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These are notes I took from a talk by Yoonjoo Kim in the RTG Student Seminar.

1 Introduction

Let X be a compact Kähler and D a reduced simple normal crossing divisor such that D ∈
| − KX |. Reduced means the coefficients are +1 which makes it an effective divisor. Simple
normal crossing just means the crossing is like that of hyperplanes intersecting. And the last
condition is that D is of anticanonical class. For example, if X = P1, then the anticanonical
class is O(2) which is just two points; we can identify them with 0 and ∞.

Let X0 = X−D. This is like an open Calabi-Yau in that it has a holomorphic volume form;
on X, the poles would lie in D. Suppose now that we know the mirror of X0; call it X̌. How do
we find the mirror for the original X? We consider something called a Landau-Ginzburg model:
(X̌,W ) Here, W : X̌ → C is a holomorphic function. Physicists call it a superpotential.

Fact that was well-known to physicists a long time ago: Let X be a toric, Fano variety.
This means it contains, as an open dense set, (C∗)n and has ample anticanonical bundle. Let
D = X − (C∗)n; then there is an explicit mirror for X0 : X −D which is just X̌ = (C∗)n and
W =

∑
(monomials). The monomials are in 1-1 correspondence with the facets of the defining

polytope of the toric variety. All Pn are toric and Fano.
The polytope for P1 is just a line with some marked point (I don’t really understand what it

means but apparently the two components of the line correspond to the two charts for defining
P1). Here, W = z + 1/z.

Now, P1 is Kähler so we can view it as a symplectic manifold or as a complex manifold.
When viewing it as a symplectic manifold, I’ll denote it as S2 instead. We have two mirror
symmetry statements and thus, four categories.

1. P1 is mirror to (C∗,W = z + 1/z). That is, Db
coh(P1) ∼= Dπ(FS(W )); the RHS has the

Fukaya-Seidel category which we’ll define.

2. S2 is mirror to (C∗,W = z + 1/z) and the categories are Dπ(F(S2)) ∼= Db
sing(W ).

2 First Statement

2.1 B-Side: Complex Geometry

In Db
coh, an exceptional object A is such that

hom(A,A[p]) =

{
0, p 6= 0

C, p = 0.
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A strong exceptional sequence is a collection A0, ...An of exceptional objects such that there
are morphisms from Ai → Aj when i < j but the only morphisms from Aj → Ai are trivial. It
is a theorem of Grothendieck that any holomorphic vector bundle on P1 splits (not true even for
P2). There is a theorem by Beilinson: Db

coh(Pn) is generated by a strong exceptional sequence
〈O,O(1), ...,O(n)〉. In the case of P1, the proof is simplified using Grothendieck’s result. Note:
tensoring by line bundles preserves short exact sequences.

However, more generally, if Db
coh is generated by, say, F1, ..., Fn, then this implies that K0

alg
∼=

Kalg
0 (K-theories; don’t ask me what this means). This means that K0

alg⊗C ∼= C〈[F1], ..., [Fn]〉,
a finite dimensional vector space. However, K0

alg ⊗ C ∼= CH∗)XC, the Chow group. This is

typically an enormous group and so, saying that Db
coh is generated in this manner is an extremely

strong condition to impose. The Hodge diamond of Pn is nonzero only on the vertical so we
can recover the cohomology from the Chow group.

Anyways, we have then that Db
coh(P1) ∼= 〈O,O(1)〉. There is some quiver representation

to show that this is actually Mod(CQ) where CQ is the path algebra over C for the quiver
representation of P1. Whatever all that means, the important bit is the following:

• hom(O,O) = C.

• hom(O,O(1)) = C2

• hom(O(1),O(1)) = C

• hom(O(1),O) = 0 by the exceptional condition.

2.2 A-Side: Symplectic Geometry

Let’s look at the symplectic mirror now: (C∗,W = z + 1/z). Let’s define, in generality first,
what the Fukaya-Seidel category of a Landau-Ginzburg model (X̌,W ) is.

The objects of FS(W ) are admissible Lagrangians. Let L be a Lagrangian. It is admissible
if there is a compact set K ⊂ X̌ such that W (L − K) is a path in C which approaches the
real axis Re+. I think it must do so asymptotically so possibly, we cannot have the path cross
Re+ infinitely many times. The morphisms are as before: C linear combinations of intersection
points of two admissible Lagrangians.

Looking at z+1/z, this goes to +∞ on Re+ if and only if z → 0 or∞. Thus, in FS(z+1/z),
the only interesting admissible Lagrangians are Lk where L is a cotangent fiber (we identify
C∗ ∼= T ∗S1) and Lk is L wrapped around the cylinder k times. Allowing for Hamiltonian
isotopy, we have the following intersections for L0 and L1.
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We observe this is similar to what we had above with the morphisms between O and O(1).
Thus, we’ve shown the mirror symmetry for statement 1.

Perhaps another way to look at this is to consider P1 and its moment map which projects
it down to the real line. The fibers here are S1’s except at the ends where they degenerate to
points.

Then, in the dual fibration, we have something like a cylinder. One should think of the
great circle on P1 as corresponding to the skinniest part of the cylinder. As we move towards
the two points where the circles vanish, this corresponds to larger and larger circles on the
mirror. And sort of the point is that they are infinitely large at the end. If we try to wrap the
Lagrangians at the extreme, it will be like trying to travel infinite distance. Hence, we only
partially wrap.

3 The Second Statement

Yoonjoo did not talk much about the symplectic side. We note that somehow, the only inter-
esting Lagrangian that we can work with is a great circle which admits two local systems. So
we have two objects.

Here is a theorem by Serre. Let Y be a complex variety. Then Y is smooth if and only
if there exists N � 0 such that pd(F ) ≤ N for all coherent sheaves F on Y . Here, pd(F ) =
smallest length of locally free resolutions of F ; it is called the projective dimension. This gives
a way to measure how singular Y is. Let Perf(Y ) be objects of Db

coh that are quasi-isomorphic
to complexes of locally free sheaves. When Y is smooth, we have that Perf(Y ) = Db

coh and
thus, Db

coh(Y )/Perf(Y ) = 0. But in general, this is not 0.
We let

Db
sing(W ) =

∏
λ∈C

Db(X̌λ)/Perf(Xλ)

where X̌λ is the fiber W−1(λ).
For us, W is a degree 2 map since if W = λ, we get a quadratic z2 − λz + 1. The critical

points of W are found by W ′(z) = 1−1/z2 = 0: z = ±1. Then, when λ = ±2, we have z+1/z =
±2⇐⇒ (z±1)2 = 0. So letting Z = Spec(C[ε]/(ε2)), Db

sing(W ) = (Db(Z)/Perf(Z))×2. It turns
out this latter thing is isomorphic to Db(Mod(C))×2. Here C = C[x]/(x2 − 1) ∼= C ⊕ Cj ∼= H
(quaternions). It may be that in general, we get Clifford algebras appearing, like this one.

So somehow, we need to realize that Dπ(F(S2)) is equivalent to this category. This may be
discussed in a future talk.
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