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1 Vector Bundles

Example 1.1. How do we know whether TS2n is trivial? Suppose it is: TS2n ∼= S2n×R2n. This
would mean we could smoothly choose a nonzero vector at each point, say, (1, 0, ..., 0) ∈ R2n.
But then we have a smooth non-vanishing vector field at each point of S2n which contradicts
the Poincaré-Hopf theorem (specifically, the Hairy Ball Theorem).

1.1 Characteristic Classes

Example 1.2. For a fixed rank k, there are only two vector bundles for S1. An orientable one
which is just the trivial bundle S1×Rk and an non-orientable one which is the Möbius bundle
µ direct sum with a trivial bundle: µ⊕ Rk−1. Then, for a manifold M , we may then consider
a map w1 : π1(M)→ Z2. Take an element [f ] ∈ π1(M); it is a homotopy class of f : S1 → M .
Then the image of f∗ is a subbundle of TM . We can then consider the normal bundle νf . If it
is trivial, w1([f ]) = 0, if non-orientable, then w1([f ]) = 1.

Claim: w1([f ∗ g]) = w1([f ]) + w1([g]). In particular, we see that [f ∗ f ] 7→ 0. Thus,
w1 ∈ Hom(π1(M),Z2) ∼= H1(M,Z2). This is, in fact, the 1st Stiefel-Whiteney class.

1.2 Constructions

Fiber bundles for spheres can be constructed explicitly using the Clutching construction.
Let G be a Lie group and b : Sm−1 → G represent an element of πm−1(G). Since Sm is given by
two balls glued together along their boundary, we have open subsets U1, U2 ⊂ Sm diffeomorphic
to open m-balls so that U1 ∩ U2 deformation retracts on to Sm−1 ⊂ Sm. Hence we have a map
Φ12 : U1 ∩ U2 → G whose restriction to Sm−1 is b. This gives the transition data for the fiber
bundle over Sm representing [b] ∈ πm−1(G).

Example 1.3. Let us show that all rank 3 R-vector bundles over S3 are trivial. In this case the
structure group is GL(3) which is homotopic to O(3). We can calculate π2(O(3)) as follows: The
connected component of O(3) containing id is SO(3) so it is sufficient to compute π2(SO(3)).
Each element of SO(3) is a rotation about some axis.

This means that we have a fibration

SO(2)− {id} SO(3)− {id}

RP 2

q

q sends ρ ∈ SO(3) − {id} to the corresponding unique axis of rotation of ρ. The fiber is
SO(2) − {id} ∼= S1 − {1} ∼= (0, 1) because it stabilizes the axis of rotation. So we have the
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following homotopy LES:

...→ πk((0, 1)) = 0→ πk(SO(3)− {id})→ πk(RP 2)→ 0 = πk−1((0, 1))→ ...

which implies that πk(SO(3)− {id}) ∼= πk(RP 2).
Now π2(RP 2) = π2(S

2) = Z (a covering map induces isomorphisms on higher homotopy
groups) and hence π2(SO(3) − {id}) = Z. The generator of π2(RP 2) is the covering map
(antipodal map) α : S2 → RP 2 and hence the generator of π2(SO(3)− {id}) is a lift α̃ : S2 →
SO(3)− id of α to SO(3)− {id}. Note that we may lift since S2 is simply connected.

SO(3)− {id}

S2 RP 2

q

α

α̃

Here α̃(v) is defined as a clockwise rotation of angle θ ∈ (0, 2π) about the axis v. It doesn’t
matter so much what θ is; as long as θ 6= 0, 2π, all the maps are homotopic. If we choose θ to
be small then the image of α̃ is a small sphere near the point id ∈ SO(3). This means that
α̃(S2) is contained in a small chart of SO(3) and hence is contractible.

Hence the map ι∗ : π2(SO(3) − {id}) → π2(SO(3)), induced by inclusion, is 0. Also since
SO(3) is 3-manifold, the map ι∗ is surjective as any map h : S2 → SO(3) can be perturbed to
a map ĥ : S2 → SO(3)− {id}. Hence π2(SO(3)) = 0. Therefore, every rank 3 R-vector bundle
on S3 is trivial as told by the Clutching construction.

Example 1.4. While we’re on the subject of SO(3), let us consider the map f : C3 → C given
by f(x, y, z) = x2 + y2 + z2. Then A := f−1(0) is a singular hypersurface of C3 with singularity
at 0. If we take a point λ near 0, then it turns out that f−1(λ) is symplectomorphic to T ∗S2.
As λ→ 0, the zero section, which is just the cycle S2, vanishes. But away from the zero section,
the fibers still behave well.

All this to say, if we take the unit sphere bundle of T ∗S2 this is the same as the link LA
of the hypersurface A which by definition, is A ∩ Sε; some small ε-sphere. Let’s show that this
link LA is diffeomorphic to RP 3 which is of course, diffeomorphic to SO(3). To establish the
latter claim, just see that Spin(3) = S3 is the double cover of SO(3) but also the double cover
of RP 3.

To show that LA ∼= S(T ∗S2) ∼= SO(3), recall that the elements of SO(3) are triples
(v1, v2, v3) ∈ (R3)3 which form oriented orthonormal bases. We will treat T ∗S2 as TS2 since
we’re only looking at the smooth topology of the total spaces and not the full vector bundle
data. Thus, take a point v1 ∈ S2 ⊂ R3 and a point x ∈ Tv1S2. This a vector tangent at the
point v1. The pair (v1, x) ∈ S(T ∗S2); we will show that this maps to a point of SO(3) via a con-
struction. When we include x into R3, we obtain a vector v2 which is orthogonal to v1. Lastly,
let v3 = v1 × v2. Since we care about orientation and also require the norm of all three vectors
to be 1, v3 is completely determined by v1 and v2. Therefore, the map (v1, x) 7→ (v1, v2, v3) is
a diffeomorphism.

2 Leray-Hirsch Theorem

Recall that on a smooth manifold M , a good cover is a collection of open sets {Ua} such that
any finite intersection Ua1 ∩ ...∩Uan is homeomorphic to Rn. All manifolds admit good covers;
the proof given in Bott-Tu uses some Riemannian geometry and geodesically convex sets.

A manifold is of finite type if it admits a finite good cover. For example, if the manifold is
compact, it is of finite type.
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Theorem: Let π : E → M be a fiber bundle over M with fiber F . Suppose M has a finite
good cover. Suppose there are global cohomology classes e1, ..., er on E which restrict to a basis
of the cohomology of each fiber; i.e. ι∗ : H∗(E) → H∗(F ) is surjective. Then we can define a
map ψ : H∗(M)⊗H∗(F )→ H∗(E) which is an isomorphism of H∗(M)-modules.

So this theorem tells us that H∗(E) is a free module over H∗(M). The theorem actually
works for general fiber bundles with singular cohomology over Q. If ι∗ is a surjection, then let
s : H∗(F )→ H∗(E) be a section; i.e. ι∗ ◦ s = id. The map ψ : H∗(M)⊗H∗(F )→ H∗(E) can
be defined as (α, β) 7→ π∗α ∪ s(β).

3 Principal G Bundles and Connections

Example 3.1. There are topological obstructions to a vector bundle admitting a flat connec-
tion: most simply, by Chern-Weil theory the real Pontryagin classes of such a bundle must all
vanish. So, for example, any closed 4-manifold with nonzero signature, such as CP 2, does not
admit a flat connection. Recall that the signature of a 4-manifold is the number of positive
eigenvalues minus the number of negative eigenvalues of the intersection form.

Example 3.2. By Chern-Weil theory, or by the Chern-Gauss-Bonnet theorem (which is stated
on Wikipedia for the Levi-Civita connection but in fact holds for any connection), if an oriented
vector bundle admits a flat connection, then the real Euler class must also vanish, meaning that
the Euler characteristic must be zero. So it follows that the tangent bundle of S2 does not admit
a flat connection as χ(S2) = 2; cf. hairy ball theorem.

Example 3.3. [Hopf Fibration] This is a very important example. As you know, it was the
first construction which shows that πn(Sk) can be nontrivially, even if n > k.

Let’s construct the Hopf fibration by embedding S3 ⊂ C2; then S1 acts naturally on C2 by
the diagonal action. In fact, if we cut S3 by an vector space embedding of C ⊂ C2, we see that
the intersection of C ∩ S3 is a copy of S1. For example, if we see where S3 ∩ {(z, 0) : z ∈ C},
then the defining equation |z|2 + |w|2 = 1 is now |z|2 = 1. With this construction, we find that
in fact, S3 is the restriction of the tautological line bundle over CP 1 to unit length vectors.
This means S3 = Dξ or sometimes it may be written as DO(−1). So the associated line bundle
to this principal S1-bundle is the tautological line bundle over CP 1.

There’s also an explicit map. If we identify R3 = C×R, then let p(z, w) = (2zw̄, |z|2−|w|2).

S1 S3

CP 1

p

Another interesting property of this Hopf fibration is that, if we think of S3 as the one-point
compactification of R3, then we can fill R3 with disjoint circles and a single line. That is, every
point in R3 lies on a circle or line. This isn’t that hard to do under these conditions. But now
add a further condition: the circles should all be pairwise linked. This is less trivial but the
Hopf fibration gives this to us.

A flat connection ∇ on a principal fiber bundle P → M with structure group G defines
a homomorphism from the fundamental group of M to G via parallel transport along closed
curves. (Otherwise put, the holonomy group of a flat connection is a homomorphic image of
the fundamental group.) This defines a reduction of the structure group G to this so called
monodromy group. In particular, if M is simply connected, then the monodromy group is
trivial which means the bundle is trivial.
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The Hopf fibration does not admit a flat connection. This is because: if it admits a flat
connection and and the base is simply connected, then the bundle is trivial. But the bundle
is not trivial: the pullback of the standard volume form on S2 is dθ where θ is the standard
contact from on S3. Moreover, dθ is also the Euler class. Since the Euler class is nonzero, the
bundle is not trivial. We conclude that the Hopf fibration does not admit any flat connections.
(The nontriviality of the bundle can also be seen from Chern-Weil theory, which computes
characteristic classes from curvature expressions).

Perhaps another intuitive way to see this is that S2 is curved and by Gauss-Bonnet, we must
have positive curvature somewhere on S2. Now, this is of course with respect to curvature of
connections on vector bundles, not S1-bundles. But I think there is an isomorphism between
C-line bundles (which we might think of as rank 2 real vector bundles) over S2 and S1 bundles
over S2. The former is classified by H2(S2) = Z, the latter by π1(S

1) = Z.
By the way, using the homotopy long exact sequence, we can use the Hopf map to induce

an isomorphism Z ∼= π3(S
3) ∼= π3(S

2). The generator of π3(S
3) is simply the identity map

id : S3 → S3 and this is mapped to the generator of π3(S
2); so the generator is the homotopy

class of the Hopf map.
One last note; of course the Hopf fibrations work for higher dimensional odd spheres:

S1 S2n+1

CP n

p

Note that if we have the antipodal map α : C2 → C2, (z, w) 7→ (−z,−w), we can quotient S1

and S3 by α to obtain a RP 3 as a RP 1-bundle over S2. But RP 1 = S1 so RP 3 can be viewed
as a principal S1-bundle over S2.

Example 3.4. It is well known too that the Hopf fibrations extend to looking at H and O.
For example, we have

S3 S7

S4

p

S3 S4n+3

HP n

p

However, with the octonions, we only get one fibration due to the non-associativity of the
octonions.

S7 S15

S8

p

Somewhat related, we have a symplectic fibration over a non-symplectic base:

S2 CP 3

S4

p

Example 3.5. If we have a line bundle, then a flat connection ∇ can be written locally as
d + α, α is a 1-form. ∇ has a nowhere vanishing parallel section if and only if α is exact. As
a result, there can also be flat connections with no nontrivial parallel sections. For example,
take ∇ = d + α on the trivial bundle of S1, where α is the generator of H1(S1). It does not
have a parallel section. By the way, sometimes α is misleadingly written as dθ which makes it
appear to be exact but of course, there is no global coordinate function θ on S1.
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