP 2 − {x0}, but all intersect
precisely at x0. Therefore, we have that CP 2 is a sphere at infinity (CP 1) with C2 attached.

NB: This example is from Chris Wendl’s Lectures on Holomorphic Curves in Symplectic and
Contact Geometry.

Example 2.4. Let us consider curves in CP 2. These are codimension 1 subvarieties and thus,
they are cut out by single homogeneous polynomials of some degree d. The genus-degree formula
gives g = 1

2
(d− 1)(d− 2).

Here is a heuristic argument by Qiaochu Yuan for this formula. First consider the singular
curve of degree d given by d lines in general position, so that every pair of lines intersects
exactly once but otherwise there are no intersections. Topologically this gives a collection of d
spheres each pairwise intersecting in a point. If we perturb the coefficients of the singular curve,
it will become smooth; topologically the d spheres become pairwise connected by tubes. After
using d − 1 of these tubes to connect the spheres in a line, to obtain a sphere, the remaining(
d
2

)
− (d− 1) = 1

2
(d− 1)(d− 2) tubes each increase the genus of the resulting surface by 1.

Example 2.5. The Thom space of the line bundle O(1) → CP n, which is the dual of the
tautological line bundle of CP n, is in fact CP n+1. Locally, the line bundle appears as CP n×C
but locally on CP n, it appears as Cn+1 = Cn × C. These are all e2n+2 cells and adding single
point to glue them all together shouldn’t really change the topology much. I think what we get
it is now a single e2n+2 and at “infinity” or the zero section, we have a CP n. Thus, the Thom
space of O(1)→ CP n is CP n+1.

This gives an embedding CP n ↪→ CP n+1; in the limit, we find that there’s an embedding of
BU(1) = CP∞ ↪→MU(1); here MU(1) is the Thom space of the dual of the universal bundle.
But MU(1) is also CP∞! So we CP∞ ↪→ CP∞ and this is a homotopy equivalence. Being a
homotopy equivalence is very important; it gives us a backwards map f : MU(1) → BU(1);
since we can define universal Chern classes on BU(1), we can now pull them back by f to
MU(1). Jiahao says this is very important in cobordism theory.

Example 2.6. Consider the K3 surface defined in CP 3 by the homogeneous polynomial z40 +
z41 +z42 +z43 = 0. This one is usually denoted by V 2(4) though all other K3’s are diffeomorphic to
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it. This is a simply connected compact spin 4-manifold and by Rokhlin’s theorem, its signature
must be divisible by 16. Its signature is in fact, exactly 16. This has something to do with the
fact that in the Hodge diamond, we see the 2nd row is 1, 20, 1 but the 20 breaks up into 19
and 1. Then the dimension of the maximum positive and negative spaces is given as (19, 3);
16 = 19− 3.

Define an involution as follows [z0 : z1 : z2 : z3] 7→ [z̄1,−z̄0, z̄3,−z̄2]. Let X = V 2(4)/Z2

where the Z2 action is given by this involution. X is a orientable compact 4-manifold usually
called an Enrique surface but σ(X) = 8 so X cannot be spin (by Rokhlin’s theorem).

2.1 Some Examples from Huybrecht’s Complex Geometry

Example 2.7. The Hopf manifolds are important examples of complex but not symplectic
manifolds (and hence, non-Kähler and non-projective). The construction is to choose some
λ ∈ (0, 1) ∪ (1,∞) and let Z act on Cn+1 − {0} by k · (z1, ..., zn+1) = (λkz1, ..., λ

kzn+1). Then,
the quotient X = (Cn+1 − {0})/Z is diffeomorphic to S1 × S2n+1. Observe that when n = 0,
then we get a torus and when n = 1, we have something diffeomorphic to S1 × S3. Since S3

is the total space of a Hopf fibration over S2 with S1 fibers, the Hopf surface is like an elliptic
fibration over S2 but isn’t projective.

Also, it is well known by the Hodge Decomposition Theorem that the odd Betti numbers
of a Kähler manifold should be even. In dim 2, this is sufficient. But in higher dimensions,
we have non-Kähler manifolds that whose odd Betti numbers are even. An easy example is
X = S × S where S ∼= S1 × S3 is a Hopf surface. Then b1 = 2, b2 = 1, b3 = 2, b4 = 4. This
is an interesting example because the even Betti numbers are also positive which is one of the
first conditions to check whether something is symplectic. So at first glance, X satisfies two
necessary topological conditions for being Kähler yet is not Kähler.

An interesting question in general when given a smooth manifold which satisfies these two
basic topological conditions is whether there actually is symplectic structure and whether it can
be compatible with some deformation of the complex structure to obtain a Kähler structure.
It is easy to see that b2(X) is generated from the 2-forms on the T 2 factor. When taking wedge
products with itself, the cohomology will vanish; i.e. will be exact. So there is no symplectic
form.

Still, it can be interesting to find a nondegenerate 2-form; i.e. an almost symplectic struc-
ture. A quick idea is the following. T 2 has a symplectic form and S3 a contact form α which
means dα is symplectic when we restrict to the distribution defined by kerα. The Reeb vector
field is uniquely defined from this. So let’s call R1, R2 the Reeb vector fields on the first and
second copies of S3. Then define a 2-form θ on S3×S3 which vanishes off of D = span{R1, R2}
and is nondegenerate on D. Let Ω = ω + dα1 + dα2 + θ. I think this should work as an almost
symplectic form (or some perturbation) since it should be nondegenerate. Again, to reiterate
the above, this cannot be a symplectic form as it doesn’t give a volume form; all the volume is
concentrated on T 2.

There’s an even easier approach. T 2× S3× S3 has trivial tangent bundle because it’s a Lie
group which are always parallelizable. Actually, we can see it’s parallelizable just by the fact
that all closed, oriented 3-manifolds are parallelizable. R8 has symplectic structure so let’s just
use it. If the complex structure is compatible with our almost symplectic form, is that called a
nearly Kähler structure?

Also, the complex structure of X is such that the diagonal Hopf surface is a complex sub-
manifold of X. If we have a complex submanifold in a Kähler submanifold, it is automatically
Kähler. I wonder if this result holds when we put “nearly Kähler” in place of Kähler.

Example 2.8. Iwasawa 3-fold. Let G be the complex Lie group of upper triangular 3 × 3
matrices with 1’s down the diagonal. It is a subgroup of GL(3,C) and is biholomorphic to
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C3 as complex manifolds, though not as complex Lie groups because of the different group
structure. Take the subgroup Γ = G∩GL(3,Z+ iZ); it acts properly discontinuously on G by
left matrix multiplication. Then X := G/Γ is a complex 3-fold. The 1st and 3rd coordinates
give a holomorphic map f : X → C/(Z+iZ)×C/(Z+iZ) wich fibers isomorphic to C/(Z+iZ).
Then locally, it looks like three copies of an elliptic curve (which is not T 6).

Example 2.9. Godeaux surface. Let ρ be a primitive 5th root of unity. For simplicity, say
ρ = exp(2πi/5). Then G = 〈ρ〉 ∼= Z5 acts on P3 by ρ · [z0 : z1 : z2 : z3] = [z0 : ρz1 : ρ2z2 : ρ3z3].
This has 4 fixed points: [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], [0 : 0 : 0 : 1].

Consider the surface Y in P3 defined by
∑3

j=0 z
5
j = 0. It is G-invariant and since the fixed

points are not in Y , the action on Y is fixed-point free. X = Y/G is a compact complex surface
and it can be shown that H i(X,O) = 0 for i = 1, 2 but is also not rational.

Example 2.10. Let G ∼= Z5 be the 5th roots of unity and let G̃ ⊂ G5 be a subgroup defined
by

G̃ =

{
(ξ0, ..., ξ4) : ξj ∈ G,

4∏
j=0

ξj = 1

}
.

This subgroup has 625 = 54 elements because the first four entries can be anything so long as
the 5th is the inverse of the product of the previous four. It acts on P4 by (ξ0, ξ1, ξ2, ξ3, ξ4) · [z0 :

z1 : z2 : z3 : z4] = [ξ0z0 : ξ1z1 : ξ2z2 : ξ3z3 : ξ4z4]. The subgroup H ⊂ G̃ which acts trivially on
P4 is just the diagonal isomorphic to Z5. The hypersurface Xt, t ∈ C defined by

4∑
j=0

z5j − 5t
4∏
j=0

zj

is invariant under G̃. So the solutions to this equation should satisfy z50 + z51 + z52 + z53 + z54 =
5tz0z1z2z3z4. For example, take [1 : −1 : 0 : 0 : 0]. Then note that it is stabilized by nontrivial

elements in G̃/H such as (1, 1, ρ, ρ, ρ2). Then Yt = Xt/(G̃/H) is not a manifold but has some
rather mild singularities.

3 Almost Complex Geometry

Example 3.1. Let X be a closed, smooth 6-manifold. As it turns out, the only obstruction to
X being almost complex is whether it is Spinc. That is, we only need the 2nd Stiefel-Whitney
class w2 ∈ H2(X,Z2) to be the mod 2 reduction of some class c ∈ H2(X,Z). If this happens,
then in fact, each preimage of w2 under this mod 2 reduction is realized as the 1st Chern class
c1 of some almost complex structure J on TX.

Claude LeBrun showed in his paper Topology versus Chern Numbers for Complex 3-Folds
that the Chern numbers c31 and c1c2 of a complex 3-fold are not determined by the underlying
topology of the smooth 6-manifold.

As it turns out, if we think of R7 as the imaginary octonions, then any orientable hypersur-
face of R7 is almost complex. To define the J , we take advantage of the octonion structure.

4 Kähler Geometry

By Hodge Theory, we can see that for a Kähler manifold, hp,q = hq,p. Also if we consider some
odd cohomology H2k+1, then the number of pairs (p, q) such that p + q = 2k + 1, is even in
number. These two facts together show that the odd Betti numbers of a Kähler manifold are
even.
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Example 4.1. [Kodaira Embedding Theorem]
Roughly speaking, a holomorphic line bundle L → X is very ample if has an abundance

of holomorphic sections; enough sections so that we can use them to define an embedding of
X into some large CPN . Intuitively, say we have N holomorphic sections, locally on U ⊂ X,
these are N functions U → C which together give a map X → CN . If all goes well, perhaps
U → CN is an embedding (no singularities in the intersection of these sections) and we can
hope to patch these together to get an embedding X ↪→ CPN .

A line bundle is ample if some high enough tensor power is very ample: L⊗k is very ample.
So then, we could have sections s0, ..., sN ∈ H0(X,L⊗k) and an embedding X → CPN which
sends x 7→ [s0(x) : ... : sN(x)].

Kodaira’s Embedding Theorem says that if the Kähler form ω of a compact Kähler manifold,
which lives in H2(X;R) ∩ H1,1(X,C) is in fact integral, that is ω ∈ H2(X;Z) ∩ H1,1(X,C),
then there is a complex-analytic embedding of X into some large complex projective space.

A stronger view of the theorem is as follows: Let X be a compact Kähler manifold and
L → X be a holomorphic line bundle. It is ample if and only if there is a holomorphic
embedding ϕ : X → CPN such that ϕ∗OCPN (1) = L⊗k for some k > 0.

This means that the existence of an ample line bundle is equivalent to whether a compact
Kähler manifold is projective with an additional condition.

We may also relate this to differential geometry with curvature. A holomorphic line bundle
L → X is called positive if c1(L) ∈ H2(X,R) is representable by a closed, positive definite,
real (1, 1)-form.

The Kodaira embedding theorem implies that a positive line bundle is an ample line bundle
and conversely that any ample line bundle admits a Hermitean metric that makes it a positive
line bundle.

Example 4.2. An amazing thing in the case of surfaces, for example, is suppose we have a
compact complex surface X. Then X is Kähler if and only if b1 is even. This is a quite a
powerful theorem and is an overpowered tool for showing, for example, that S4 is not complex.
b1(S

4) = b2(S
2) = 0 which means it cannot be symplectic and hence, is not complex to begin

with.

Example 4.3. A natural question to ask in the setting of compact Kähler manifolds X, is:
“What is the relationship between the 1st Chern class c1 and Kähler form ω of X?”

In the case of CP n, we know that the even cohomology H2k(X,C) is generated by ωk and
the cohomology ring is H∗(CP n,Z) = Z[x]/xn+1. But also c1 ∈ H2(X,Z). Is ω an integral
class? We usually take the Fubini-Study form: ω = i

2
∂∂ log |z|2; I think the constants are

chosen to make this an integral class.
Jiahao says that in general, there is a relationship between the curvature of and the 1st

Chern class. If h is the Hermitian metric for which ω is the Kähler form, then 1
2π

Ric(h) =
c1(X). So there’s still some relationship between c1 and curvature. Chern-Weil theory tells
us, for example, that if we consider the curvature of any connection and plug this into some
invariant polynomial, we ultimately get the some cohomology class which does not depend on
the connection.

Note: The cohomology ring of CP∞ is H∗(CP∞,Z) = Z[x]. However, observe that
lim←H

∗(CP n,Z) = Z[[x]]; this is the ring of formal power series which is not the same as
the polynomial ring Z[x]. So here is an example of when cohomology does not commute with
inverse limit.

Example 4.4. Claim: Any compact complex submanifold in a Kähler manifold is volume
minimizing within its homology class. Note that this does not say the minimizer is unique.
Indeed, if we have a second volume minimizing submanifold in the same class as the given
complex submanifold, that submanifold must also be complex.
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To establish this, we need to begin with a discussion of calibrated geometry. A calibrated
manifold is a Riemannian manifold (Mn, g) equipped with a k-form ϕ (1 ≤ k ≤ n) such that
dϕ = 0 and for any x ∈ M and any oriented k-dim subspace P ⊂ TxM , ϕ|P = λvolP , λ ≤ 1.
Of course, the volume element is determined by g.

Now, let Gx(ϕ) = {P : ϕ|P = volP}; this is the space of k-planes of TxM on which ϕ
restricts precisely to the volume element. Let G(ϕ) =

⋃
x∈M Gx(ϕ).

A submanifold N ⊂ M is calibrated with respect to ϕ if TN ⊂ G(ϕ). We can easily
show that a calibrated submanifold is volume minimizing in its real homology class. Let N be
calibrated and N ′ be another submanifold in its homology class. This tells us that N ′ differs
from N in homology by a boundary. Then,

vol(N) =

∫
N

volN =

∫
N

ϕ =

∫
N ′
ϕ+

∫
∂L

ϕ =

∫
N ′
ϕ = λ

∫
N ′
volN ′ ≤ vol(N ′).

The fourth equality holds by Stokes theorem and the fifth because ϕ is a calibration.
Let (X,ω) be a Kähler manifold. Wirtinger’s inequality says that ωk(Z) ≤ k! for any 2k-

vector Z; so ωk/k! ≤ 1 which means ωk/k!|P = λvolP where λ ≤ 1. So ωk/k! is a calibration.
On the other hand, if Y ⊂ X is a compact, complex k-submanifold, Wirtinger’s formula

shows that

vol(Y ) =

∫
Y

ωk

k!
.

Hence, Y is a calibrated submanifold and therefore, a volume minimizer in its real homology
class. I’m not sure how to prove the other statement.

5 Deformation Theory

The main question of deformation theory: “Is X diffeomorphic to Y if and only if X is biholo-
morphic to Y ?”

From math.overflow or somewhere... “Of course, manifolds which are biholomorphic are
diffeomorphic. But the converse is false. As Riemann was the first to remark, and others after
him did until the foundational works of Kodaira and Spencer in the 60’s, complex structures
on manifolds come many at a time. Unlike discrete invariants such as dimension or “number
of holes,” complex structures on a fixed manifold form a continuous space. Thus, if a fixed
manifold X admits one complex structure, then in general it admits an entire family of complex
structures. Thus you get infinitely many complex manifolds Xs, depending on some parameter
s, which will all be diffeomorphic as smooth manifolds. The converse implication of your
question thus fails dramatically.”

Example 5.1. Let us consider elliptic curves. Let s ∈ H = {s ∈ C : Im s > 0}. Each such
point determines an elliptic curve Xs = C/Λs, where Λs is the lattice Z ⊕ sZ. When are two
such curves biholomorphic?

By lifting a potential biholomorphism f : Xs → Xs′ to a map f̃ : C → C, one can prove
that f must be induced by a linear map f̃ that sends the lattice Λs to Λs′ . Now these maps are
very rare. For example, for ε small enough, the lattices Z⊕ iZ and Z⊕ i(1 + ε)Z will never be
isomorphic (for a heuristic reason: holomorphic maps cannot stretch the y-axis while keeping
the x-axis fixed). Thus we get infinitely many non-biholomorphic elliptic curves Xs.

On the other hand, it is easy to see that any elliptic curve is diffeomorphic to R2/Z2. Indeed,
there is a unique R-linear map of R2 to itself sending the lattice Z2 to any lattice of our choice.
This map will induce a diffeomorphism of the corresponding elliptic curves.
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6 Classification of Compact Complex Surfaces

Here is a quick summary of the Enriques-Kodaira classification of compact complex surfaces.
There are 10 types (which include non-algebraic types) which break up into 4 larger groups
based on Kodaira dimension.

1. Kodaira dimension −∞:

• Rational: surfaces birational to CP 2.

• Ruled (genus > 0): always algebraic.

• Type VII: never algebraic or Kähler. e.g. when b2 = 0: Hopf and Inoue surfaces.

2. Kodaira dimension 0:

• K3: always Kähler, not always algebraic.

• Enriques: always algebraic.

• Kodaira: never algebraic.

• Complex 2-Tori: always Kähler, not always algebraic.

• Hyperelliptic: always algebraic; these are quotient of a product of two elliptic curves
by a finite group.

3. Kodaira dimension 1: all such surfaces are elliptic; i.e. have an elliptic fibration. How-
ever, some elliptic surfaces have Kodaira dimension 0. e.g. some K3’s.

4. Kodaira dimension 2: They are called general type surfaces and are always algebraic.
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