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These are notes taken from the first introductory talk on G2 structures by Jin-Cheng Guu,
in a seminar on gauge theory and G2 manifolds. It is part of a larger project at the Simons
Center to understand manifolds of special holonomy.

1 Cross Product Spaces

It is well known that the only division algebras which are vector space isomorphic to Rn are
R,C,H,O.

Now, the cross product on R3 seems to be peculiar in that the cross product is not defined
on every Rn. However, an observation about quaternion multiplication reveals that we can
write, say q = a + bi + cj + dk with a real (scalar) part and a vector (imaginary) part. Then,
multiplication of quaternions can be represented by inner product and cross products.

Similarly, we can do this with octonions. There is a standard inner product 〈·, ·〉 on R8

and we would like to define a cross product on O. What properties do we want? We want
skew-symmetry and v × w should be orthogonal to v and w. Also, we want |v × w| to be the
area of the parallelogram spanned by v and w.

Let’s take a hint from H to define a cross-product on O. If p = a + ~v and q = b + ~w
are quaternions represented with real part written as a scalar and imaginary part written as a
vector, then pq = (ab − 〈~v, ~w〉) + a~w + b~v + ~v × ~w. Say, p, q are purely imaginary. Then this
reduces to pq = −〈~v, ~w〉+ ~v × ~w. Okay, but now p = ~v, q = ~w so we have p× q = pq + 〈p, q〉.

This will be our definition for the cross product for imaginary octonions V := ImO ∼= R7

(as vector spaces). It can be shown that it satisfies the properties we want. Let φ ∈ Λ3V ∗ be
the associated calibrated 3-form. It is defined by φ(X, Y, Z) = 〈X × Y, Z〉.

2 Definition of G2

Our first definition of G2 is as follows:

Definition 2.1 (1st). G2 ⊂ GL(V ) is the subgroup preserving φ. That is, G2 = {g ∈ GL(V ) :
g∗φ = φ}.

We can write φ in standard coordinates; if we let e1, ..., e7 be the usual coordinates of V ∼= R7

and ωi be the dual of ei, we can write the φ, now denoted as φ0 = ω123 + ω145 + ω167 + ω246 −
ω257 − ω347 − ω356. Here, ωijk = ωi ∧ ωj ∧ ωk. The indices may seem mysterious but there is
some reason coming from how octonions multiply. Let’s consider a second definition

Definition 2.2 (2nd). Let G2 = Aut(O). That is, an element of G2 is an invertible linear
transformation A of O such that, for any x, y ∈ O, A(xy) = A(x)A(y). So it’s an O-algebra
isomorphism.
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This is a natural definition. We now look at the third definition relates G2 and Spin(7).
Note that ImO naturally acts on O by left multiplication but this is not associative. How-

ever, v · (v · w) = (v · v) · w = −|v|2 · w. This is a familiar Clifford algebra relation; thus, we
may extend this action to Cl(7), the Clifford algebra of R7.

Let’s restrict our action now to Spin(7) ⊂ Cl(7). So Spin(7) acts on O and moreover,
S7 ⊂ O so Spin(7) acts on S7. The claim is, the action is transitive. Let ψ ∈ S7 be any
element. Then let G2 = Stab(ψ).

Definition 2.3 (3rd). Let G2 = Stab(ψ), following the discussion above.

The claim is that these definitions are all equivalent and moreover, G2 is a simply connected,
compact, real Lie group of dimension 14. This group is the smallest of the exceptional Lie groups
and is isomorphic to the subgroup of Spin(7) that preserves any chosen particular vector in its
8-dimensional real spinor representation. We’ll prove a few of these claims. However, the last
definition naturally leads us to consider some fiber bundles.

3 Three Fiber Bundles

The third definition basically tells us that we have the following fiber bundle:

G2 Spin(7)

S7

We know dimSpin(7) = dimSO(7) =
(
7
2

)
= 21. So then dimG2 = 14. We can also see that

G2 acts on R7 and acts transitively on S6 ⊂ R7. If u ∈ S6, then, the complement in all of R7

is u⊥ ∼= R6 and SU(3) acts on R6 (somehow there is a Kähler structure on R6 that’s naturally
related to the ambient space). Anyways, the point is, we get another fibration:

SU(3) G2

S6

And lastly, we get a fibration by the inclusion SU(2) ⊂ SU(3):

SU(2) SU(3)

S5

It’s easy from the long exact sequence of homotopy groups on fibrations to see that π1(G2) =
π2(G2) = 0; the second fact is true for all compact Lie groups and the fibrations do show that
G2 is compact. An interesting observation is that from one of the long exact sequences, we
have π3(SU(3)) ∼= π3(SU(2)) = π3(S

3) = Z. Another sequence gives π3(G2) ∼= π3(SU(3)) = Z.
Jin claims that all compact Lie groups with π3 = Z are simple Lie groups. That is, it has no
proper normal subgroup that are also Lie subgroups. He also said some stuff about Dynkin
diagrams and root systems that looks interesting but I didn’t understand it.
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4 Topological G2 Structures

Let M be a compact smooth 7-manifold. We know what a principal G-structure on the frame
bundle F of M is. We just need the following commutative diagram:

G GL(7,R)

PG F

M

So a topological G2 structure is just defined this way. Here, we have a theorem which is
not that impressive because we have a chain of subgroups and thus, we of course have the
structures.

Theorem 4.1. Having a SU(2) structure implies we have an SU(3) structure which implies
we have a G2 structure which implies we have a Spin(7) structure. So then M is, in particular,
spin.

What is interesting is that we can actually show that Spin(7) structure implies we have an
SU(2) structure! The proof relies on knowing that on any orientable 7-manifold M , there are
two linearly independent vector fields X and Y . I don’t know why; the Euler characteristic
vanishes so we are guaranteed one at least. Let ∆7 be the associated vector bundle to the
Spin(7) bundle with adjoint representation. It is of rank 8. Choose a spinor ψ; then ψ,Xψ, Y ψ
somehow construct for us a SU(2) structure. So here’s the theorem:

Theorem 4.2. M has a SU(2) structure if and only if it has a SU(3) structure if and only if
it has a G2 structure if and only if it has a Spin(7) structure.

5 Geometric G2 Structure

Suppose that φ is a 3-form on M which is nondegenerate everywhere. Then φ gives us a
Riemannian metric gφ which allows us to define a cross product on the bundle. We also have
the Levi-Civita connection ∇φ and Hodge-*. A natural question to ask is if φ is parallel with
respect to ∇φ; i.e. ∇φφ = 0? In general, the answer is no but if the answer is yes, we’ll call φ
a geometric G2 structure.

In other texts, a G2 structure is a principal subbundle of the grame bundle of M with
structure group G2. Here, we’re taking that to be the topological G2 structure. Note that
when we do have this principal G2 bundle, then we automatically have the 3-form φ and metric
g such that each tangent space of M admits an isomorphism to R7 which identifies φ with φ0

and g with g0.

Proposition 5.1. Hol∇φ(M) ⊂ G2 if and only if ∇φφ = 0 if and only if dφ = d(∗φ) = 0.

The proof of showing the holonomy impies the parallel condition is not probably not too
hard. And showing the parallel condition implies the holonomy condition is also not too hard.
But showing the equivalence of the parallel condition with the closed and co-closed conditions
is not so easy. On one side, you have only one equation while you have two equations on the
other. However, you have to really look at the octonion structure and you’ll see that the dφ = 0
and d(∗φ) = 0 conditions are actually related more closely than you think and in some sense,
it’s like having 1.5 equations instead of 2.
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Proposition 5.2. If M7 admits geometrical G2 structure , then M is Ricci flat.

The proof of this seems to use the claim that ∇φφ = 0 if and only if ∇φψ = 0 for some
ψ ∈ Γ(∆7). Now for some interesting remarks:

1. Rodrigo says that people often start with φ that satisfies d(∗φ) = 0 and tries to deform
φ so that this property is maintained and eventually dφ = 0.

2. Rodrigo also says that in the case of Kähler manifolds, if we know X holonomy is in
U(n) and we know c1(X) = 0, then automatically, the holonomy is in SU(n) and so
X is Calabi-Yau. But there is no such theorem for G2 manifolds and this is one of the
difficulties of the subject.

6 Additional Facts about G2 and Spin(7) Manifolds

This section is taken from Calabi-Yau Manifolds and Related Geometries, specifically from the
chapters written by Dominic Joyce.

6.1 More on G2

Definition 6.1. Joyce refers to a G2 structure as a pair (ϕ, g) similar to what we have above.
(ϕ, g) is torsion-free if ∇ϕ = 0. From proposition 5.1, this means Hol (g) ⊂ G2.

Theorem 6.2. Let (M,ϕ, g) be a compact G2 manifold. Then Hol (g) = G2 if and only if
π1(M) is finite.

Theorem 6.3. Let M7 be a compact 7-manifold, X the family of torsion-free G2 structures
(ϕ, g) on M , and D the group of diffeomorphisms of M isotopic to the identity. ThenM = X/D
is a smooth manifold of dimension b3(M) and the projection π : M → H3(M,R) given by
(ϕ, g)D 7→ [ϕ] is a local diffeomorphism.

This theorem tells us that this moduli space of G2 structures is a smooth manifold; it’s not so
strange that the dimension depends on b3 since the ϕ’s are 3-forms. Also, the tangent spaces
of M are then modeled on H3 because of the local diffeomorphism.

6.2 Spin(7) Manifolds

Using the previous conventions, R8 has a 4-form Ω0 = ω1234 + ω1256 + ω1278 + ω1357 − ω1368 −
ω1458−ω1467−ω2358−ω2367−ω2457+ω2468+ω3456+ω3478+ω5678. I don’t know what the pattern
is. The subgroup of GL(8,R) preserving this is Spin(7); it also preserves the orientation of R8

and the Euclidean metric g0. It is a compact, semisimple, 21 dim Lie group. Moreover, it is a
subgroup of SO(8).

Definition 6.4. An 8-manifold M admits a Spin(7) structure if it has a principal subbundle
of the frame bundle with structure group Spin(7).

A Spin(7) manifold automatically gives a 4-form Ω and metric g; on each x ∈ M , there is an
isomorphism (for that x) of (TxM,Ω, g) ∼= (R8,Ω0, g0). Similar to before, the above definition
is something of a topological definition while the pair (Ω, g) is a geometric Spin(7) structure.
We’ll just use the words “Spin(7) structure” to mean the pair (Ω, g).

Definition 6.5. (M8,Ω, g) is a Spin(7) manifold if (Ω, g) is a Spin(7) structure and ∇Ω = 0.
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Proposition 6.6. Let (M8,Ω, g) be a Spin(7) manifold. The following are equivalent:

1. Hol (g) ⊂ Spin(7) with Ω as the induced 4-form.

2. ∇Ω = 0 on M ; this is called torsion-free.

3. dΩ = 0.

When these hold, then g is Ricci-flat.

Theorem 6.7. Let (M8,Ω, g) be a compact Spin(7) manifold. Then Hol (g) = Spin(7) if and
only if π1(M) = 0 and b3 + b+4 = b2 + 2b−4 + 25.

This is quite an interesting topological condition. I imagine there is some Atiyah-Singer ma-
chinery going on.

Theorem 6.8. Let M8 be a compact 8-manifold, X the family of torsion-free Spin(7) structures
(Ω, g) on M , and D the group of diffeomorphisms of M isotopic to the identity. ThenM = X/D
is a smooth manifold of dimension Â(M)+b1 +b−4 and the projection π :M→ H4(M,R) given
by (Ω, g)D 7→ [Ω] is an immersion.

Proposition 6.9. If M admits Spin(7) structure, then 24Â(M) = −1+ b1− b2 + b3 + b+4 −2b−4 .

An immediate corollary to these two results is that if Hol (g) = Spin(7), then b1 = 0 and so
Â(M) = 1 and dimM = 1 + b−4 .

The following commutative diagram shows the relationship between Calabi-Yaus, G2, and
Spin(7) manifolds.

SU(2) SU(3) G2

SU(2)× SU(2) SU(4) Spin(7)

Claim: If X is a Calabi-Yau 3-fold, then R×X and S1 ×X have torsion-free G2 structure.

6.3 Joyce’s Construction of a Compact Manifold with Hol (g) = G2

Note, this is not simply a G2 manifold; i.e. Hol (g) ⊂ G2, but Hol (g) = G2. Note that by our
theorem above, if the holonomy is G2, then |π1(M)| <∞. The construction is a Kummer type
construction.

1. Let (ϕ0, g0) be a flat G2 structure on T 7. Choose a finite group Γ of isometries preserving
(ϕ0, g0). Then T 7/Γ is a compact 7 dim orbifold.

2. For certain Γ, the singularities are modeled on R3 × C2/G or R × C3/G where G is a
finite subgroup of SU(2) or SU(3). We resolve the singularities using complex geometric
tools. Replace the singularities by R3 ×X or R× Y where X, Y are crepant resolutions
of C2/G or C3/G.

3. Now, we have a nonsingular compact 7-manifold M together with the resolving map
π : M → T 7/Γ. We can choose Γ such that π1(M) is finite.

4. Let (ϕt, gt), t ∈ (0, ε) be a 1-parameter family of G2 structures on M . They are not
necessarily torsion-free but have small torsion when t is small. This family is defined
using Calabi-Yau metrics on X, Y . The metrics satisfy asymptotic conditions at ∞ in
X, Y . As t→ 0, (ϕt, gt)→ π∗(ϕ0, g0), a singular G2 structure.
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5. Deform (ϕt, gt) to ϕ̃t, g̃t) without torsion. Then since π1(M) is finite, g̃t is a metric with
Hol (g̃t) = G2.

Joyce constructs compact 8-manifolds with holonomy equal to Spin(7) in a similar fashion.
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