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These are notes taken from a talk by Ruijie Yang in the Fall 2019 RTG Student Seminar at
Stony Brook University. He was following a paper of Arinkin and Polishchuk: Fukaya Category
and Fourier Transform.

1 Introduction

The main take-aways of the talk are the following. When we assume the SYZ conjecture, say,
in the setting of mirror Calabi-Yau’s X and X̌ with special lagrangian fibrations, then

1. Deformation of the symplectic structure of X corresponds to deformation of the complex
structure of X̌.

2. There is a “conceptual” SYZ transform between Dπ(F(X)) and Db
coh(X̌). That is, we get

a functor which is defined on certain classes of Lagrangians. The importance of this SYZ
transform, which is very much like a Fourier-Mukai transform, is that in HMS, we have
no conjectures for how to construct and equivalence of categories, only that one should
exist.

2 Setting

As usual, we have mirror CY’s which have special Lagrangian fibrations over the same base.
The fibers are not always smooth. To recall, a compact Calabi-Yau manifold X of dimCX = n
is firstly, a Kähler manifold so it has a Kähler form ω. Moreover, it has trivial canonical line
bundle which means that we have a holomorphic volume form Ω ∈ Hn,0(X). A Lagrangian L
is special if the imaginary part of Ω is zero, when restricted to L: im Ω|L = 0.

X X̌

B

µ µ̌

There is a theorem of Robert McLean from 1998: Let M be the moduli space of special
Lagrangians of X. Then M is a smooth manifold of real dimension n. So B ⊂ M. Also, if
[L] ∈M, then T[L]M∼= H1(L,R) ∼= Hn−1(L,R).

3 Deformations

Observe that we may try deforming a special Lagrangian L by pushing it around with a vector
field that lives on the normal bundle. So a deformation of L corresponds to V ∈ C∞(NL,R).
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But we want the deformation to preserve the special nature of L. First, define α := −ιV ω ∈
Ω1(X) and β := ιV im Ω ∈ Ωn−1(X). Ruijie claimed that V gives us a deformation that
preserves the special condition of L if and only if dα = 0 and dβ = 0. It seems there were some
doubts about whether this is correct.

Looking at McLean’s paper, he says: A normal vector field V to a compact special La-
grangian submanifold L is the deformation vector field to a normal deformation through special
Lagrangian submanifolds if and only if the corresponding 1-form (JV )[ is closed and co-closed,
i.e., harmonic. I think J is the complex structure here and [ means using the Kähler metric
to produce a 1-form from a vector field canonically. So in fact, because of the compatibility of
the Riemannian structure and the symplectic structure, α = (JV )[. This tells us that we only
need to look at α and not β. Or rather, studying α should give us what we need for β.

We also note that H1(L,Z) ⊂ H1(L,R) ∼= T[L]M. This gives rise to a definition: we say
a manifold M has integral affine structure (IAS) if there exists Λ ⊂ TM which is a local
system of integral lattices. A local system is a locally constant sheaf. If I’m not mistaken, my
picture is that of integral lattices inside of the fibers of a vector bundle. Locally on U ⊂ M ,
the tangent bundle looks like U ×Rn and Λ gives the same lattice on each Rn. I could be very
wrong. Anyhow, B has IAS.

Let’s consider now a space with a sheaf (X,F) and a map f : X → Y . We define Rkf∗F
to be a sheaf which we can define on open sets: Rkf∗F(U) = Hk(f−1(U),F). It is sensible to
study this on stalks as well. Let : µ : X → B. Then a stalk (R1µ∗R)b = H1(Lb;R) ∼= TbB. We
then have R1µ∗Z ⊂ R1µ∗R ∼= TB ∼= Rn−1µ∗R ⊃ R1µ∗Z.

Claim: Studying the integral affine structure on B is enough to recover X and X̌.

Here is a proposition: If Λ ⊂ TB is IAS, then TB/Λ has complex structure and T ∗B/Λ∗ has
symplectic structure. Of course, locally, TB/Λ has complex structure but the IAS somehow
gives “linear charts” which allow us to extend the complex structure globally.

Now, let take B with IAS and Λ1,Λ ⊂ TB. We’ll assume that we have canonical way of
identifying TB ∼= T ∗B, say with a metric. Also, we’ll assume Λ1

∼= Λ∗2 and Λ2
∼= Λ∗1. Let

X = TB/Λ ∼= T ∗B/Λ∗2; this is symplectic. And X̌ = T ∗B/Λ∗1 = TB/Λ2. This is complex.
Both are controlled by just Λ2. Hence, by deforming the lattice Λ2, we are able to deform X
and X̌ at the same time.

4 Fourier-Mukai Transform

Let’s first consider the absolute Fourier-Mukai transform. The setting is that of tori. We have a
vector space V of real dimension n. Let A = V/Λ and Ǎ = V ∗/Λ∗. From previous talks, we say
that the dual torus Ǎ can be thought of as a space of pairs (L,∇) on A. The connections ∇ here
are classified by monodromy. Let (P,∇P ) be something called the Poincaré line bundle on A×Ǎ.
Using the description of the dual torus as above, then we require (P,∇P )|A×[L,∇]

∼= (L,∇).
Next, let S ⊂ A be a finite set, {x1, ..., xr} or something. Associate to each xi a vector

space Vi. This defines for us a skyscraper sheaf F : F(U) =
⊕

x∈U∩S Vx. Let Sky(A) be the

category of skyscraper sheaves on A and Loc(Ǎ) be the category of local systems on Ǎ. The
Fourier-Mukai transform is a functor Φ : Sky(A) → Loc(Ǎ). How do we define this? Let
π1 : A × Ǎ → A and π2 : A × Ǎ → Ǎ be projection maps. Then Φ(F) := (π2)∗(π

∗
1F ⊗ P ).

What does this mean? We pullback F to the product space, tensor with P , then push forward.
We can compare this to the usual Fourier transform:

f̂(ξ) =

∫
Rn

f(x)e−2πix·ξ dx
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The P is like the e−2πixξ term. Recall that we’re looking at monodromy of connections which are
basically classified by eiθ. So it makes sense to consider P . Also, note that integration makes
it so that the variable x no longer appears and we only have ξ. Similarly, pushing forward by
π2 kills off the variabls in A and leaves just Ǎ.

Let’s look at a stalk over a ∈ Ǎ. Φ(F)a = π∗1F⊗P |π−1
2 (a) = π∗1F⊗P |A×a =

⊕
x∈S Vx⊗P(x,a).

This is a vector space. If F is a skyscraper sheaf associated with V1, ..., Vr, then Φ(F) is a vector
bundle of rank

∑
dimVi.

Impressive fact: Φ : Sky(A) → Loc(Ǎ) is an equivalence of categories! And in a proper en-
largement of categories, the inverse equivalence is simply Φ, up to ±, just like how the inverse
Fourier transform replaces the minus sign in e−2πix·ξ with a plus sign.

Let us return to our setting then. We have X and X̌ fibered over B. Take a Lagrangian
L ⊂ X that is transverse to all the fibers and let (E ,∇) be a local system on L. L could
possibly intersect the fibers in many places. It’s even possible that the number of intersections
for different fibers changes. In any event, E|L∩Lb

is a skyscraper sheaf on Lb. Then, applying
the Fourier-Mukai transform to this sheaf, we get a vector bundle on Ľb := µ̌−1(b). We then
glue along all b ∈ B and get a vector bundle on X̌.

This is a pretty interesting construction because thus far, we don’t really have good can-
didates for the equivalences of categories in HMS. HMS only conjectures the existence of the
functor. This functor isn’t defined on the full Fukaya category, only the Lagrangians transverse
to fibers. Yet, it is a promising start. It turns out that in the case that X is a 2-torus, Φ is
an equivalence of categories. I think Polishchuk and Zaslow’s paper on HMS for elliptic curves
was submitted in January 1998 and this paper of Arinkin and Polishchuk was submitted in
November 1998.
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