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0. Introduction

The main purpose of this note it to prove the following

Theorem 0.1 Any two Veronese surfaces in P5 whose intersection is zero-dimensional meet in at most 10 points (counted
with multiplicity).

Our initial motivation for this note comes from our paper [EGHPO] where we study linear syzygies of homogeneous
ideals generated by quadrics and their restriction to subvarieties of the ambient projective space with known (linear) minimal
free resolution. A direct application of the techniques in [EGHPO, Section 3] shows that the homogeneous ideal of a zero-
dimensional intersection of two Veronese surfaces in P5 is 5-regular (see also Lemma 1.1 below), which yields only an upper
bound of 12 for its degree, cf. Section 1.

Section 2 analyzes Veronese surfaces on hyperquadrics. The observation that two Veronese surfaces on a smooth hy-
perquadric Q ⊂ P5 meeting in a zero-dimensional subscheme, must meet in a subscheme of length 10 or 6 is classical and
goes back to Kummer [Ku] and Reye [Rey] (see also [Jes1] for historical comments): By regarding the smooth hyperquadric
Q ⊂ P5 as the Plücker embedding of the Grassmannian of lines Gr(P1, P3), a Veronese surface on Q ⊂ P5 is, up to duality, the
congruence of secant lines to a twisted cubic curve and thus has bidegree (1, 3). More precisely, the congruence has one line
passing through a generic point of P3 and 3 lines contained in a generic plane. Thus Schubert calculus yields that the possible
intersection numbers of two Veronese surfaces on Q are either 10 or 6. See Proposition 2.1 below and the following remark, or
the computation of the number of common chords of two space curves in [GH, page 297].
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The case of two Veronese surfaces in P5 meeting in 10 simple points has also been investigated in relation with association
(projective Gale transform) by Coble [Cob], Conner [Con] and others. In [Cob, Theorem 26] Coble claims that 10 points in
P5 which are associated to the 10 nodes of a symmetroid in P3, the quartic surface defined by the determinant of a symmetric
4× 4 matrix with linear entries in P3, are the (simple) intersection points of two Veronese surfaces in P5 (see Proposition 3.3
below). This is based on Reye’s observation [Rey, page 78-79] that 4 × 4 symmetric matrices with linear entries in P3 are
actually catalecticant with respect to suitable bases and on the analysis in [EiPo] of the Gale Transform of zero-dimensional
determinantal schemes. Section 3 contains a modern account of these results.

In Section 4 we briefly discuss which intersection numbers ≤ 10 can actually occur for two Veronese surfaces in P5 and
in which geometric situation this can happen. For instance, we show that two Veronese surfaces in P5 cannot intersect
transversally in 9 points, however they may intersect in non-reduced zero-dimensional schemes of this degree.

With the exception of Section 3 all other results in this note are valid in arbitrary characteristic.

1. A reduction step

We shall make essential use of the following lemma whose proof is reminiscent of the linear syzygies techniques used in [EGHPO,
Section 3].

Lemma 1.1 If X1 and X2 are two Veronese surfaces in P5 meeting in a zero-dimensional scheme W , then the ideal sheaf
IW,P2 of W regarded as a subscheme of P2 is 5-regular.

Proof. The claim is equivalent to the vanishing h1(IW,P2(4)) = 0. In order to see this we consider the minimal resolution of
IX1 in P5 and restrict it to X2. This yields a complex abutting to IW . Since X1 has property Np for all p one immediately
computes that h1(IW,P2(4)) = 0. 2

As immediate consequence we get a first bound for the number of points where two Veronese surfaces whose intersection
is zero-dimensional can meet.

Proposition 1.2 Two Veronese surfaces in P5 whose intersection is zero-dimensional meet in at most 12 points.

Proof. Let X1 and X2 be two Veronese surfaces meeting in a zero-dimensional scheme W , and let d = length(W ). By Lemma
1.1, W regarded as a subscheme of X2

∼= P2 imposes independent conditions on plane quartics, in particular if d ≤ 15. On the
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other hand X2 ⊂ P5 is cut out by quadrics scheme-theoretically, and thus the quartics in H0(IW,P2(4)) must cut out W ⊂ P2

scheme-theoretically too – in particular there are at least two. If there were only two, then they would form a complete
intersection, generating a saturated ideal, and thus W ⊂ P2 would be a complete intersection of two plane quartics, which
cannot be 5-regular. It follows that h0(IW,P2(4)) ≥ 3, and thus that d ≤ 12. 2

Actually the above proof yields also the following estimate

Proposition 1.3 Let X1 and X2 be two Veronese surfaces in P5 meeting in a zero-dimensional scheme W of length d with
10 ≤ d ≤ 12. Then X1 ∪X2 lies on at least d− 9 quadrics.

Proof. Let a = h0(IX1∪X2(2)). Then on one hand h0(IW,P2(4)) ≥ h0(IX2(2))− a = 6− a, on the other hand, by Lemma 1.1,
we know that h0(IW,P2(4)) = 15− d. Combining the two proves the claim of the proposition. 2

2. Veronese surfaces on hyperquadrics

In this section we analyze the intersection of two Veronese surfaces which meet in finitely many points, in the case where the
two surfaces lie on a common hyperquadric, resp. a pencil of hyperquadrics. We begin with the classical case of congruences
of lines:

Proposition 2.1 Assume that X1 and X2 are Veronese surfaces which meet in finitely many points and assume moreover
that there exists a smooth quadric hypersurface Q with X1 ∪X2 ⊂ Q. Then X1.X2 = 6 or 10.

Proof. Since Q is smooth it is isomorphic to the Grassmannian Gr(P1, P3) and it is well known that H4(Gr(P1, P3), Z) = Zα+Zβ
where α and β are 2-planes. It follows from the double point formula (see for instance [HS]) that every Veronese surface on
Gr(P1, P3) has class 3α + β or α + 3β. Since α2 = β2 = 1 and αβ = 0 it follows that X1X2 = 10 or 6 depending on whether
X1 and X2 belong to the same class or not. 2

Remark As already mentioned in the introduction, a Veronese surface of class 3α + β on the Grassmannian Gr(P1, P3) ∼=
Q ⊂ P5 is the congruence of secant lines to a twisted cubic curve (where β is the cycle of lines passing through a point of P3

while α is the cycle of lines in a plane). Passing to the dual P3 exchanges α and β, so up to duality the same construction
accounts also for Veronese surfaces of class α + 3β. It is easy to see, for instance by using Kleiman’s transversality theorem,
that both cases described in Proposition 2.1 actually occur.



First Previous Next Last Back Full Screen Close Quit

Proposition 2.2 Assume that X1 and X2 are Veronese surfaces in P5 which meet in finitely many points and assume that
there exists a rank 5 hyperquadric Q containing both X1 and X2. Then X1.X2 = 8.

Proof. We first claim that X1 and X2 do not pass through the vertex P of the quadric cone Q. Otherwise projection from P
would map the Veronese surface to a cubic scroll contained in a smooth hyperquadric Q′ ⊂ P4. But this is impossible, since
by the Lefschetz theorem every surface on Q′ is a complete intersection and hence has even degree. Blowing up the point P
we obtain a diagram

Q̃
p //

π

��

Q

Q′

where π gives Q̃ the structure of a P1-bundle over Q′. Since X1 and X2 do not go through the point P they are not blown
up and we will, by abuse of notation, also denote their pre-images in Q̃ by X1 and X2. The Chow ring of Q̃ is generated by
H = p∗(HP5) and H ′ = π∗(HP4). Clearly H4 = H3H ′ = H2(H ′)2 = H(H ′)3 = 2 and (H ′)4 = 0. Let E be the exceptional
divisor of the map p. Then E = αH + βH ′ and from EH3 = 0 and E(H ′)3 = 2 one deduces α = 1 and β = −1, i.e.
E = H −H ′. The surfaces Xi have class

Xi = αiH
2 + βiHH ′ + γi(H ′)2.

From XiH
2 = deg Xi = 4 one computes αi + βi + γi = 2. Since Xi does not meet E we have XiEH ′ = 0 and from this one

deduces γi = 0 and hence
Xi = αiH

2 + (2− αi)HH ′.

But then X2
i = 8 and this proves the claim. 2

We analyze next what happens when X1 and X2 lie on a pencil of hyperquadrics.

Proposition 2.3 Assume that the Veronese surfaces X1 and X2 meet in finitely many points and assume that they are
contained in a pencil of hyperquadrics {λ1Q1 + λ2Q2 = 0}. Then for a general hyperquadric Q in this pencil

X1 ∩X2 ∩ Sing Q = ∅.
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Proof. Assume that this is false. Since X1 ∩ X2 is a finite set it follows that there exists some point P ∈ X1 ∩ X2 which is
singular for every hyperquadric Q in this pencil. From what we saw in the proof of Proposition 2.2 this also shows that the
general quadric in this pencil has rank at most 4 (and at least 3 since both surfaces Xi are non-degenerate). Projecting from
P maps X1 and X2 to rational cubic scrolls Y1 and Y2 in P4, respectively. These cubic scrolls are contained in a pencil of
non-degenerate hyperquadrics {λ1Q

′
1 + λ2Q

′
2 = 0} whose general member has rank 3 or 4. For degree reasons this implies

Y1 = Y2. (Incidentally this also shows that X1 and X2 are contained in a net of hyperquadrics whose general element has rank
4.)

Let Y be the cone over Y1 = Y2 with vertex P . We obviously have X1, X2 ⊂ Y . We now blow up in P and obtain a
diagram

Ỹ
p //

π

��

Y ⊂ P5

Y1

where Ỹ is a P1-bundle over Y1. The Picard group of Y1 is generated by two elements C0 and F with C2
0 = −1, C0F = 1 and

F 2 = 0. Let F1 = π∗C0 and F2 = π∗F1. Then the Chow group on Ỹ is generated by H = p∗(HP5), F1 and F2.
For geometric reasons H3 = 3, F 2

1 H = −1, F1F2H = F1H
2 = F2H

2 = 1 and F 2
2 H = F 2

1 F2 = F 2
2 F1 = 0. Let E be

the exceptional locus of p and let X̃i denote the strict transforms of the Veronese surfaces. Then π restricted to X̃i defines
isomorphisms between X̃i and Y1. Since X1 and X2 intersect in only finitely many points and since both are contained in the
3-dimensional cone Y it follows that X1 ∩X2 = {P}, and from this one concludes that X̃1 ∩ X̃2 = L where L = E ∩ F1 is a
projective line, respectively X̃1X̃2 = aL for some a ≥ 1. Next we want to determine the class of X̃i in Ỹ . Since the X̃i are
sections of the P1-bundle π : Ỹ → Y we find X̃i = H + βiF1 + γiF2; i = 1, 2. Restricting this to E and using that H is trivial
on E we immediately find that βi = 1 and γi = 0, i.e. X̃i = H + F1. But then X̃1X̃2 = H2 + 2HF1 + F 2

1 6= aL where the
latter inequality can be seen e.g. by intersecting with H. This is a contradiction and the proposition is proved. 2

Proposition 2.4 Let X1, X2 be two Veronese surfaces in P5 intersecting in a finite number of points. If X1 and X2 are
contained in a pencil of hyperquadrics, then X1.X2 ≤ 10.

Proof. Let r be the rank of a general element of this pencil of hyperquadrics. If r = 6 or 5 then the assertion follows from
Proposition 2.1, or from Proposition 2.2, respectively. On the other hand, since the surfaces Xi are non-degenerate we must
have r ≥ 3.
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We shall first treat the case r = 4. According to Proposition 2.3 we can then choose a rank 4 hyperquadric Q with
X1 ∩X2 ∩ Sing Q = ∅. Blowing up the singular line L of Q we obtain a diagram

Q̃
p //

π

��

Q ⊂ P5

Q′ := P1 × P1

where π is the structure map of a P2-bundle. We denote the strict transforms of Xi by X̃i, i = 1, 2. Since X1∩X2∩Sing Q = ∅
we have X̃1.X̃2 = X1.X2. Let H = p∗(HP5), let L1, L2 denote the rulings of P1 × P1 and set Fi = π∗Li, i = 1, 2. Then
H4 = 2, F1H

3 = F2H
3 = F1F2H

2 = 1 and F 2
1 = F 2

2 = 0. Let E be the exceptional locus of p. Its class must be of the form
E = H + α1F1 + α2F2. From EF1H

2 = H2 = EF2H
2 = 0 one deduces α1 = α2 = −1, i.e. E = H − F1 − F2.

Now let X be any Veronese surface on Q. We want to determine the possible classes of the strict transform X̃ of X in Q̃.
Let X̃ = αH2 + β1F1H + β2F2H + γF1F2. From X̃H2 = 4 we obtain 2α + β1 + β2 + γ = 4. A priory the singular line L can
either be disjoint from X, meet it transversally in one point, be a proper secant or a tangent of X. Projection from L shows
that only the first and the third of these possibilities can occur.

Assume first that L and X are disjoint. Then π|X̃ : X̃ → P1×P1 is a 2 : 1 map which shows α = 2. From X̃EF1 = X̃EF2 = 0

we conclude β1 = β2 = 0 and hence γ = 0, i.e. X̃ = 2H2.
Assume now that L is a proper secant of X. Blowing up Q along L then blows up X in 2 points and the corresponding

exceptional curves are mapped to different rulings in P1×P1. The map π|X̃ : X̃ → P1×P1 is now birational and hence α = 1.

From what we have just said it follows that X̃EF1 = X̃EF2 = 1 and hence this implies β1 = β2 = 1. But then γ = 0 and
X̃ = H2 + HF1 + HF2.

Let c1 = 2H2 and c2 = H2 + HF1 + HF2. The claim of the proposition now follows for the rank 4 case since c2
1 = c2

2 =
c1c2 = 8.

It remains to deal with the case in which the general hyperquadric Q in the pencil has rank 3. By Proposition 2.3 we can
again assume that X1 ∩X2 ∩ Sing Q = ∅. Projection from the singular locus of Q gives a diagram

Q̃
p //

π

��

Q ⊂ P5

C ∼= P1
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where C is a conic section and π : Q̃ → C is a P3-bundle. We denote H = p∗(HP5) and F = π∗(pt). Then H4 = 2,H3F = 1
and F 2 = 0. Let X be any Veronese surface on Q and denote its strict transform on Q̃ by X̃. We first note that X ∩ Sing Q
is a finite set. Otherwise X ∩ Sing Q would have to be a conic section and projection from Sing Q would map X onto a plane,
not to a conic. Finally let E be the exceptional locus of p. The class of E must be of the form E = H +γF and from EH3 = 0
it follows that γ = −1, i.e. E = H − F . Now put X̃ = αH2 + βH.F . From X̃H2 = 4 one deduces that 2α + β = 4. Since
X∩Sing Q is finite one must have that X̃EH = 0 and hence β = 0. This shows that X̃ = 2H2 and the claim of the proposition
follows since X1.X2 = X̃1.X̃2 = 4H4 = 8. 2

Remark The above proof shows that if the general element in the pencil of hyperquadrics containing X1 and X2 has rank
3 or 4, then X1.X2 = 8.

3. Catalecticant symmetroids and Veronese surfaces

In this section we prove Coble’s claim [Cob, Theorem 26], mentioned in the introduction, that ten points in P5 which are the
Gale transform of the nodes of a general quartic symmetroid in P3 are the simple intersection points of two Veronese surfaces.

A quartic symmetroid is the quartic surface in P3 defined by the determinant of a symmetric 4 × 4 matrix with linear
entries in P3; for general choices (of the matrix) the symmetroid has only ordinary double points as singularities (nodes) and
their number is 10, by Porteous’ formula. These surfaces are sometimes called Cayley symmetroids, as Cayley initiated their
study in [Cay] (cf. [Jes2], but see [Cos] for a modern account of Cayley’s results and much more).

A symmetric matrix whose diagonals are constant is called a catalecticant matrix. Surprisingly enough, it turns out that
a symmetric 4 × 4 matrix with linear entries in P3 can always be reduced to a catalecticant form (with respect to suitable
bases). This fact goes back to Reye [Rey, page 78-79] and Conner [Con, page 39] and is (re)-proved below.

We will make use of the perfect pairing, called apolarity, between forms of degree n and homogeneous differential operators
of order n induced by the action of T = k[∂0, . . . , ∂r] on S = k[x0, . . . , xr] via differentiation:

∂α(xβ) = α!
(

β

α

)
xβ−α,

if β ≥ α and 0 otherwise, and where α and β are multi-indices,
(
β
α

)
=

∏ (
βi
αi

)
, and k is a field of characteristic zero.

Proposition 3.1 The Hessian matrix of a web of quadrics in P3 is catalecticant (with respect to a suitable basis) if and only
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if the quadrics in the web annihilate the quadrics of a twisted cubic curve. (One says in this situation that the web is “orthic”
to the twisted cubic curve.)

Proof. Let q : W ∗ ⊂ - Sym2V be the web of quadrics on P3 = P(V ). A twisted cubic C ⊂ P̌3 = P(V ∗) is defined by its
quadrics H0(P̌3, IC(2)). In suitable coordinates, say ∂0, . . . , ∂3, these are the minors of the matrix(

∂0 ∂1 ∂2

∂1 ∂2 ∂3

)
.

In terms of the dual coordinates, x0, . . . , x3 of P(V ), the web q has the form

a0x
2
0 + a4x

2
1 + a7x

2
2 + a9x

2
3 + 2a1x0x1 + 2a2x0x2 + 2a3x0x3

+ 2a5x1x2 + 2a6x1x3 + 2a8x2x3

where a0, a1, . . . , a9 are linear forms in the variables of W . Direct computation shows that a quadric in the web q is annihilated
by the equations ∂0∂2 − ∂2

1 , ∂0∂3 − ∂1∂2, ∂1∂3 − ∂2
2 if and only if a2 = a4, a3 = a5, a6 = a7. It follows that the web q is orthic

to the twisted cubic C iff its Hessian matrix has shape
b0 b1 b2 b3

b1 b2 b3 b4

b2 b3 b4 b5

b3 b4 b5 b6


where b0, b1, . . . , b6 are linear forms in the variables of W , i.e. it is catalecticant. 2

It actually turns out that a 4× 4 symmetric matrix with linear entries in P3 can be represented in two different ways as a
catalecticant matrix. Namely

Proposition 3.2 There are exactly two twisted cubic curves whose defining quadrics are annihilated by a general web of
quadrics in P3.

Proof. We use the same notation as in the proof of the previous proposition. Namely, let q : W ∗ ⊂ - Sym2V denote a
general web of quadrics in P3 = P(V ), and let P̌3 = P(V ∗) denote the dual space. We also choose coordinates as above such
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that S = k[x0, . . . , xr] and T = k[∂0, . . . , ∂r] are the coordinate rings of P(V ) and P(V ∗), respectively. Let now q′ : U ⊂
W ∗ ⊂ - Sym2(V ) be a general subnet. The variety H(q′) of twisted cubics in P(V ∗) whose defining quadratic equations are
annihilated by the net q′ is the geometric realization of a prime Fano threefold Xq of genus 12 (see [Muk1] and [Sch]). Via
the apolarity pairing, Xq ⊂ Gr(P2, P(Uq)), where the annihilator Uq = (q⊥)2 ⊂ Sym2V

∗ is a 7-dimensional vector space. As
a subvariety of the Grassmannian the Fano threefold Xq is the (codimension 9) common zero-locus of three sections of ∧2E ,
where E is the dual of the tautological subbundle on Gr(P2, P(Uq)), cf. [Muk1] or see [Sch, Theorem 5.1] for a complete proof.

The choice of a (general) subnet q′ is equivalent to the choice of a (general) global section of E . But E is a globally
generated rank 3 vector bundle whose restriction E = E|Xq

has third Chern number 2, as an easy direct computation shows.
By Kleiman’s transversality theorem the (general) section of E corresponding to q′ must vanish exactly at two (simple) points
of Xq. These in turn correspond to two twisted cubic curves each of whose defining quadrics are annihilated not only by the
net q′, but by the whole web q (the zero locus of a section in E is the special Schubert cycle of subspaces lying in the hyperplane
dual to the section). This concludes the proof. 2

Let C ⊂ P6 be a rational normal sextic curve, and let S = Sec(C) ⊂ P6 be its secant variety. S has degree 10, since this
is the number of nodes of a general projection of C to a plane. The homogeneous ideal of C is generated by the 2× 2-minors
of either a 3× 5 or a 4× 4 catalecticant matrix with linear entries, induced by splittings of OP1(6) as a tensor product of two
line bundles of strictly positive degree. Furthermore, it is known that the homogeneous ideal of S = Sec(C) is generated by
the 3× 3 minors of either of the above two catalecticant matrices (see [GP] or [EKS]).

For Π = P3 ⊂ P6 a general 3-dimensional linear subspace, the linear section Γ = Sec(C) ∩ Π consists of 10 simple points
in P3 defined by the 3 × 3 minors of a 4 × 4 symmetric (even catalecticant) matrix with linear entries in the variables of Π.
Conversely, by Proposition 3.2 above, the set Γ ⊂ P3 of 10 nodes of a general quartic symmetroid in P3 arises always as a
linear section of the secant variety of the rational normal curve in P6 (in two different ways). Moreover, it follows that Γ can
also be defined by the 3 × 3-minors of each of two different 3 × 5 catalecticant matrices with linear entries in P3. Since the
2 × 2 minors of these catalecticant matrices generate an irrelevant ideal, we may apply [EiPo, Theorem 6.1] (see also [EiPo,
Example 6.3] for more details) to obtain the following

Proposition 3.3 (Coble) The Gale transform of the 10 nodes of a general quartic symmetroid in P3 are the points of inter-
section of two Veronese surfaces in P5.

Remark 1) A more careful analysis of the preceding argument shows that the needed generality assumptions on the quartic
symmetroid are satisfied if the quartic symmetroid is defined by a regular web of quadrics in P3, see [Cos, Definition 2.1.2].
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2) Coble asserts in [Cob] that the converse to Proposition 3.3 should also be true, presumably under suitable generality
assumptions. This also relates to the question mentioned in [EiPo] of describing when a collection of 10 points in P3 are
determinantal.

4. Further results

One may now ask which intersection numbers can actually occur and in which geometric situation this can happen. We are
far from having a complete answer to this question, but want to state a number of results in this direction.

We start by considering Veronese surfaces which intersect in 10 points. It is easy to find examples of surfaces X1 and X2

intersecting transversally in 10 points. For this, one can start with an arbitrary surface X1 ⊂ Gr(P1, P3) ⊂ P5. For a general
automorphism ϕ of P3 the surface X2 = ϕ(X1) intersects X1 transversally by Kleiman’s transversality theorem and since both
X1 and X2 have the same cohomology class we have X1.X2 = 10. Actually, we have the following

Proposition 4.1 Let X1, X2 be two Veronese surfaces in P5 intersecting in 10 points. Then X1 ∪ X2 is contained in a
hyperquadric Q and one of the following cases occurs:

(i) Q has rank 6 and X1 and X2 lie in the same cohomology class,

(ii) The rank of Q is 4 and X1 ∩X2 ∩ Sing Q 6= ∅,

Proof. The existence of Q follows from Proposition 1.3. If Q has rank 6 then X1 and X2 must have the same class by the proof
of Proposition 2.1. The case rank Q = 5 is excluded by Proposition 2.2 and the case of rank Q ≤ 4 and X1∩X2∩Sing Q = ∅ is
excluded by the remark at the end of Section 2. We are now left to exclude the case where rank Q = 3 and X1∩X2∩Sing Q 6= ∅.
We will make use of the diagram and the computations at the end of the proof of Proposition 2.4.

For a Veronese surface X ⊂ Q with rank Q = 3 the class of X̃ in Q̃ equals 2H2. The fibres of the map π|X̃ : X̃ → C ∼= P1

are conics and hence this linear system is a subsystem of |2l| on X ∼= P2, i.e. contained in some system of the form |2l−
∑

αiPi|.
We have (2l −

∑
αiEi)2 = 4−

∑
α2

i = 0. This implies either α1 = . . . = α4 = 1 or α1 = 2. But by the argument in the proof
of Proposition 2.4 we already know that X intersects the vertex of Q in a finite non-empty set of points. Since the fibres of the
map π|X̃ are conics the first case can only occur if we have the linear system of conics through 4 points in general position. In
this case X̃ is mapped to a P1 and the general fibre is an irreducible conic, which contradicts what we have. This implies that
the linear system is given by |2l− 2P |, in particular X meets the vertex of Q in exactly one point P and that this intersection
is not-transversal.
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Returning to the case we have to exclude, we can assume that X1 is given by the 2× 2-minors of the matrixx0 x1 x2

x1 x3 x4

x3 x4 x5


and so a typical rank 3 hyperquadric through X1 is Q = {x0x3−x2

1 = 0}. The vertex V of Q is the plane {x0 = x1 = x3 = 0}.
The intersection of X1 and V is then defined by the ideal (x2x4, x

2
2, x

2
4), i.e. the first infinitesimal neighborhood of P . The

same holds for the second Veronese surface X2 ⊂ Q. Since both surfaces X̃1 and X̃2 have class 2H2 on Q̃, it follows that
X̃1 and X̃2 must meet in 6 other points (different of P ). If these points are all in different fibers of π, then X1 and X2 meet
in a (non-reduced) scheme of length 9(= 6 + 3) and thus we got a contradiction. Otherwise, since all the fibers of π|X̃i

are
conics (whose images in P5 already go through the fixed point P ), the 2-planes spanned by the fibres of π|X̃1

and π|X̃2
over

some point in C must coincide. But then, by Bezout, the two conic fibres must intersect in 4 points, from which we conclude
X1.X2 ≥ 11, again impossible. This concludes the proof of the proposition. 2

Remark As corollary of the proof of the previous proposition, we find out that two Veronese surfaces in P5 may intersect in
a non-reduced scheme of length 9. This is indeed the case, for two (general) Veronese surfaces X1 and X2 lying on a rank 3
hyperquadric Q such that X1 ∩X2 ∩ Sing Q consists of a single point P . As above, both surfaces cut out the first infinitesimal
neighborhood of P on the vertex of the hyperquadric Q and meet further in 6 simple points. In particular their intersection
is non-reduced.

However, we show that

Proposition 4.2 Two Veronese surfaces in P5 cannot intersect transversally in 9 points.

Proof. Assume that there exist Veronese surfaces X1 and X2 in P5 such that W = X1 ∩X2 is a reduced set of length 9. We
consider again W as a subscheme of X1

∼= P2 and we recall from Lemma 1.1 that h1(IW (4)) = 0. Equivalently, this means
that the linear system δ := |4l −W | on X1

∼= P2 has projective dimension 5. It will then be enough to show that the linear
system |4l−W | of plane quartics through W contains a smooth curve C, since in this case the restriction of |4l−W | defines,
via taking the residual intersection, a g4+ε

7 on C with ε ≥ 0, thus contradicting Clifford’s theorem.
In order to show the existence of such a C we consider the surface S given by blowing up the set W on X1. It will be

enough to check that the linear system |4l−W | is base point free and defines a morphism S → S′ ⊂ P5 whose image S′ has no
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worse than isolated singularities. We want to do this using Reider’s theorem (see [BS, Theorem 2.1] in characteristic 0, and
[SB], [Nak], [Ter, Theorem 2.4] in positive characteristic) and for this purpose we write 4l−W = L+Kδ where Kδ = −3l+W
is the canonical divisor on S while L = 7l − 2W . In order to apply a Reider type theorem we need to check that L2 ≥ 9 and
that L is nef and big. The first is clear since L2 = 49 − 36 = 13. We do not know that L is nef and big, but in the proof of
Reider’s theorem (as in the proof of its positive characteristic counterparts, cf [Ter]) this assumption is only used to conclude
that h1(Kδ + L) = 0, which we already know since h1(IW (4)) = 0 by Lemma 1.1.

We may now argue as follows. If |4l −W | = |Kδ + L| is not base-point free, respectively very ample, then there exists a
curve a D such that L− 2D is Q-effective and such that

D2 ≥ L.D − k − 1

where k = 0, respectively 1. We write D = al −
9∑

i=1
biEi. Since L − 2D must be Q-effective we see immediately that a ≤ 3.

For a = 3 we obtain

g −
9∑

i=1

b2
i ≥ 21− 2

9∑
i=1

bi − k − 1

respectively
9∑

i=1

bi(bi − 1) ≤ −2 + k

which gives a contradiction. For a = 1, 2 the same calculation gives

9∑
i=1

(bi − 1)2 ≤ 4 + k (a = 1),

respectively
9∑

i=1

(bi − 1)2 ≤ k.

On the other hand, since the quadrics through X2 cut out X2, then at most 4 points of W ⊂ P2 can be collinear and at most
8 points of W can lie on the same conic. This shows that |4l −W | is base point free on S and that S′ has at most isolated
singularities, which is our claim, and this concludes the proof of the proposition. 2
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Remark One may construct pairs of Veronese surfaces on suitable smooth or nodal cubic hypersurfaces in P5 which meet
in 1, 2, 3, 5 or 6 simple points. It is also possible to check in Macaulay [Mac] that if X ⊂ P5 is a Veronese surface and ϕ is
a general linear automorphism of P5 fixing m ∈ {1, 2, 3, 5} (general) points on X, then X and ϕ(X) meet exactly at those m
points.
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