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These are notes taken from a talk by Jin-Cheng Guu on coherent sheaves, for the RTG
seminar on homological mirror symmetry. I have added some content for clarity’s sake.

1 Introduction

The general philosophy behind sheaves is as follows. In order to study a topological space, we
can study the space itself or we can approach it by studying what sort of functions the space
admits. For example, if we have a compact complex manifold, the only global holomorphic
functions it admits are constant. Sheaves contain such global data but also local data.

As such, roughly speaking, one can think of sheaves as tools for moving between local and
global data. They carry a massive amount of information as they are defined on the open sets
of a topological space. If the topology is rich; i.e. there are lots of open sets, then that is a lot
of data.

The language of sheaves is indispensable in modern geometry. Also, the language of sheaves
is full of agricultural terms such as germ, stalk, and sheaf. Sections of vector bundles are

examples of sheaves and so one can to some degree think of a sheaf as sections of a vector
bundle.

2 Motivating Example and Definition

We begin with an example. Consider a smooth manifold X. If we have an open set U C X, we
can consider all the smooth functions on U; C*°(U) and if V' C U is an open subset, then we
can naturally take an fi; € C*°(U) and restrict it to V: fy = fulv.

Moreover, let’s take U; and U, to be non disjoint open sets such that U = U; U U;. Now
suppose that f = 0 when restricted to U; and also when restricted to Us; we expect then that
f =0on U and this is indeed the case for smooth functions. Also, if we have f; and f; as two
smooth functions on U; and Us, respectively, and we know they agree on U; N Us,, then we can
glue them together to form a function f on U which, when restricted to U; is f;.

This example is motivates our definition for a sheaf. But first, a presheaf.

Definition 2.1. Let X be a topological space. A presheaf F is a contravariant functor from
open sets of X to some abelian category A. We may take abelian groups, vector spaces, or

R-modules. So F : U — F(U) where F(U) is some abelian object. Moreover, F satisfies the
following properties.

1. If V.C U, then there is a morphism in A F(U) — F(V). It is best to think of this
morphism as a restriction map pyy. Note the contravariance.

2. The morphism pyy = id for any open set U C X.



3. IfW CV CU, then pywopuyv = puw- This just says that the restrictions are “natural”.
We can now define a sheaf.

Definition 2.2. A sheaf F is a presheaf which satisfies two additional properties. Let (U;) be
an open covering of an open set U

1. (Locality) If s,t € F(U) are such that s|y, =t

v, for each U;, then s =t.

2. (Gluing) If for each i, an element (also called section) s; € F(U;) is given such that for
each pair U;,U; of the covering sets the restrictions of s; and s; agree on the overlaps:
S vinu,, then there is a section s € F(U) such that s|y, = s; for each i.

U;NU; = Sj
Now, it is also useful to consider local information via stalks.

Definition 2.3. Let F be a sheaf on topological space X. A stalk of a point x is denoted F,
and is simply the direct limat
Fo = ligl}" (U).
zelU

It may be more useful instead to consider an equivalent definition in terms of germs. Germs
correspond to sections over some open set U containing x, and two of these sections are
considered the same if they agree on some smaller open set. More precisely: the stalk is
{(f,U) : 2 € U f € F(U)} modulo the relation that (f,U) ~ (g,V) if there is some open
set WeUNV wherex € W and flw = glw.

So a stalk is formed from a set of germs. In the case of sections of vector bundles, one might
imagine a stalk to be all the sections local to a point . This “localness” is coming via some
sort of a limit. A germ is a particular section in the stalk.

Definition 2.4. Let F,G be two sheaves on X. A sheaf morphism o : F — G assigns to
each open set U a morphism oy : F(U) — G(U) where this morphism is simply a morphism in
the Abelian category.

If p: F — G is a sheaf morphism, we can consider a sheaf ker ¢ which sends U > ker .
Naively, we might think that we can then define Im g, coker ¢, or G/F similarly to define
sheaves. However, in general, they only define presheaves. We're lucky that ker ¢ automatically
defines a sheaf. So we can see that not all presheaves are sheaves. Let’s consider another
example that doesn’t arise from a sheaf morphism.

Example 2.5. let X = (0, 00) be equipped with the standard subspace topology from R and
LP? be the presheaf which assigns to each open set U the space LP(U) (equivalence classes of LP
functions). Let U, = (0,n). Then the “function” f(z) = x restricted to each U, is in LP(U,).
However, X = [J™ U,, and of course, f(x) = z is not L? on all of X.

The problem is, in some sense, that some presheaves don’t have enough local sections and
so they may fail either the locality or gluability conditions (or both). There is, however, a
way to turn a presheaf into a sheaf. Suppose F is a presheaf that is not a sheaf on X. The
perspective we take is via the étalé space which is a covering space of X (the following works
if F is already a sheaf). So this means 7 : Et(F) — X will be a local homeomorphism.

Definition 2.6. Let Et(F) be, as a set, the disjoint union of stalks:
I1 7
rxeX

There is a natural map 7 : Et(F) — X which sends a germ to the point it lies over. Let x € U
and s be a section of F(U). Define § to be a section of m: Et(F) — X such that x is mapped
to the germ s,. Thus, we give Et(F) the coursest topology such that all these sections § are
continuous.



Definition 2.7. The sheafification of F is the sheaf F* which sends U to the continuous
sections of w|y : Et(F) — U.

A constant presheaf such as Z can be sheafified to become a locally constant sheaf still
denoted Z. The sheafification of LP is L?

loc*

3 Sheaf Cohomology

Suppose that we have a short exact sequence of sheaves: 0 > F > g > H > 0.
The functor which takes takes a sheaf to global sections is left-exact but not right-exact.

That is, 0 —— F(X) —— G(X) —— H(X) is ashort exact sequence but the morphism
G(X) — H(X) in the abelian category is not surjective in general. However, it is often impor-

tant to know if a section of H can be lifted to G. Sheaf cohomology, via a resolution, gives us
a long exact sequence:

s H » HY(X, F) —— HY(X,G) —— HYX,H) —— H*(X,F) — ...

Here, the cohomology is defined exactly as you expect: kernel mod image. However, kernel
mod image of what sequence? The sequence is some resolution of the original short exact se-
quence and depending on the type of sheaves, we might be able to resolve with good resolutions.
But a priori, we may need less tractable resolutions.

3.1 Flasque Sheaves
Thus, our hope is to work with nicer resolutions.

Definition 3.1. A flasque sheaf F is one such that the restriction morphism pxy : F(X) —
F(U) is surjective for all open sets U.

In this case, if we have a short exact sequence 0 > F > g > H > 0 and Fis
flasque, then the global sections do form a short exact sequence. Here are two useful lemmas.

Lemma 3.2. If 0 > F > G > H » 0 is short exact with F,G both flasque,
then H is also flasque.

Lemma 3.3. Any sheaf F has a resolution by flasque sheaves:

0 > F > FO > F! > F2 >
Lastly, we have a proposition to show what is the big deal with flasque sheaves:

Proposition 3.4. If F is a flasque sheaf, then H'(X, F) =0 fori > 0.

3.2 Fine and Soft Sheaves

A few reminders of basic definitions first. An open covering X = |J, U; of a topological space
is locally finite if every point is contained in at most finitely many U;. A topological space is
called paracompact if every open cover can be refined to a locally finite open cover. It is not
hard to see that a locally compact Hausdorff space with a countable basis is paracompact; e.g.
manifolds.

Definition 3.5. A sheaf F on a paracompact space X is fine if for every locally finite open
cover X = J,; U;, there are sheaf homomorphisms n; - F — F, with the following properties:
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1. There are open sets V; D X \ U;, such that n; : F, — F, is the zero map for every x € V.

2. As morphisms of sheaves, Y, n; = idr.

An example is the sheaf of smooth k-forms on a smooth manifold. Essentially, it is fine because
we have partitions of unity.

Definition 3.6. A sheaf F on a paracompact topological space is called soft if, for every closed
subset Z C X, the restriction map F(X) — F(X) is surjective.

All fine sheaves are soft. Moreover, on a paracompact Hausdorff space, a fine sheaf F has
HY(X,F) =0 fori>0. (By the way, if a sheaf has this property of having higher cohomology
vanish, it is called acyclic). All these ideas can be used to prove the following proposition:

Proposition 3.7. Let M be a complex manifold and AP be the sheaf of (p, q)-forms. We have
H{(M, AP?) = 0 for every i > 0.

4 Schemes

We now consider a commutative ring R with 1. In fact, we assume that it is Noetherian: if there
is a chain of ascending ideals, it eventually stabilizes. Later, we’ll want to consider Noetherian
modules which satisfy a similar property but with submodules instead of ideals.

We define the topological space called the spectrum of R:

Definition 4.1. Let SpecR = {P € R : P is a prime ideal}. The topology is the Zariski
topology. Let I C R be any ideal in R. Let Vi = {P € SpecR : I C P}. These Vi form the
closed sets.

Spec R is always compact but for most R, not Hausdorff. Its closed points are the maximal
ideals so not all points are closed.

Example 4.2. SpecZ = {(0), (p) : p is a positive prime number}. Also, Spec Clz] = {(0), (z—
a) :a € C}.

Now let D(f) = {P € SpecR : f ¢ P}. We might think of this as localizing in some sense
by formally treating f # 0 and introducing 1/f formally. These D(f) form an open basis of
Spec R. Note that D(f) N D(g) = D(fg). We now define a sheaf on Spec R that sends D(f)
to Ry, the localization of R at f. This is the set {r/f' : r € R,l € N}. This is commonly
called the structure sheaf over Spec R and is denoted Ogpec . Thus, to Spec R, we naturally
have a sheaf of rings. We call Spec R a ringed space for this reason. To be precise, a ringed
space is a family of (commutative) rings parametrized by open subsets of a topological space
together with ring homomorphisms that play roles of restrictions. Moreover, any ringed space
isomorphic to something of this form is called an affine scheme. Some examples of affine
schemes are affine varieties.

But what do we mean by isomorphisms? We mean we get isomorphisms in both the category
of rings and also topologically.

We can now state our mantra for projective schemes: A projective scheme is a locally
ringed space which is locally, the spectrum of a ring. Let’s break this down. Firstly,
we know that a projective variety is just made by patching together affine varieties. Our case
with schemes is motivated by this fact.

A scheme X then, is firstly, a topological space. Thus, locally, we can talk about homeomor-
phisms with the underlying topology. Secondly, a scheme is not only a topological space but
comes equipped with a sheaf. This large sheaf can be viewed as sitting over X and if U; C X
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are open sets, then the sheaf considered over U; are some Spec R;. Note that thus, locally, a
projective scheme is an affine scheme! So we now have that complex manifolds are examples of
schemes. (by GAGA?)

Alright, we're badly need of an example.

Example 4.3. Consider the rings C[z] and C[y|. The spectra of these are both basically C*.
If we localize at = and y, we get the rings C[z,z7!] and C[y,y']. Now, if we take the map
x +— y~ !, this gives us a way to glue these two affine pieces together to obtain CP!. The

punctures in each tells us precisely that each chart covers everything except for one point on
CP!.

Remark: One may ask, “What is the point of a scheme, anyways?” One answer I've had which
may or may not be helpful is that we know classically that Hilbert’s Nullstellensatz gives us a 1-
1 correspondence of affine varieties and radical ideals of a polynomial ring over an algebraically
closed field. But is there a way to expand this beyond radical ideals.

5 Coherent Sheaves

The story of coherent sheaves is not much of an extension from sheaves. Instead of Noetherian
rings, we move to Noetherian modules which have the property: if M is a finitely generated
module, then all its submodules are finitely generated. Let R be a Noetherian ring and M
an R-module. As above, we can define a sheaf M that sends the open set D(f) in Spec R to
M;:={m/f':m e M,l € N}.

The coherence condition is that the modules should all be finitely-generated. If these were
quasi-coherent sheaves, then they don’t need to be finitely-generated.

Example 5.1. Here are some coherent sheaves:
1. Structure sheaf Ogpecr

2. Skyscraper sheaves S; these are defined thusly. Fix an x € X and let M be a finitely
generated module. Let U be an open set

M, xeU
S<U)_{{O}, r AU’

Since in the Zariski topology, there are points which aren’t closed, they kind of “spread
out” like butter. And so skyscraper sheaves can also bs spread out; nearby points to a
non-closed point x have the same picture.

3. Ideal Sheaves: Let Y be a closed scheme of a scheme X. We get a surjective morphism
¢ : Ox — 1,0y where 1, is induced by inclusion. The ideal sheaf is ker ¢.

4. Locally Free Sheaves of finite rank: Let X be a scheme. These are very much like vector
bundles. Locally, it looks like Ox & ... Ox finitely many times. Well, the structure sheaf
Oy is a trivial bundle and so locally, we have a trivialization which is of course, what we
require of vector bundles.

6 A Few Theorems

Theorem 6.1. Let X be a projective scheme over a Noetherian ring and T be a coherent sheaf
over X. Then



1. H(X,T), i >0, is a finitely generated R-module.
2. H(X,T(n))=0,1i>0, for large n > ng. This T(n) =T @ O(n) for example, on CP"™.

Theorem 6.2. Let F be a coherent sheaf over a smooth projective variety X. Then F admits
a resolution by vector bundles of finite length:

0 y EN y E1 y 0 y F

e

In fact, n = dim X.

Theorem 6.3. Let X be a smooth projective variety and suppose the anticanonical line bundle
w¥ is ample. Then DCoh(X) determines X (the derived category of coherent sheaves).



