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Introduction

Smooth varieties with small invariants have got renewed interest in recent years, primarily
due to the finer study of the adjunction mapping by Reider, Sommese and Van de Ven [R],
[So], [SV], [VdV]. For the special case of smooth surfaces in IP4 the method goes back to
the italian geometers, who at the turn of the century used it for the study of the surfaces
of degree less than 7, or sectional genus π ≤ 3. Later on, for bigger invariants, there are
contributions by Commesatti and especially Roth. For example, in [Ro], Roth tried to
establish a classification of smooth surfaces with π ≤ 6, but his lists are incomplete since
he misses the non-special rational surfaces of degree 9 and the minimal bielliptic surfaces of
degree 10. Nowadays, through the effort of several mathematicians (see references below),
a complete classification of smooth surfaces in IP4 has been worked out up to degree 10.

But, apart the general framework of classification problems concerning codimension two
varieties, there is also another strong motivation for the interest in these surfaces. Namely,
in a recent paper Ellingsrud and Peskine [ElP1] proved the conjecture of Hartshorne that
there are only finitely many families of special surfaces in IP4. More specifically, given an
integer a < 6, they show that the degree of smooth surfaces with K2 < aχ is bounded. In
particular, there are only finitely many families of smooth surfaces in IP4, not of general
type. However, the question of an exact degree bound is still open. A recent work of
Braun and Floystad [BF] improves the initial bound (∼ 10000) of Ellingsrud and Peskine
to d ≤ 105, but it is believed that the degree of the smooth, non-general type surfaces in
IP4 should be less or equal to 15. A similar finiteness result for 3-folds in IP5 was recently
proved in [BOSS], but the real degree bound is supposed to be much higher in this case.
Nevertheless, examples of smooth 3-folds in IP5 not of general type are known only up to
degree 18.

Another reason for the interest in studying surfaces in IP4 originates in the small number
of known liaison classes of such surfaces. On the other side, Proposition 0.32 below also
accounts for such a spareness behavior, so each new specimen of liaison classes is of real
interest. In this direction, the work of Decker, Ein and Schreyer [DES] provides a powerful
and effective method of construction of surfaces in IP4. Their method, whose basic idea is
the application of Beilinson’s spectral sequence to construct the ideal sheaf IS from the
cohomology modules H1 and H2, will be recalled in detail in chapter 2 below.

The aim of this paper is to provide various examples of smooth surfaces in IP4 of degree
≥ 10 and to describe their geometry. On one side we give an account of a rough attempt
of classification of smooth surfaces of degree 11 in IP4 and provide constructions for 22
different families of surfaces in this degree, being able in some cases to show also unique-
ness. Among the described families, 10 are of surfaces not of general type. Three of these
examples were previously described in [DES]. On another side we provide a series of ex-
amples of smooth surfaces in IP4, not of general type, in degrees varying from 12 up to
15. We’ve tried to work out examples of higher degrees but we failed in this attempt. The
methods of construction we used are mainly the Eagon-Northcott approach of [DES] and
liaison techniques. The most remarkable families we found are:

- minimal proper elliptic surfaces of degree 12 and sectional genus π = 13,
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- non-minimal K3 surfaces of degree 14 and sectional genus 19, and
- non-minimal abelian surfaces of degree 15, sectional genus 21, lying on only one quintic
hypersurface and thus not coming via a (5, 5) liaison from the Horrocks-Mumford torus
of degree 10. We remark here that the quintic elliptic scrolls, the bielliptic surfaces of
degree 10 and 15, the minimal abelian surfaces of degree 10 and the non-minimal abelian
surfaces of degree 15 arising of these via liaison are essentially the only other known smooth
irregular surfaces in IP4 (up to taking the pullback through a finite morphism IP4 → IP4).

At this point it may be appropriate to recall some references for the list of the smooth
surfaces in degrees less or equal to 10 in IP4. The classification and construction of surfaces
of degree ≤ 7 is initiated in [Ro] and completed up to degree 8 in [Io1], [Io2], [Ok2], [Ok3],
[Ok4], supplemented for the case of rational surfaces of degree 8, sectional genus 5 by [Al1].
In degree 9, the rational surfaces are described in [Al1] and [Al2], the Enriques surfaces
with π = 6 in [Cos] and [CV], while the classification and description of the liaison classes
is completed in [AR]. In degree 10, the classification in terms of numerical invariants and
the description of most of the surfaces is achieved in the beautiful thesis of K. Ranestad
[Ra1]. The existence and the uniqueness of bielliptic surfaces of degree 10, π = 6 was taken
care by [Ser], the Enriques surfaces of degree 10, π = 8 were first constructed in [DES]
and further studied in [Br], while the minimal abelian surfaces were first described about
20 years ago in [HM]. We provide here two constructions of a non-minimal K3 surface of
degree 10, π = 9, lying on only one quartic hypersurface, and thus give a positive answer
to the last existence case in [Ra1]. The left uniqueness problems, the syzygies and the
description of the liaison classes in degree 10 are completed in [PR].
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0. Notations and basic results

We will use standard notations as for instance those in [Ha], [BPV] or [GH]. The invariants
of a smooth surface S in IPn are denoted as follows:
d = d(S) = H2 the degree of S, where H is the hyperplane class
π = π(S) the genus of a generic hyperplane section
pg = pg(S) = h0(OS(K)) = h2(OS) the geometric genus of S, where K is the canonical
class
q = q(S) = h1(OS) the irregularity of S
χ = χ(S) = χ(OS) the Euler characteristic of the surface
s = h1(OS(1)) = h1(OS(H)) the speciality of S, see [Al1]
κ(S) the Kodaira dimension of S
pa(C) the arithmetic genus of a curve C on S
g(C) the geometric genus of a smooth curve C on S.
In blowing-up situations we will denote in the same way a divisor downstairs and its total
transform on the blow-up. Also a rational curve C with self-intersection C2 = −1 will be
called a (-1) curve and analogously we’ll speak of a (-2) curve when C2 = −2. A (-1) curve
will be called a (-1) line if it has degree 1 with respect to the current very ample linear
system on the surface.
For C a curve on S the adjunction gives a canonical divisor on the curve C:

KC ≡ (C +K)|C

hence the arithmetic genus of C can be computed by the following:

Adjunction formula 0.1. 2pa(C)− 2 = C2 + C ·K.

Proof. See [Ha Prop. 1.5].ut

For curves C, D and C ∪D lying on a smooth surface S the formula yields the following
addition rule for the arithmetic genus :

(0.2.) pa(C ∪D) = pa(C) + pa(D) + C ·D − 1.

Theorem (Riemann-Roch) 0.3.

χ(OS(C)) = h0(S,OS(C))− h1(S,OS(C)) + h0(S,OS(K − C)) =
1
2

(C2 − C ·K) + χ(S).

P roof. See [Ha Th.1.6].ut

Hodge index theorem 0.4. If D is an effective divisor on S with D2 > 0 and C is a
divisor such that D · C = 0, then C2 < 0 or C ≡ 0.

Proof. See [Ha Th.1.9].

The index theorem may be used to bound the self intersection number of a curve on S.
Namely one has the following:
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Corollary 0.5. Let D be an effective divisor with D2 > 0 on a smooth surface S. If C is
a divisor on S then

C2 ≤ (D · C)2

D2
.

P roof. Apply the index theorem to C − (D·CD2 )D.ut

For smooth surfaces in IP4 with normal bundle NS one obtains the equality:

(0.6.) d2 − c2(NS) = d2 − 10d− 5H ·K − 2K2 + 12χ(S) = 0,

which expresses the fact that S has no double points. This will be in the sequel referred
to as the double point formula.

Theorem (Severi) 0.7. All smooth surfaces in IP4, except for the Veronese surface, are
linearly normal.

Proof. See [Sev] or [Mo].ut

(0.8.) Multisecants.(see [LB]) Some classical numerical formulas for multisecant lines to
a smooth surface in IP4 have been recently studied again by Le Barz. Consider the double
curve Γ of a general projection of such a surface S to IP3 and denote by

δ =
(
d− 1

2

)
− π

the degree of Γ, by

t =
(
d− 1

3

)
− π(d− 3) + 2χ− 2

the number of apparent triple points, i.e. the number of trisecants to S which meet a
general point and by

h =
1
2

(δ(δ − d+ 2)− 3t)

the number of apparent double points on Γ.
The number of 4-secants to S which meet a general line (if finite) is :

(0.9.) N4(d, π, χ) = 2
(
d

4

)
+ t(d− 3) + h− δ

(
d− 3

2

)
.

The number of 5-secants to S which meet a general plane (if finite) is:

N5(d, π, χ) =
1
24
d(d− 3)(d− 4)(d2 − 15d+ 2)−

(
δ

2

)
(d− 4)(0.10.)

− δ

6
(d− 2)(d− 4)(d− 21) + h(d− 8) + δt− 3t(d− 3).
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Suppose there are no lines on S with positive self-intersection. Then the number of 6-
secants (if finite) plus the number of exceptional lines on S is:

N6(d, π, χ) =− 1
144

d(d− 4)(d− 5)(d3 + 30d2 − 577d+ 786)(0.11.)

+ δ(2
(
d

4

)
+ 2
(
d

3

)
− 45

(
d

2

)
+ 148d− 317)

− 1
2

(
δ

2

)
(d2 − 27d+ 120)− 2

(
δ

3

)
+ h(δ − 8d+ 56) + t(9d− 3δ − 28) +

(
t

2

)
.

(0.12.) Adjunction theory. In order to determine the possible numerical invariants
of the various smooth surfaces in IP4 and to see how the constructed surfaces fit into the
Enriques-Kodaira classification we will use adjunction theory [So], [VdV], [SV]:

Theorem (Adjunction mapping ) 0.13. Let S be a smooth surface, H be a very ample
divisor and K the canonical divisor. Then | H + K | is non-special and has dimension
N = π + χ− 2. Furthermore
(I) | H+K |= ∅ iff S is either a scroll over a curve of genus q = π, or IP2 linearly embedded,
or the Veronese surface.
(II) If | H +K |6= ∅, then | H +K | is base point free. In this case
a) (H +K)2 = 0 iff S is a Del Pezzo surface or a conic bundle,
b) If (H + K)2 > 0, then the map ϕH+K : S −→ S′ ⊂ IPN is birational onto a smooth
surface S′ and is the blowing down of the (-1) lines on S unless

1) S = IP2(p1, . . . , p7) and H ≡ 6l −
∑7
i=1 2Ei (the Geiser involution)

2) S = IP2(p1, . . . , p8) and H ≡ 6l −
∑7
i=1 2Ei − E8

3) S = IP2(p1, . . . , p8) and H ≡ 9l −
∑8
i=1 3Ei (the Bertini involution )

4) S = P(E), where E is a rank 2 indecomposable bundle over an elliptic curve and
H ≡ 3B where B is a section with B2 = 1 on S.

Related to the above theorem, the following two results impose restrictions on the invariants
of a smooth surface in IP4.

Theorem 0.14. [Au1][La]. The only smooth, non-degenerate scrolls in IP4 are the
rational cubic and the elliptic quintic scrolls.

Theorem 0.15. [ES]. The only smooth conic bundles in IP4 are the rational Castelnuovo
surfaces of degree 5 and the Del Pezzo surfaces of degree 4.

We derive some easy consequences which will be freely used in the text:
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Lemma 0.16. Let S be a smooth surface with κ(S) ≥ 0 and let H be a very ample
divisor. Then (H +K)K ≥ 0.

P roof. Clear since K is pseudo-effective.ut

Lemma 0.17. Let S be a smooth surface, let H be a very ample divisor on it and assume
that π(S) 6= q(S). Then | K −H |= ∅, when K2 < H2.

Proof. In the above hypothesis | K +H | is nef.ut

Lemma 0.18. Let S be a smooth surface and let H be a very ample divisor on it. Then
(HK)2 < H2 implies that κ(S) ≤ 1.

Proof. We observe first that the above numerical condition implies, via the Hodge index
theorem, that K2 ≤ 0. Assume now that S would be a surface of general type and consider
the adjunction morphism

ϕH+K : S −→ S1
H1
↪→IPN ,

which blows down the (−1) lines on S. By using deg S1 = H2
1 = (H +K)2 and H1K1 =

(H +K)K we obtain

H2
1 = (H2 + 2HK +K2) > (HK)2 + 2(HK)K2 + (K2)

2
= (HK +K2)

2
= (H1K1)2

since 2HK + K2 = (2H + K)K ≥ 0, K2 < 1, and by assumption (HK)2 < H2. This
means that the numerical hypothesis is preserved through the adjunction process, hence
it will hold also on the minimal model Smin of S, where the adjunction stops. Therefore
we would obtain K2

min ≤ 0 which is impossible for a minimal surface of general type. ut

The same arguments prove also the following:

Remark 0.19. Let S be a smooth surface of general type and let H be a very ample
divisor. If (HK)2 < pH2 for some p ∈ IN∗, then K2

min < p.ut

Lemma 0.20. Let S be a smooth non-degenerate surface in IP4 with κ(S) = −∞. Then
either
a) S is a scroll (d = 3, 5), or
b) S is a conic bundle (d = 4, 5), or
c) S is a Veronese surface (d = 4), or
d) the following inequalities hold

(0.21.) 5χ ≥ 2π − d2 − 7d+ 8
2

and

(0.22.) 7χ ≥ 2π − d2 − 7d+ 4
2
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Moreover, when the last inequality is strict then also

(0.23.) 26χ ≥ 7π − 3d2 + 21d− 14
2

Proof. The above inequalities express the fact that the image of S through the adjunction
mapping S1 = ϕH+K(S) ⊂ IPπ+χ−2 is a non-degenerate surface which has sectional genus
π1 ≥ q1, and that the adjoint linear system on S1 is globally generated when π1 6= q1.ut

(0.24.) Liaison.(see [PS]) Two surfaces S and S′ in IP4 are said to be (geometrically)
linked (m,n) if there exist hypersurfaces V and V ′ of degree n and respectively m such
that V ∩ V ′ = S ∪ S′. There are two standard exact sequences of linkage, namely:

0 −→ OS(K) −→ OS∪S′(m+ n− 5) −→ OS′(m+ n− 5) −→ 0

0 −→ OS(K) −→ OS(m+ n− 5) −→ OS∩S′(m+ n− 5) −→ 0.

The first sequence yields the relation between the Euler-Poincaré characteristics:

(0.25.) χ(S′) = χ(V ∩ V ′)− χ(OS(m+ n− 5)).

The corresponding sequence for linkage of curves in IP3 yields the following relation between
the sectional genera:

(0.26.) π(S)− π(S′) =
1
2

(m+ n− 4)(d(S)− d(S′)).

In terms of syzygies if
0 −→ E1 −→ E0 −→ IS −→ 0

is a resolution with locally free sheaves of the ideal sheaf IS of S, then a mapping cone
produces a locally free resolution

0 −→ E∨0 (−m− n) −→ E∨1 (−m− n)⊕O(−m)⊕O(−n) −→ IS′ −→ 0

for the ideal sheaf of the linked surface. In particular we obtain the following isomorphisms
between the Hartshorne-Rao modules

(0.27.) M3−i(S) ∼= M i(S′)
∗
(5−m− n) i = 1, 2

We recall also the relation between the homogeneous ideals of the linked surfaces

(0.28.) IS′ = (IV ∩V ′ : IS)

For a proof of existence via linkage, the following propositions will be used:
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Proposition 0.29. If S and T are linked, then S is locally Cohen-Macaulay if and only
if T is locally Cohen-Macaulay.

See [PS, Proposition 1.3] for a proof.

Proposition 0.30. If Z is a local complete intersection surface in IP4, scheme theoretically
cut out by hypersurfaces of degree d, then Z can be linked to a smooth surface S in the
complete intersection of two hypersurfaces of degree d.

For a proof see [PS, Proposition 4.1].

Remark 0.31. (Peskine, cf. [Ra1]) The above proposition remains true if Z is not a local
complete intersection in at most a finite set of points but it is locally Cohen-Macaulay and
the tangent cone at each of these points is linked to a plane in a complete intersection.

In order to determine the minimal elements of an even liaison class we will need the
following version of a lemma from [LR]:

Lemma 0.32. Let Z be a codimension two, locally Cohen-Macaulay subscheme of IPn

and define the speciality of Z as e(Z):=max { t | hn−2(OZ(t)) 6= 0 }.
a) If h0(IZ(e(Z) + n)) = 0, then Z is a minimal element in its even liaison class.
b) If moreover h0(IZ(e(Z) +n+ 1)) = 0, then Z is the unique minimal element in its even
liaison class.

The proof in [LR] can be easily adapted to the general case.

(0.33.) Reducible curves. One method to work out the classification of the various
studied surfaces will be to find special reducible hyperplane sections on them. For the
discussion of the components with an arithmetic genus too high in comparison with their
degree we use the following

Lemma 0.34. Let C be a curve of degree d and arithmetic genus p on a smooth surface
S in IP4. One has the following possibilities:
a) If d ≤ 3, then p ≤ 1 with equality iff C is a plane cubic curve
b) If d = 4, then p ≤ 1 or p = 3 and C is a plane quartic curve
c) If d = 5, then p ≤ 3 or p = 6 and C is a plane quintic curve
d) If d = 6, then p ≤ 6 or p = 10 and C is a plane sextic curve. Moreover, if p = 5 (resp.
p = 6) then C decomposes into a plane quintic curve and a line which don’t meet (resp.
meet in a point)
e) If d = 7, then p ≤ 6 unless C is a plane septic curve, or C decomposes into a plane sextic
and a line which meet in a point (p = 10), or which don’t meet (p = 9), or C decomposes
into a plane quintic curve and a plane conic which meet along a subscheme of length two
(p = 7)
f) If d = 8, then p ≤ 9 unless C is a plane curve, or C decomposes into a plane septic and
a line which meet in a point (p = 15), or which don’t meet (p = 14), or C decomposes
into a plane sextic curve and a plane conic which meet along a subscheme of length two
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(p = 11), or in a point (p = 10), or C decomposes into a plane sextic curve and two skew
lines meeting the sextic in points (p = 10).

Proof. See [Ra1]. It is straightforward using Castelnuovo’s bound for the genus of an
irreducible curve and formula (0.2). For the last case one can use also the results of [GLP]
relating the regularity of the ideal of an irreducible curve with the existence of higher order
secant lines.ut

Lemma 0.35. Let S ⊂ IP4 be a smooth non-degenerate surface and let π be a plane in
IP4 cutting S along a curve C. Then C has no multiple components.

Proof. Assume that C would have a multiple component D, i.e. C = 2D + E with E
effective and let d = degD. Then adjunction gives

D2 +DK = (d− 1)(d− 2)− 2 = d2 − 3d

and
2D(2D +K) = (2d− 1)(2d− 2)− 2.

It follows that D2 = d which contradicts Hodge index

D2 ≤ DH/degS < d. ut

Lemma 0.36.[PR]. Assume now that S ⊂ IP4 contains a plane curve of degree dp. Then
a) h1(S,OS(1)) ≥ 1

2 (dp − 2)(dp − 3) if pg = 0, while
b) h1(S,OS(1)) ≥ 1

2 (dp − 2)(dp − 3) + 1− pg if pg ≥ 1.

Proof. Let C be the plane curve on S, let D = H −C and consider the cohomology of the
exact sequence

0 −→ OS(D) −→ OS(H) −→ OC(H) −→ 0

Then h2(S,OS(D)) = 0 if pg = 0, hence h1(S,OS(H)) ≥ h1(C,OC(H)). In general
h2(S,OS(D)) ≤ pg − 1 when pg ≥ 1, so h1(S,OS(H)) ≥ h1(C,OC(H))− pg + 1.ut

The previous bounds will also be used in connection with the following:

Lemma 0.37.[Bo]. Let C be an effective Cartier divisor on a smooth surface S and let L
be a line bundle on C with h0(C,L) 6= 0. Then there exists a decomposition C = C1 +C2,
C1 ≥ 0, C2 > 0 such that

C1C2 ≤ degC2
(L|C2).

The following lemmas will be used in the text to produce reducible curves on the studied
surfaces.

Lemma 0.38.[Ra2]. Let S be a smooth, (proper) elliptic surface in IP4 and let Smin be
its minimal model. We denote also by m = min{−K2, pg − 1}.
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a) If pg = 1, then HK +K2 ≥ 3.
b) If pg ≥ 2, then

HK +K2 −m
pg − 1

≥ 3.

P roof. See [Ra2]. One uses Kodaira’s formula [BPV] for the canonical class of an elliptic
fibration and the fact that an elliptic curve has degree at least 3. ut

Analogously, for general-type surfaces one has

Lemma 0.39.[Ra2]. Let S be a smooth general type surface in IP4 with minimal model
Smin. We denote by Kmin the total transform on S of the canonical class on Smin and by
m = min{K2

min −K2, pg − 1}. Then there exists a curve D on S of degree

degD ≤ HK +K2 −K2
min −m

and arithmetic genus
pa(D) = K2

min + 1.

(0.40.) Postulation of points. When identifying 6-secant lines to surfaces in IP4 we’ll
look to their plane sections through such lines and we’ll make use of the following result
from [Ra1].

Lemma 0.41. Let π : S → IP2 be the morphism obtained by blowing up t points (some
possibly infinitely close) in IP2, where 9 ≤ t ≤ 12. Denote the exceptional divisors by
E1, ..., Et and consider the linear system

|C| = |4π∗l −
t∑
i=1

Ei|

on S.

If dim|C| ≥ 15− t and |C| has a fixed curve, then there is a curve Γ ≡ π∗l −
∑6
k=1Eik or

Γ ≡ 2π∗l −
∑10
k=1Eik on S, which is part of the fixed curve of |C|.

If dim|C| ≥ 15− t and |C| has no fixed curve, then t = 12, dim|C| = 3 and |C| has no base

points. Furthermore there is a curve Γ ≡ 3π∗l −
∑12
i=1Ei on S.

If t = 12, dim|C| = 2 and |C| has a fixed curve, then there is a curve Γ ≡ π∗l−
∑5
k=1Eik

or Γ ≡ 2π∗l−
∑9
k=1Eik or Γ ≡ 3π∗l−

∑12
i=1Ei on S, which is part of the fixed curve of

|C|.
If t = 12, dim|C| = 2 and |C| has no fixed curve, then |C| has at the most one basepoint.

For a proof see [Ra1], (t = 12), and [PR]. The above lemma is, in a certain sense, a special
case of the general result in [EP].
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1. The Eagon-Northcott complex method

We recall in this chapter a powerful method of construction for surfaces in IP4 which was
first introduced in [DES]. The rough idea is to realize the surface one wishes to construct
as the determinantal locus of a morphism between two vector bundles on IP4. Namely, let
E and F be vector bundles on IP4 of ranks rkE = r , rkF = r + 1 and, for ϕ ∈ Hom(E ,F)
an injective morphism, consider the degeneracy locus D(ϕ) which is the subscheme given
locally by the r-minors of the matrices associated to ϕ. As a set

D(ϕ) = { x ∈ IP4 | rk ϕ(x) ≤ r − 1 }.

General facts, see [ACGH], implies that D(ϕ), when non-empty, has codimension ≥ 2.
Moreover, when it has the expected codimension, i.e. equality holds, D(ϕ) is a locally
Cohen-Macaulay surface. Given a morphism ϕ, one constructs the so called Eagon-
Northcott complex:

∧r+1F∗ ⊗ ∧rE ∧
rϕ∗(c1(E)−c1(F))−→ F∗ ϕ∗ −→ E∗yid⊗∧rϕ

xid

∧r+1F∗ ⊗ ∧rF contraction−→ F∗ .

Proposition 1.1. In the above notations, the following statements are equivalent:
a) coker ϕ is an ideal sheaf.
b) coker ϕ is either the ideal sheaf of a pure codimension 2 subscheme or OIP4 .
c) The Eagon-Northcott complex

0 −→ E ϕ−→ F ∧
rϕ(c1(F)−c1(E))−→ OIP4(c1(F)− c1(E))

is exact.

Proof. See [ACGH].ut

For later reference, we state here two well known corollaries of the above proposition:

Corollary 1.2. Let S be a reduced scheme, let E and F be vector bundles on IP4 × S
of ranks r and respectively r + 1 and let ϕ : E −→ F be an injective morphism. Let also
Z = D(ϕ) and suppose that Z dominates S. Then the set of points where Zs ⊂ IP4 × {s}
has pure codimension two is open and Z is flat over S above it.

Corollary 1.3. Let E and F be two vector bundles on IP4 of ranks r and respectively
r + 1 and let ϕ1 and ϕ2 be two morphisms between E and F . Assume also that both
determinantal loci Si = D(ϕi), i = 1, 2 have the expected codimension two. Then S1 and
S2 lie in the same irreducible component of the Hilbert scheme.

For a proof of both corollaries see for example [BB] or [MDP].
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The aim of the method is to realize the desired surface S as a, hopefully smooth, degen-
eration locus of a morphism ϕ between suitable chosen vector bundles E and F . In this
case, the Eagon-Northcott complex provides a vector bundle resolution for the ideal sheaf
of the surface and we can relate the invariants of the surface S with those of E and F .
Normalizing, it is is enough to deal with the case of an exact sequence of type:

0 −→ E −→ F −→ IS −→ 0

where E , F are as above and S is a surface in IP4.
Riemann-Roch without denominators [Fu], gives

1− i∗(c(N∗S|IP4)−1) = c(E − F)

where i : S ↪→ IP4 is the inclusion and E −F means difference in the Grothendieck group.
The homogeneous parts yields the following relations:
in degree 2, Porteus´ formula

degS = d = c2(F)− c2(E)

in degree 3
i∗(c1(NS|IP4)) = c3(F)− c3(E)− c1(c2(F)− c2(E)) (∗)

in degree 4

i∗(c1(NS|IP4)2) = c4(F)− c4(E)− c1(c3(F)− c3(E)) + (c21 − c2(E))(c2(F)− c2(E)) (∗∗)

where c1 = c1(E) = c1(F).
Assume now that S is smooth. Then adjunction and the self-intersection formula [Ha] give
c1(NS|IP4) = 5H + K and c2(NS|IP4) = d2. Substituting in (∗) and (∗∗) one obtains for
the sectional genus

2π − 2 = c3(F)− c3(E)− d(4 + c1)

and for the self-intersection of the canonical class

K2 = c4(F)− c4(E)− (10 + c1)(c3(F)− c3(E)) + (c21− c2(E))(c2(F)− c2(E)) + (25 + 10c1)d.

Finally the double point formula, for instance, allows to determine the Euler characteristic
χ(OS).

To construct a surface S with the desired invariants we’ll have to find appropriate vector
bundles E and F . A general way to construct vector bundles (or more generally coherent
sheaves) is to determine first the differentials of the Beilinson’s spectral sequence:
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Theorem 1.4.[Bei]. Let G be a coherent sheaf on IPn = P(V ). There exists a spectral
sequence with E1 terms

Epq1 = Hq(IPn,G(p))⊗ Ω−pIPn(−p)
converging to G; i.e. Epq∞ = 0 for p+ q 6= 0 and ⊕Ep,−p∞ is the associated graded sheaf of a
suitable filtration of G.

All the E1-terms are in the 2nd quadrant and only finitely many of them are non-zero. Via
the canonical isomorphisms induced by contraction, Hom(ΩiIPn(i),ΩjIPn(j)) ∼= Λi−jV , for
i ≥ j, cf. [Bei], the d1-differentials

dpq1 ∈ Hom(Hq(IPn,G(p))⊗ Ω−pIPn(−p),Hq(IPn,G(p+ 1))⊗ Ω−p−1
IPn (−p− 1))

can be identified with the natural multiplication maps in

Hom(H0(IPn,OIPn(1))⊗Hq(IPn,G(p)),Hq(IPn,G(p+ 1)).

This also means that to determine the d1-differentials is equivalent to fixing the mod-
ule structure of ⊕pHq(IPn,G(p)). The higher order differentials dr are induced by maps
Epq1 −→ Ep+r,q−r+1

1 . These maps are not canonically given.

The method is to apply Beilinson’s spectral sequence to the twisted ideal sheaf IS(m) for
m = 3 or 4 and to interpret part of the spectral sequence as the spectral sequence for a
vector bundle E and the other part as that for a vector bundle F . The differentials will
induce a morphism

ϕ : E −→ F
whose degeneracy locus D(ϕ) will be the desired surface.
The E1-terms of the spectral sequence are determined by the dimensions hi(IS(p)) for
i = 0, 4, p = m− 4,m. Riemann-Roch gives

Lemma 1.5. Let S be a smooth surface in IP4. Then

χ(IS(p)) =
(
p+ 4

4

)
−
(
p+ 1

2

)
d+ p(π − 1)− χ.

We observe also that some of the cohomology groups vanish :

– h4(IS(p)) = h4(OIP4(p)) = 0 for all p ≥ −4;
– h3(IS(p)) = h2(OS(p)) = h0(OS(K − pH)) = 0 for all p ≥ 1,

when, for example, either S is not of general type or S is a general type
surface with pg ≤ 4, or S is a general type surface with K2 < HK;

– h2(IS(p)) = h1(OS(p)) = h1(OS(K − pH)) = 0 for all p ≤ −1
by Kodaira’s vanishing theorem;

– h1(IS(p)) = 0 for all p ≤ 0;
– h1(IS(1)) = 0 ,

by (0.7), unless if S is the Veronese surface;
– h0(IS(1)) = 0 ,

unless if S is degenerate, i.e. lies in a hyperplane.
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In particular the speciality, cf. [Al1], of a smooth non-degenerate, non-general type surface
different from the Veronese surface is given by Riemann-Roch

s = h1(OS(1)) = χ(IS(1)) = π − d+ 4− χ

Related to the postulation of a surface in IP4 we mention the following results:

Theorem 1.6.[Ro][Au1]. Let S be a smooth non-degenerate surface in IP4 which is
contained in a hyperquadric. Then

π = 1 +
[
d(d− 4)

4

]
and S is either the complete intersection of the hyperquadric with another hypersurface,
or S is linked to a plane in the complete intersection of the hyperquadric with another
hypersurface.

Theorem 1.7.[Au1][Ko]. Let S be smooth surface in IP4 which is contained in an irre-
ducible cubic hypersurface V . Then either S is projectively Cohen-Macaulay and linked
on V to an irreducible scheme of degree ≤ 3, or S is linked on V to a Veronese surface, or
to an elliptic quintic scroll.

Corollary 1.8. A smooth surface S in IP4 of degree ≥ 9 which is contained in a cubic
hypersurface is necessarily of general type.

Since surfaces on quadric and cubic hypersurfaces are completely classified, for construction
purposes we will mainly assume that

h0(IS(2)) = h0(IS(3)) = 0.

To conclude, for a smooth non-degenerate surface S in IP4, not of general type, different
from the Veronese surface and not lying on a cubic hypersurface, we can draw the following
Beilinson cohomology diagram:

↑
| i- - - - - - -

p 0
- - p - - - -
pN +1

- - p - - - -
p 0

- - p - - - -
p 0

- - p - - - -
p 0

- - - - - - -

0 0 0 0 0

pg 0 0 0 0

q s h1(OS(2))

0 0 h1(IS(2)) h1(IS(3)) h1(IS(4))

0 0 0 0 h0(IS(4))

- - -

- - -

- - -

- - -

- - -

−−→
p

,

where
N = π + χ− 2.
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As previously mentioned, to construct the surface S we will first try to identify the
Hartshorne-Rao modules Hi(IP4, IS(∗)), i = 1, 2. Sheafification of suitable syzygy modules
will provide afterwards the needed vector bundles E and F .

(1.9.) Graded artinian modules. We will briefly recall here some basic facts about
graded, finite length modules. Let V = spank < e0, e1, e2, e3, e4 >. Let also R =
k[x0, x1, x2, x3, x4] be the homogeneous coordinate ring of IP4 = IP(V ) and let M =
⊕n∈ZMn be a graded k-vector space of finite length. A structure of a graded R-module on
M is determined by a degree 0, graded morphism of k-algebras f : R → Endgr(M), i.e.,
by a set of k-linear morphisms

fd : Rd → Endd(M) = { u ∈ End(M) | u(Mi) ⊂Mi+d ∀ i },

for d ∈ IN. More precisely, since R = S∗(V ∗), this is equivalent to fix a degree 0, graded
k-morphism

u : R1⊗kM(−1)→M (∗)

satisfying the following commutation relations:

ui+1(h⊗ ui(g ⊗ α)) = ui+1(g ⊗ ui(h⊗ α))

for all i, g, h ∈ R1 = V ∗, α ∈ Mi, where we have denoted by ui : R1⊗kMi → Mi+1 the
degree i component of u.

We fix for the sequel on M = ⊕n∈ZMn a finite length, graded R-module structure. We’ll
denote by

M∨ = HomR(M,R)

the dual module and by

M∗ = Homk(M,k) = ⊕
n∈Z

Homk(M−n, k)

the k-dual module. We recall also that

M∗ ∼= HomR(M,R∗) (∗)

and that local duality gives

ExtiR(M,R) = 0, for i ≤ 4 and Ext5
R(M,R) ∼= M∗(5)

the isomorphisms being homogeneous of degree 0. Let

0←−M σ0←− L0
σ1←− L1

σ2←− L2 ←− · · · ←− L4
σ5←− L5 ←−0 (∗)

be a minimal free resolution of M . We distinguish, for later reference, the following data:
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- the support of M

supp M= { n | Mn 6= 0 }

- the Hilbert function

χM(n)= dimkMn=
∑5
i=0 (−1)ih0(IP4, L̃i(n))

- the least degree of a generator of M

lM= min{ n ∈ Z | Mn 6= 0 }= min{ n ∈ Z | h0(IP4, L̃0(n)) 6= 0 }

- the highest degree of a generator of L5 −5

sM= max{ n ∈ Z | Mn 6= 0 }= −5 + max{ n ∈ Z | h0(IP4, L̃5

∗
(−n)) 6= 0 }

- the Mumford-Castelnuovo regularity of the sheafified syzygies

e(Syzk(M))= max
i,j

j≥k+1

(eij − j) if Li =
rkLi
⊕
j=1

R(−eij) , i = 0, 5,

where we have denoted by

Syzk(M) := (ker σk)∼ = (im σk+1)∼ , i = 1, 4

the k-th sheafified syzygy module.
A minimal free resolution of M∗ is obtained by taking the R-dual of (∗):

0←−M∗(5) θ←− L∨5
σ∨5←− L∨4

σ∨4←− L∨3 ←− · · · ←− L∨1
σ∨1←− L∨0 ←−0

We recall now how to recover a minimal free resolution of M from the knowledge of the
multiplication map u : R1⊗kM(−1) → M . In Green’s terms [Gr], this is to compute the
Koszul homology groups of M . Tensoring the resolution (∗) by k = R/(x0, x1, x2, x3, x4)
over R we obtain a complex of k-vector spaces

0←−M σ0←− L0
σ1←− L1

σ2←− L2 ←− · · · ←− L4
σ5←− L5 ←−0

whose homology yields the ToriR(M,k)’s. Moreover, the resolution (∗) being minimal, we
obtain that in fact Li ∼= ToriR(M,k) as graded k-vector spaces, whence

Li = ⊕
j∈Z

(ToriR(M,k))j ⊗k R(−j − i) for all i = 0, 5.

To compute the Tor-modules one may use also the resolution of k given by the Koszul
complex K•

0←− k d0←− R d1←− Λ1V ∗⊗kR(−1) d2←− Λ2V ∗⊗kR(−2)←− · · · d5←− Λ5V ∗⊗kR(−5)←−0.
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Tensoring K• over R with M yields the complex K• ⊗kM

0←−M δ1←− Λ1V ∗ ⊗kM(−1) δ2←− Λ2V ∗ ⊗kM(−2)←− · · · δ5←− Λ5V ∗ ⊗kM(−5)←−0

which computes the ToriR(M,k)’s. We observe also that the differential δ1 is nothing else
than the multiplicative structure map u : R1⊗kM(−1)→M . To bring everything together
and to compute also the morphisms appearing in the minimal resolution of M we use a
double complex of graded R-modules, whose terms are

Ci,j = Mt−j ⊗k
i+j−t

Λ V ∗ ⊗k R(−i), i, j ≥ 0,

where, for simplicity, we assumed that M is normalized such as M = ⊕ti=0Mi and that, by
convention, all exterior powers outside the range 0, . . . , 5 vanish. As for the differentials
the vertical ones are given by δ = (δi+j−t)i ⊗k 1IR(−i) : Ci,j → Ci,j−1 where, as above, δp
are the differentials of K• ⊗kM , and the horizontal ones by d = 1IMt−j ⊗k (di+j−t(j− t)) :
Ci,j → Ci−1,j. We set as usual D = d+ δ.

Lemma 1.10. (d+ δ)2 = 0.

Proof. Clear.ut

To summarize, we have the following display of the double complex C••:

y y y
M0 ⊗k R

1IM0⊗d1←− M0 ⊗k Λ1 V ∗ ⊗k R(−1)
1IM0⊗d2←− M0 ⊗k Λ2 V ∗ ⊗k R(−2) ←−· · ·y y(δ1)0⊗1IR(−1)

y(δ2)0⊗1IR(−2)

0 ←− M1 ⊗k R(−1)
1IM1⊗d1←− M1 ⊗k Λ1 V ∗ ⊗k R(−2) ←−· · ·y y y(δ1)1⊗1IR(−2)

0 ←− 0 ←− M2 ⊗k R(−2) ←−· · ·y y y
We remark that, since ⊕

i
Ci,j = Mt−j ⊗k K•(j − t), the horizontal lines are exact except

for the most left, non-zero, positions where the cokernels of the differentials are, as graded
R-modules, Mt−j ⊗k k(j− t). This means that the homology spectral sequence associated
to the second filtration of the above complex is degenerated at ′′E1 and therefore we get
the following

Theorem 1.11. The following assertions hold:
a) The total homology of the double complex C•• is

HD
n (C••) =

{
M when n = t (as R-modules)
0 otherwise
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and
t
⊕
k=0

′′E∞k,t−k =
t
⊕
k=0

′′E1
k,t−k is the associated graded module to the descending filtration

by degrees of M (i.e. by
t
⊕
n≥k

Mn, k ≥ 0).

b) The homology spectral sequence associated to the first filtration computes a minimal
free resolution of M , namely

0←−M = cokerσ1 ←−
t
⊕
k=0

′E1
k,t−k

σ1←−
t
⊕
k=0

′E1
k,(t+1)−k

σ2←−· · ·←−
t
⊕
k=0

′E1
k,(t+5)−k ←− 0

where the components of σi are given by the differentials

dk−l : ′E1
k,(t+i)−k−→′E

1
l,(t+i−1)−l, k, l = 0, t, k > l

with an obvious abuse of notations.

Proof. Clear, except may be for the fact that the R-module structure of HD
t (C••) = M is

the one we started with. But this follows easily, since the vertical differentials are induced
by the graded pieces of the multiplicative structure morphism u : R1⊗kM(−1)→M .ut

Remark 1.12. The group GL(5, k) = GL(V ∗) acts naturally on R = S∗(V ∗) and on the
Koszul complex K•, and its action is also compatible with the differentials of the double
complex C••. In particular, this fact will allow us to identify later the action of subgroups
of GL(5, k) on the minimal free resolution of a module M and to get information on the
Betti numbers in case of invariance (e.g., see chapter 7 for an application of this type).

Remark 1.13. For practical construction purposes we’ll need to determine from the dou-
ble complex C•• only the presentation morphism

M = cokerσ1 ←−
t
⊕
k=0

′E1
k,t−k

σ1←−
t
⊕
k=0

′E1
k,(t+1)−k.

Since σ1 is a direct sum of differentials dn, this can be done in specific cases by the usual
”tic-tac-toe” procedure.

Remark 1.14. In the construction of the complex C•• one can in fact take for the vertical
differentials any lifts of the multiplication maps

(δ1)i : Mi ⊗k
1

ΛV ∗ ⊗k R(−1)−→Mi+1 ⊗k R(−1)

along the Koszul complexes.

One method we shall use to construct vector bundles with prescribed cohomologies is to
sheafify syzygy modules. Namely we use the following
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Proposition 1.15. In the above notation, for all i = 1, 3, the sheafified syzygy module
Ni = Syzi(M) is a vector bundle on IP4 with cohomology

Hj(IP4,Ni(∗)) ∼=
{
M for j = i, as graded R-modules
0 for all j 6= i, j = 1, 3 .

Conversely, any vector bundle F with the above intermediate cohomology is stably equiv-
alent with Ni, namely

F ∼= Ni⊕L, with L a direct sum of line bundles

For a proof, see for instance [DES].

We shall make later implicit use of the following well known result concerning extensions
of modules

Proposition 1.16. Let E and F be two coherent sheaves on IP4 and denote by E = H0
∗(E)

and by F = H0
∗(F). There exists a spectral sequence

Epq2 = ExtpR(E,Hq
∗(F)) ⇒ Extp+qOIP4

(E ,F).

In particular the following comparison sequence is exact

0−→ Ext1
R(E,F )0 −→ Ext1

OIP4
(E ,F) −→ HomR(E,H1

∗(F)) −→

Ext2
R(E,F )0 −→ Ext2

OIP4
(E ,F).

P roof. See for instance [MDP]. One writes the spectral sequence of a composition of
functors [Gro], and uses the adjunction of the two functors ˜ and H0

∗. The comparison
sequence is the associated low-degree sequence.ut

Remark 1.17.
a) The first map in the comparison sequence is associating to an extension class of an
extension of graded R-modules the corresponding extension class in Ext1

OIP4
(E ,F) of the

short exact sequence obtained via sheafification.
b) The second map is associating to the extension class of an exact sequence

0 −→ F −→ G −→ E −→ 0

the cobord map δ : E−→H1
∗(F) in the long exact cohomology sequence.

17



2. A K3 surface of degree 10

We describe in this chapter two constructions of a smooth, non-minimal K3 surface S ⊂ IP4

with d = 10, π = 9. A family of surfaces with these invariants, which all lie on two quartic
hypersurfaces, has been constructed by K. Ranestad in [Ra1]. We give an example of a
family of surfaces which lie on a single quartic.

In terms of numerical invariants, we recall the following:

Proposition 2.1.[Ra1]. Let S be a smooth surface of degree 10 in IP4 with π = 9 and
χ = 2. Then either
a) S is a regular, proper elliptic surface with three (−1) lines, or
b) S is a non-minimal K3 surface with three (−1) conics, or
c) S is a non-minimal K3 surface with two (−1) lines and one (−1) quartic.

For a proof, see [Ra1] and also [PR] for the non-existence of a smooth K3 surface with the
above invariants and having one (−1) line, one (−1) conic and one (−1) cubic.

K. Ranestad has constructed in [Ra1] examples of surfaces for the cases a) and b) in the
above proposition. We give examples for c). First a lemma.

Lemma 2.2.
a) h1(OS(k)) = 0 for k ≥ 2.
b) h0(IS(4)) ≥ 1.

Proof. Severi’s theorem gives h1(OS(1)) = 1. Thus if h2(IS(2)) > 0, then h2(IH(2)) > 0
for at least a web of hyperplane sections H. But the general hyperplane section H in
the web is smooth and 2π − 2 = 16 < 20, so OH(2H) is non-special, i.e., h1(OH(2)) =
h2(IH(2)) = 0, which is a contradiction; hence by induction a). Part a), Riemann-Roch
and (1.6), (1.7) give h1(IS(2)) = 1 and h1(IS(3)) = 3, whence h0(IH(3)) = 1 for at
least a pencil of hyperplane sections. But if h0(IS(4)) = 0, then h1(IS(4)) = 0 and thus
h0(IH(4)) = h1(IS(3)) = 3 for all H. This is a contradiction since for the hyperplanes in
the above pencil h0(IH(4)) ≥ 4.�

Therefore the cohomology diagram of the surface S looks like:

i ↑

1

1 hi(IS(p))

1 3 a

a−−−−−−−−−−−−−−−−−−−−−−−−−→
p
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where a ≥ 1. When a ≥ 2 one shows, see [PR], that in fact a = 2 and S is a smooth
K3 surface with three (−1) conics, as constructed in [Ra1]. A construction of this surface
using the Eagon-Northcott complex can be found in [DES].

Therefore we assume in the sequel that a = 1 and we look for graded artinian modules
M = ⊕n≥−2Mn with Hilbert function (1, 3, 1), which we’ll suppose generated in the first
non-zero twist, i.e., monogeneous. Any such module has a minimal free presentation of
type

0← M ←− R(2)
ψ←− 2R(1)⊕ 5R

where the linear part of ψ is given, without loss of generality, by say x0 and x1, and
the quadratic by q1, q2, . . . , q5 ∈ k[x2, x3, x4], quadrics in three variables without common
zeroes. Therefore the choice of ψ is equivalent to that of a hyperplane section of the
Veronese surface in IP5, and there are two types of such curves: the irreducible hyperplane
sections leading to the generic module with this Hilbert function and the reducible ones,
two conics with a common point, leading to a special module.
In both cases let F = Syz1(M) and E = OIP4(−1) ⊕ Ω3

IP4(3). By (1.15) H1(F(∗)) =
H1(IS(∗+ 4)) and Hi(F(∗)) = 0 for i = 2, 3. For a generic module M , F has a minimal
free resolution of type

O
0 ← F ←− ⊕

15O(−1) 15O(−2) 5O(−3)↖
⊕ ←− ⊕

O(−3) 2O(−4)
↖
O(−5) ← 0

and for M corresponding to the reducible hyperplane sections of the Veronese surface F
has a resolution of type

O
⊕

0 ← F ← 15O(−1) 16O(−2) 7O(−3) O(−4)
⊕

↖
⊕ ←− ⊕ ←− ⊕ ← 0

O(−2) 3O(−3) 3O(−4) O(−5)

In both cases we have dimk Hom(E ,F) = 35 and the degeneracy locus of a generic ϕ ∈
Hom(E ,F) will be a regular surface S of degree 10, with sectional genus 9 and χ = 2.
The smoothness can be checked in an example with Macaulay [Mac]. More details on
computational aspects can be found in the appendix A of [DES]. To identify the surfaces
we use Le Barz’s formula (0.11) which gives N6(10, 9, 2) = 3 for the sum of the number of
6-secant lines plus the number of exceptional lines on S.

We consider first the case of the generic module. A resolution of the ideal sheaf of S is
given by the mapping cone between the resolutions of E and F , so it is easily seen that
the homogeneous ideal of the surface is generated by quintic hypersurfaces in this case. It
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follows that S has no 6-secants and exactly three (−1) lines, hence it is a proper elliptic
surface as in Proposition 2.1 a). This construction is the one described in [DES], Appendix
B, B7.4.

In the case of the special module the mapping cone yields a minimal free resolution for IS
of type

O(−4)
⊕

0 ← IS ← 9O(−5) 15O(−6) 7O(−7) O(−8)
⊕

↖
⊕ ←− ⊕ ←− ⊕ ← 0

O(−6) 3O(−7) 3O(−8) O(−9)

In this case there is precisely one sextic generator for IS and we guess that there is precisely
one 6-secant. Indeed the three linear forms

O(−6) ←− 3O(−7)

in the bottom row of the resolution are independent (since those in the resolution of F
are) and annihilate the module IS/(IS)≤5, hence this module has support on a line L. Or
one can argue as follows. This line is just the line defined by the forms in the kernel of the
multiplication map

H0(IP4,OIP4(1)) −→ Hom(H1(IS(3)),H1(IS(4))),

so for all hyperplane sections H containing L we’ll have h1(IH(4)) = 1. On the other hand
the cohomology of the exact sequence

0 −→ IS(2) −→ IS(3) −→ IH(3) −→ 0

gives 2 ≤ h1(IH(3)) ≤ 3 so each hyperplane H in the net contains at least a plane π with
h1(Iπ∩S(4)) = 1. The generic hyperplane section through L is irreducible, so π cuts S
only in points for such a H. Now lemma 0.41 shows that π contains a 6-secant line to the
surface since if h0(Iπ∩S(2)) > 0 the cohomology of the exact sequences

0 −→ IH(1) −→ IH(2) −→ Iπ∩S(2) −→ 0

0 −→ IS −→ IS(1) −→ IH(1) −→ 0

yields h1(IS(1)) = h1(IH(1)) > 0, which contradicts Severi’s theorem. Therefore L is a
6-secant to S and, by Proposition 2.1, S is a non-minimal K3 surface with two (−1) lines
and one (−1) quartic, as desired.

Remarks 2.3.
a) It is shown in [PR] that any surface of type a) or c) in Proposition 2.1 can be obtained
by the above construction. In particular, (1.2) and (1.3) imply that the Hilbert schemes
of such surfaces are irreducible and unirational.
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b) A flat deformation of elliptic surfaces of degree 10, sectional genus π = 9, to a scheme
belonging to the irreducible component of the Hilbert scheme containing the K3 surfaces
of type c) can be constructed by varying the hyperplane section of the Veronese surface in
IP5.
c) In the above setting, all modules M distinguish a plane P , assumed to be given as
P = { x0 = x1 = 0 }. In the case of the elliptic surface, P cuts it along a plane cubic,
namely the non-exceptional part of the canonical divisor. For the general K3 surface of
type c) P contains the unique 6-secant line L and cuts the surface only in points. ut

Assume now that S is a surface of type a) or c). S can be linked in the complete intersection
of the unique quartic containing it and a quintic hypersurface to an irreducible surface Y
of degree 10, with sectional genus π(Y ) = 9 and χ(Y ) = 0. The cohomology of the liaison
exact sequence

0 −→ IS∪Y (4) −→ IY (4) −→ OS(K) −→ 0

gives h0(IY (3)) = 0 and h0(IY (4)) = 2. Therefore Y can be further linked in the complete
intersection of two quartics to a surface Z of degree 6, sectional genus π(Z) = 1, χ(Z) = 0.

Working out with Macaulay [Mac] the construction of S via the Eagon-Northcott complex
one can figure out how the scheme Z should look like. We use in the sequel this description
to give a liaison construction of a K3 surface of type c). For the elliptic case we refer to
[Ra1] and [PR].

(2.4.) Liaison. Let C be a rational cubic scroll in IP4 and let T be a smooth quadric
surface cutting C along two lines in its ruling, say L1 and L2. Consider next a plane
P passing through the directrix L of C, cutting the scroll only along this line and not
contained in the hyperplane spanned by the quadric surface. Let now Z = P ∪T ∪C. It is
easily seen that Z has the right invariants: degZ = 6 and π(Z) = 1 by formula (0.2). Also
Z is locally Cohen-Macaulay and even a local complete intersection except for the points
{pi} = L ∩ Li, i = 1, 2. We prove in the sequel that Z can be backwards linked (4, 4) and
(4, 5) to a smooth K3 surface of type c). First a lemma.

Lemma 2.5.
a) The scheme X = T ∪C is a degenerated elliptic quintic scroll in IP4 and, in particular,
the homogeneous ideal IX is generated by 5 cubics.
b) The homogeneous ideal IZ is generated by 10 quartics and one quintic. Moreover,
the quartics cut out the scheme Z outside L and the generic quartic contains L with
multiplicity two.

Proof. Let H be the hyperplane spanned by the quadric surface T . For the first part of
the lemma we consider the residual exact sequence

0 −→ IC(2) −→ IX(3) −→ IH∩X,H(3) −→ 0

of sheaves of ideals on IP4. This sequence remains exact after taking global sections since
h1(IC(2)) = 0. Therefore h0(IX(3)) = 5 and it suffices to check whether C is cut out by
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quadrics and H ∩X by cubics. The former is clear since C is defined by the 2× 2 minors
of a matrix with linear entries, while H ∩X = T ∪L is clearly cut out by the unions of the
quadric and the hyperplanes through L. Moreover the cohomology of the above sequence
yields

h1(IX(k)) = 0 for all k, h2(IX(k)) = 0 for k 6= 0, and h2(IX) = h2(IT∪L) = 1.

Therefore Beilinson’s spectral sequence gives a resolution of the form

0 −→ Ω3
IP4(3) −→ 5OIP4 −→ IX(3) −→ 0

and hence X is a degenerated elliptic quintic scroll. Consider now the exact sequence

0 −→ IX(k − 1) −→ IZ(k) −→ IZ∩H′,H′(k) −→ 0

where H ′ is a general hyperplane containing P . It remains also exact after taking global
sections since h1(IX(k)) = 0 for all k. Now Z ∩H ′ = P ∪D∪ f1 ∪ f2, where D = T ∩H ′ is
a smooth conic and f1, f2 are rulings of C, thus h0(IZ∩H′,H′(k)) = h0(ID∪f1∪f2(k − 1)).
One easily computes h0(ID∪f1∪f2(2)) = 0, h0(ID∪f1∪f2(3)) = h0(OIP3(3))−2h0(OIP1(3))−
h0(OIP1(6)) = 5 and analogously h0(ID∪f1∪f2(4)) = 16. Moreover the homogeneous ideal
ID∪f1∪f2 is generated by the 5 cubics and one quartic and since, by a), IX is generated by
5 cubics the first assertion of b) follows. For the second part it is enough to observe that all
cubics in H0(ID∪f1∪f2(3)) are vanishing on L and that they cut out, scheme-theoretically
in fact, D ∪ f1 ∪ f2 ∪ L.ut

As a consequence of the above lemma and remark 0.31, we obtain that Z can be linked
in the complete intersection of two quartic hypersurfaces to an irreducible surface Y , with
degY = 10, π(Y ) = 9, which contains and is singular along L and which is smooth outside
this line. Further Y can be linked (4, 5) to a surface S with the desired invariants. Namely,
degS = 10, π(S) = 9 and, from the liaison exact sequences, pg = 1, q = 0. It is easily seen
that S is smooth outside L, for a general choice of the linkages. To see the behavior at the
intersection with L we’ll work out explicitly this liaison.

We consider the blowing-up

σ : ĨP4 = IP(2OIP2 ⊕OIP2(1)) −→ IP4

of IP4 along the line L, with exceptional divisor E = IP(2OIP2) = IP(3OL) = IP2 × L. Let
B be a divisor of E corresponding to a section of 3OL(1) and F corresponding to a fibre
of the projection σ : IP2×L→ L. If a hypersurface V of degree v contains the line L with
multiplicity m, then its strict transform Ṽ will meet E along V , numerically of type

V ≡ mB + (v − 2m)F.

Let V1 and V2 be two general quartic hypersurfaces containing Z. By lemma 2.5 they have
multiplicity two along L, thus Vi ≡ 2B, i = 1, 2. On the other hand the strict transforms
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of P and T cut E along P ≡ (B − F )(B − F ) ≡ B2 − 2BF and T ≡ (B − F )2F ≡ 2BF ,
respectively. Moreover, the strict transform of C cuts E along C ≡ B2 since the cubic
scroll is linked to a plane in the complete intersection of two quadric hypersurfaces having
multiplicity one along L.

It follows that, for a general (4, 4) liaison, the strict transform of Y on ĨP4 meets E in a
curve equivalent to (2B)(2B) − (B2 + (B2 − 2BF ) + 2BF ) ≡ 2B2. A local computation
shows that the general quintic hypersurface containing Y has multiplicity one along L.
Therefore, for a general choice of the (4, 5) liaison, the strict transform of S on ĨP4 will
meet E in a curve equivalent to 2B(B+3F )−2B2 ≡ 6BF . A Bertini argument shows now
that for the general choice of the liaison, the surface S residual to Y is smooth. Moreover,
since a curve of type BF is blown down on S, it follows that L is a 6-secant line to S.

To show that S is indeed a K3 surface we determine the one dimensional components
in the intersections S ∩ T and S ∩ C. The liaison exact sequences (0.24) for Y give
P ∩ Y ≡ 3HP −KP −L ≡ 5HP , T ∩ Y ≡ 3HT −KT − [T ∩C] ≡ 5l1 + 3l2, where l1 and l2
denote the classes of the two rulings of the quadric, and C∩Y ≡ 3HC−KC−[C∩(P∪T )] ≡
3(C0 +2f)−(−2C0−3f)−C0−2f ≡ 4C0 +7f , with C0 denoting the numerical class of the
directrix L on the scroll C and f the class of a ruling. The one-dimensional components of
the intersection scheme S ∩ Z are the residuals (in term of conductor ideals) of the above
curves in the complete intersection of Z with the quintic hypersurface used in the liaison
of Y with S. Therefore, for a general choice of the liaison, P cuts S only in points, C cuts
S along a scheme whose one-dimensional part K1 is equivalent to 5HC− [C∩Y ] ≡ C0 +3f
and T cuts S along a curve K2 equivalent to 5HT − [T ∩C] ≡ 2l2, plus a zero dimensional
scheme. On the other hand, a similar computation on S shows that the scheme K1 ∪K2

is exactly the canonical divisor of S. Now the liaison exact sequence

0 −→ IY ∪Z(5) −→ IY ∪P∪C(5) −→ OT −→ 0

remains also exact after taking global sections. It follows that the quintics in H0(IY (5))
cut on T a linear system whose fixed part is exactly T ∩Y . Therefore, for a general choice
of the (4, 5) liaison, the curve K2 ⊂ Z ∩ S is reduced and hence it is the union of two
skew lines, say E2 and E3, in the ruling of T which contains L1 and L2. Eventually, the
adjunction formula on S yields E2

i + KEi = 2E2
i = 2pa(Ei) − 2 = −2, i = 2, 3 and thus

E2 and E3 are exceptional lines on S. By (2.1), it follows that E1:=K1 is a (−1) quartic
on S and hence S is, as claimed, a K3 surface of type c); i.e., S is embedded by a linear
system of type

H = Hmin − 4E1 − E2 − E3.

Concerning liaison we want to add the following

Remark 2.6. Z is the unique minimal scheme in the even liaison class of S. Therefore,
by the general results in [BBM] and [MDP], S can be viewed as obtained from Z via a
basic double link and a flat deformation.
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Proof. The arguments used in the proof of Lemma 2.5 give also pg(Z) = 0, q(Z) = 1 and,
moreover, that e(Z):=max { t | h2(OZ(t)) 6= 0 } = −2. Therefore the above claims follow
from (0.32) and the general description of a liaison class in [BBM].
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3. Smooth surfaces of degree 11

We construct in this chapter several families of smooth surfaces of degree 11 in IP4, pro-
viding along also an incomplete and rough attempt of numerical classification. In a certain
sense, the classification is to be considered only as a guideline for where one should look
to in order to find the desired examples.

We start by recalling the basic relations between the invariants of a smooth surface S of
degree 11 in IP4. The double point formula (0.6) takes now the form

K2 = 6χ− 5π + 38

and Severi’s theorem (0.7) and Riemann-Roch give

π = χ+ 7 + h1(OS(H))− h0(OS(K −H)).

In addition to these relations Theorem 1.6 says that S is contained in a hyperquadric if
and only if π = 1 +

[
11(11−4)

4

]
= 20, and in this case S is linked to a plane in the complete

intersection of the hyperquadric with a degree 6 hypersurface.

We assume therefore in the sequel that S doesn’t lie on a hyperquadric. A theorem of
Gruson and Peskine [GP1], [Au1] provides then π ≤ 15, and furthermore, when equality
holds, that S is linked to a plane in the complete intersection of a cubic and a quartic
hypersurfaces. Therefore we are left to study only the cases when π ≤ 14. We look now
for a lower bound for the sectional genus and we start with the smallest values of π.

Proposition 3.1. If S is a smooth surface of degree 11 in IP4, then π ≥ 8.

Proof. When π ≤ 7 then HK ≤ 1, so the index theorem implies K2 ≤ (HK)2

11 < 1. On
the other hand the double point formula gives

χ =
K2 + 5π − 38

6
< 0

whence S is birationally ruled, which in turn means that K2 ≤ 8χ. But this implies
2χ ≥ 38− 5π ≥ 3 which contradicts the above inequality.ut.

I. Surfaces with d = 11, π = 8

The non-existence of smooth, sectionally non-special surfaces with these invariants was
shown in [MR]. We’ll recall their results along the proof of the following proposition which
mainly collects the data in [MR]:
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Proposition 3.2. A smooth surface S ⊂ IP4 of degree 11, with sectional genus π = 8 is
necessarily a non-minimal abelian surface with one (−1) line and one (−1) conic.

Proof. In this case HK = 3 so, as above, the double point formula and the index theorem
give χ ≤ 0.

Strict inequality means that S is birationally ruled, whence K2 ≤ 8χ, which leaves as only
possibility χ = −1. Therefore K2 = −8 and S is in fact geometrically ruled over a curve
of genus 2. But this is impossible by the results in [HR]. It is also possible to see this
directly by using adjunction theory since, by Theorem 0.13, S1 = ϕH+K(S) ⊂ IP5 would
be a smooth surface with invariants d1 = 9, H1K1 = −5, π1 = 3 > q = 2, K2

1 = −8, and
so adjunction again would give 0 ≤ (H1 +K1)2 = 9− 10− 8 = −9, a contradiction.

Thus χ = 0, K2 = −2 and, in particular, S is not of general type. The adjunction mapping
is birational and the image S1 = ϕH1+K1(S) ⊂ IP6 is a smooth surface of degree d1 = 15
and sectional genus π1 = 9. Also H1K1 = 1 and K2

1 = −2 + a, where a ≥ 0 is the
number of (−1) lines on S. In general we’ll denote by Sn the image of the n-th iterated
adjunction mapping and, in case it is a surface, by Hn the hyperplane section, by Kn the
canonical divisor, by πn the sectional genus and by an the number of (−1) lines on Sn−1,
or equivalently the number of (−1) rational curves of degree n on S. In particular we let
S0 = S and a1 = a.

If pg > 0, then K1 is a line and K2
1 = −1 since (H1 +K1)K1 ≥ 0 and S is not ruled. In this

case S is a blown-up abelian surface with one (−1) line and one (−1) conic. The minimal
model is embedded by the second adjunction as a surface of degree 16 and sectional genus
9 in IP7.

We assume from now on pg = 0. If a = 0, then (H1 +K1)K1 < 0 so S is birationally ruled.
If K2

2 = −2, then S4 = ϕH3+K3(S3) ⊂ IP3 would be a ruled surface with d4 = a3 + 3 and
π4 = a3, for a3 ∈ {0, 1, 2}, which is absurd. If K2

2 = −1, then S4 ⊂ IP4 would be a surface
with d4 = 7+a3 and π4 = 3+a3, with a3 ∈ {0, 1}, which is impossible by the classification
of such surfaces in [Io1],[Io2],[Ok3],[Ok4]. Finally, if K2

2 = 0, then S2 is minimal and the
adjunction process would embed S5 ⊂ IP4 as a smooth surface with d5 = 9 and π5 = 5,
which is impossible by the classification in [AR].

If a = 1, then the adjoint mapping for S1 is again birational on a surface S2 ⊂ IP7,
having invariants d2 = 16, π2 = 9, H2K2 = 0 and K2

2 = −1 + a2, where a2 ∈ {0, 1} by
Hodge index. For a2 = 0, S5 ⊂ IP4+a3 is a smooth surface with d5 = 7 + 4a3 + a4 and
π5 = 3 + 3a3 + a4. Thus if a3 = 0, it is a smooth surface of degree 7 or 8 and sectional
genus 3 or 4 respectively, in IP4, which is as above a contradiction, while if a3 = 1, then
S6 ⊂ IP4 would have invariants d6 = 9, π6 = 5, K2

6 = 0, which is absurd by [AR]. Assume
now a2 = 1. In this case S2 is minimal bielliptic because the adjunction process yields
surfaces Sn ⊂ IP7 with the same numerical invariants: dn = 16, HnKn = 0, πn = 9, for all
n ≥ 3. In [MR] it is shown that such smooth bielliptic surfaces S2 ⊂ IP7 exist, while the
corresponding surfaces in IP4 are necessarily singular.

If a = 2, then K2
1 = 0 and S1 is already minimal. It is not birationally ruled since an

argument as in (0.18) shows that the adjunction doesn’t stop. Since K1 is not numerically
trivial it follows that S would be a blown-up proper elliptic surface with two (−1) lines.
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Using Reider’s criterion, in [MR] it is shown that smooth minimal proper elliptic surfaces
S1 ⊂ IP6 with d1 = 15, π1 = 6, pg = 0 and q = 1 do not exist.ut

Remark 3.3. We have not been able to find either examples nor to prove the non-existence
of smooth abelian surfaces as in the above proposition. The author believes they don’t
exist.
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II. Surfaces with d = 11, π = 9

Adjunction and the double point formula give HK = 5, K2 = 6χ−7, thus χ ≤ 1 by Hodge
index. On another side, 0 ≤ χ ≤ 1 by (0.20) if S is birationally ruled or rational, while
(0.16) yields χ = 1 when κ(S) ≥ 0. Again, as in the previous chapter, we have not been
able to construct examples of smooth surfaces with these invariants. In terms of numerical
invariants we mention the following remarks:

Proposition 3.4. There are no smooth surfaces S ⊂ IP4 with d = 11, π = 9 and χ = 0.

Proof. As argued above, if such a surface exists, then it is birationally ruled over an
elliptic curve. In particular h1(OS) = 1 and pg = 0. On another side, Riemann-Roch and
Severi’s theorem yield for the speciality h1(OS(1)) = 2. It follows that the variety in ǏP

4

parametrizing hyperplane sections H for which h1(OH(1)) = 2 is a plane, so there is a line
E ⊂ IP4 which is the base locus of the net of hyperplanes for which h1(OH(1)) = 2. To
prove the proposition we’ll use the following fact [ACGH, p.198, ex. E-1]:
Let C be a smooth curve of genus g and let L be a line bundle of degree d. For r = h0(L)−1
the inequality

d ≥ g − d+ 2r + h1(L⊗2) (∗)

holds.
If E doesn’t lie on S, then the general H in the net is smooth and applying (∗) for C = H
and L = OH(K) we obtain

5 ≥ 9− 5 + 2 + h1(OH(2K)),

which is a contradiction. Therefore E lies on S and is contained in a fibre of the ruling,
since otherwise it would dominate the elliptic base of the minimal model of S. If the general
section C ∈ |H −E| is not integral, then, by Bertini’s theorem, |H −E| is composed with
a pencil of plane curves. It has no base points, since a basepoint would be a singular point
on S, thus (H −E)2 = 0 and hence E2 = −9, pa(C) = E2 + 9 = 0, which is impossible for
a union of plane quintic curves, or conics. Therefore the general C ∈ |H −E| is a smooth
and irreducible curve of degree 10 and genus g(C) = E2 + 9. We look now for the degrees
of the exceptional curves on S. Let S1 denote the image of S under the adjunction map
and S2 the image of S1 under the map defined by |H1 + K1|. We compute the following
invariants:

S ⊂ IP4 H2 = 11 HK = 5 K2 = −7 π = 9
S1 ⊂ IP7 H2

1 = 14 H1K1 = −2 K2
1 = −7 + a π1 = 7

S2 ⊂ IP5 H2
2 = 3 + a H2K2 = −9 + a K2

2 = −7 + a+ b π2 = −2 + a,

where a and b are non-negative numbers. If a ≥ 4, then π2 > q and theorem 0.13 implies
that (H2 + K2)2 = −22 + 4a + b ≥ 0, whence in fact a ≥ 5. If a = 5, then b = 2 and
S2 would be via adjunction a conic bundle over IP1, which is absurd for q = 1; if a = 6,
then the adjunction map on S2 would have degree (b+ 2) over IP2, which is impossible by
(0.13), while if a = 7, then b = 0 and the image of S2 under the adjunction map would be
a surface of degree 6 in IP3, which is again absurd. It follows that a = 3 and π2 = 1, hence
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S2 is an elliptic scroll of degree 6 in IP5. In particular, there are only exceptional lines and
exceptional conics on S, hence E is either a (−1) line, or (H +K)E = 1 and E is a (−2)
line. In the former case, the cohomology of the exact sequence

0 −→ OE(E) −→ OH(H) −→ OC(H) −→ 0

yields h1(OC(H)) = h1(OH(H)) = 2. Now again the inequality (∗), applied this time for
C and L = OC(K − E), leads to a contradiction. A similar argument rules out the case
E2 = −2, and thus surfaces with the above invariants do not exist.ut

Proposition 3.5. A smooth surface with invariants d = 11, π = 9 and χ = 1 is either
a) rational, or
b) a non-minimal Enriques surface with one (−1) quintic, or
c) a non-minimal regular proper elliptic surface with one (−1) line, or one (−1) conic.

Proof. The first two cases are clear, while regularity follows from the same argument
we’ve been using in proposition 3.4. Assume now κ(S) ≥ 1 and let S1 denote the image
of S through the adjunction mapping. Let H1 denote the hyperplane divisor and K1 the
canonical class on S1. We obtain the following list of invariants:

S ⊂ IP4 H2 = 11 HK = 5 K2 = −1 π = 9
S1 ⊂ IP8 H2

1 = 20 H1K1 = 4 K2
1 = −1 + a π1 = 13

S2 ⊂ IP12 H2
2 = 27 + a H2K2 = 3 + a K2

2 = −1 + a+ b π2 = 16 + a,

where a and b are the number of the (−1)-lines and (−1)-conics on S respectively. We
observe that (H1K1)2 = 16 < 20 = H2

1 , thus S is not of general type by lemma 0.18. On
another side h0(OS(2K)) 6= 0 by Castelnuovo’s rationality criterion, hence HKmin ≥ 2. If
HKmin = 2, we have h0(OS(2K)) = 1, since an elliptic curve must have degree at least 3,
but then an easy argument using Kodaira’s formula for the canonical bundle of an elliptic
fibration [BPV] shows in fact that this case cannot occur. Therefore HKmin ≥ 3 and S
is a non-minimal proper elliptic surface with only one exceptional curve of degree less or
equal to 2. ut
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III. Surfaces with d = 11, π = 10

The double point formula gives K2 = 6χ − 12 and Hodge index implies K2 ≤ 4, thus
χ ≤ 2. On the other hand, lemma 0.20 yields χ ≥ 0 when κ(S) = −∞, while the pseudo-
effectiveness of K gives χ ≥ 1 for κ(S) ≥ 0.

Proposition 3.6. A smooth surface S ⊂ IP4 with d = 11, π = 10 and χ = 1 is either a
rational surface or a blown-up Enriques surface, embedded by

H = Hmin − 2E1 −
6∑
i=2

Ei.

P roof. Let S1 be the image of S through the adjunction morphism. From (0.13) we obtain
the following invariants

S1 ⊂ IP9 H2
1 = 19 H1K1 = 1 K2

1 = −6 + a π1 = 11,

where a is the number of (−1) lines on S. Furthermore pg = 0. Otherwise, since S1 is
not a scroll and (H1 + K1)K1 ≥ 0 by (0.16), a divisor in |K1| would be an exceptional
line on S1, and thus the image of S1 through adjunction would be a surface with trivial
canonical class and χ = 1, absurd. Thus S is regular, and either p2 = 0 and S is rational by
Castelnuovo’s theorem, or h0(OS(2K1)) > 0 and a divisor in |2K1| is twice an exceptional
line. In the last case, the image of S1 through the adjunction map is a minimal Enriques
surface S2 ⊂ IP10, with d2 = 20 and π2 = 11, whereas S is embedded by

H = H2 − 2E1 −
6∑
i=2

Ei.ut

(3.7.) Determinantal construction. An example of an Enriques surface S with the
above invariants and minimal cohomology was constructed in [DES]. Namely, assuming S
has the Beilinson cohomology table

i ↑

2 hi(IS(p))

1 5 5

−−−−−−−−−−−−−−−−−−−−−−−−−→
p

the authors construct the surface as the degeneracy locus of a general morphism ϕ ∈
Hom(2Ω3(3),G), with G = ker(10O ψ−→O(2)) and ψ a quite special morphism. Namely, let
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E ⊂ IP4 be an elliptic normal curve, let τ be a non-trivial 2-torsion point on E and denote
by p, p+ τ the line in IP4 spanned by p and p+ τ . Then (cf. [BHM])

Q =
⋃
p∈E

p, p+ τ ⊂ IP4

is an elliptic quintic scroll over the elliptic curve E/τ , which contains E as a 2-section.
Corresponding to the other two unramified 2:1 covers of E/τ , Q contains two further
elliptic normal curves E′ and E′′ of which it is a 2-translation scroll. The three elliptic
curves are mutually disjoint. In this setting, the authors of [DES] take ψ to be defined by
the ten hyperquadrics which generate IE′ + IE′′ . As checked in examples, the rulings of Q
are 6-secant lines to the constructed surface S.

(3.8.) Liaison construction. As a completion of the determinantal construction in
[DES], we provide in the sequel an equivalent liaison construction for this family of Enriques
surfaces.

Let p1, . . . , p5 be five distinct points on the elliptic normal curve E such that p1 + p2 +
. . . + p5 = τ , where τ is a non-trivial 2-torsion point on E, and let π ⊂ IP4 be a general
plane. There are four independent hyperquadrics containing π and the points pi, and a
Bertini argument shows that we can link π in the complete intersection of two general
hyperquadrics to a smooth rational cubic scroll T , which meets the elliptic curve E only
in the points pi, i = 1, 5.

Lemma 3.9. The homogeneous ideal IT∪E is generated by 3 cubic and 5 quartic hyper-
surfaces.

Proof. Consider the cohomology associated to the residual intersection exact sequences

0 −→ IE(k − 2)
f−→ IE∪T (k) −→ IT∪Z,V (k) −→ 0, k ∈ Z,

where f is the equation of a general hyperquadric V containing T and Z = V ∩E \ T ∩E
is a reduced scheme of length 5, disjoint of T . Now h1(IE(m)) = 0, for all m ∈ Z (e.g.,
cf. [Hu]), h0(IT,V (3)) = 8 , h0(IT,V (4)) = 20, while IE(2) and IT∪Z,V (4) are clearly
generated by global sections, so the lemma follows.ut

We remark that a cubic hypersurface containing T ∪ E is obviously irreducible, and by
a result of Aure [Au1, Lemma 2.1.6, Lemma 3.1.19], cannot be a cone or have a double
plane. Moreover, it has only isolated singularities since its general hyperplane section is a
Del Pezzo surface (it cannot be a cone over a smooth plane cubic curve because then the
corresponding hyperplane section of T would dominate the base of the cone).

T can be linked in the complete intersection of two cubic hypersurfaces in H0(IE∪T (3)) to
a surface B ⊂ IP4 of degree 6 and sectional genus 3. For a general choice of the cubics B
is smooth, thus it is a Bordiga surface (cf. [Ok2], [Io1]).
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Lemma 3.10. The 3 cubic hypersurfaces in H0(IE∪T (3)) intersect along T ∪ E plus the
union of five skew lines on B, say E1, E2, . . . , E5, which are secants to the elliptic curve E.

Proof. B is a rational surface in IP4, embedded by the linear system

|HB | = |4l −
10∑
i=1

Ei|

and, by construction, it contains E and it intersects the rational scroll T along a curve
G ≡ HB −KB , of degree 8 and arithmetic genus 5. In terms of the embedding we have

G ≡ 7l −
10∑
i=1

2Ei,

and we may write

E ≡ al −
10∑
i=1

aiEi,

where a ∈ IN∗ and ai ∈ IN, for i = 1, 10. Now G ∩ E = T ∩ E = {p1, . . . , p5}, so

GE = 7a− 2
10∑
i=1

ai = 5,

while

HBE = 4a−
10∑
i=1

ai = 5,

and

E2 +KBE = a2 − 3a+
10∑
i=1

ai −
10∑
i=1

a2
i = 0.

We obtain a = 5,
∑10
i=1 ai = 15 and

10∑
i=1

ai(ai − 1)
2

= 5.

On the other hand, EEi = ai ≤ 2 since E has no trisecants, so the last relation implies
that exactly five of the ai’s, say a1, a2, . . . , a5, are equal to 2, while the rest are equal to 1.
Therefore

E ≡ 5l −
5∑
i=1

2Ei −
10∑
j=6

Ej ,
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and so the residual of G+E in the intersection of B with a general cubic hypersurface of
H0(IE∪T (3)) is the unique curve in the linear system

|3HB − E −G| = |
5∑
i=1

Ei|. ut

Lemma 3.11. For general choices, B intersects the elliptic quintic scroll Q along E and
a zero-dimensional smooth scheme Σ of length 5, outside the elliptic curve.

Proof. T meets Q in 15 points, five of which, by construction, lie on E. Let now ρ : Q→
E/τ denote the morphism which defines the ruling of Q and let C0 denote the class of a
section of Q with minimal self-intersection C2

0 = 1. Then E ≡ 2C0 −αF , where αF is the
pullback by ρ of a divisor of degree one on E (cf. [HV]), while HQ ≡ C0 + βF , with βF
the pullback of a divisor of degree two. Thus, residual to E in the complete intersection
of Q with a cubic hypersurface containing E, there is a curve numerically equivalent to
C0 + γF , with γF the pullback of a divisor of degree 7 on E, and the lemma follows since
(C0 + γF )2 = 14 + 1 = 15.ut

Lemma 3.12. There exists a unique quintic hypersurface V containing both the elliptic
scroll Q and the Bordiga surface B.

Proof. We use the residual exact sequences

0 −→ IQ(2)
f−→ IQ∪B(5) −→ IB∪M,V (5) −→ 0

and
0 −→ IB(2)

g−→ IB∪M (5) −→ IE∪M∪L,W (5) −→ 0,

where V = {f = 0} is a general cubic hypersurface containing B ∪ T , W = {g = 0} is
a general cubic hypersurface containing the elliptic scroll Q, while M ∼ 3HQ − E and
L ≡ 3HB −E are the corresponding residual intersections. Now h1(IQ(2)) = h1(IB(2)) =
h0(IQ(2)) = h0(IB(2)) = 0, and it is easily checked that h0(IE∪L∪M (5)) = 2 · 15 + 1 = 31,
when the points p1, . . . , p5 are chosen such that the sum p1 + p2 + . . .+ p5 is a non-trivial
2-torsion point on E.ut

We link now B in the complete intersection of V and a general cubic hypersurface in
H0(IB(3)) to a surface Z ⊂ IP4 of degree 9, sectional genus 9. For general choices, the
surface Z is smooth and meets the elliptic quintic scroll along a smooth curve M of degree
10 and genus 1 in the linear system |3HQ−E|, which passes through the five points of the
scheme Σ. Therefore the scheme theoretic union Y = Q∪Z is a local complete intersection
scheme of degree 14 and sectional arithmetic genus 19.

Lemma 3.13. h0(IY (4)) = 0 and h0(IY (5)) = 2.

Proof. One argues as in the proof of lemma 3.12.ut

Therefore, we can link the configuration Y in the complete intersection of the above two
quintic hypersurfaces to a surface S ⊂ IP4 of degree 11 and sectional genus 10. Moreover,
as we’ve checked in an example, the surface S is smooth for a general choice of the initial
data.
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Lemma 3.14. The surface S has infinitely many 6-secant lines, so Le Barz’s formula
doesn’t apply. Namely, the 6-secants to S are precisely the lines in the ruling of Q.

Proof. By (0.24), the scheme S ∪ Z intersects the scroll Q along a curve numerically
equivalent to 5HQ−KQ, whence S meets Q along a curve D ≡ 5HQ−KQ−M ≡ 6C0 +δF ,
where δ is the pullback of a divisor of degree 2 on E/τ . Since DF = 6, the rulings of the
scroll Q are 6-secant lines to S. There are no other 6-secants to S because Z is a minimal
surface of general type, which intersects S along a curve D′ ≡ 5HZ −KZ −M , so for a
line L on Z one would have D′L = (5HZ −KZ −M)L ≤ 5HZL = 5. ut

Lemma 3.15. E1, E2, . . . , E5 are the exceptional lines of S.

Proof. By lemma 3.10, each line Ei, i = 1, 5, is a secant of E, and thus also of the scroll Q.
On another side, B intersects Z along a curve G′ ≡ 3HB−KB ≡ 15l−

∑10
i=1 4Ei, thus a line

Ei is also a 4-secant to the surface Z in points lying outside the scroll. Altogether, each Ei,
for i = 1, 5, is a 6-secant to the configuration Y , and thus it lies on any quintic hypersurface
containing Y . In particular, the lines Ei, i = 1, 5, lie on S and it remains to show they are
exceptional. The Bordiga surface B is defined by the maximal minors of a 4 × 3 matrix
with linear entries, thus Z and also S ∪ Q, being linked with B, are projectively Cohen-
Macaulay schemes. In particular the ideal sheaf of S ∪Q has a minimal free resolution of
type

0 ← IS∪Q ←− 5O(−5) 3O(−6)↖
⊕ ← 0

O(−7)

Dualizing, we see that the minors of the 5 × 3 submatrix with linear entries in the above
resolution define the zero-set of a section in H0(ωS∪Q(−2)). It follows that these minors
cut out on S an effective divisor in the class |K + D − 2H|, which contains

∑5
i=1Ei and

thus must be equal to, by degree reasons. Now DEi = 2, because the lines Ei are only
simple secants to the scroll Q, and since

DEi = (2H −K +
5∑
i=1

Ei)Ei = 2HEi − 2pa(Ei) + 2 + 2E2
i ,

we obtain E2
i = −1, for i = 1, 5, and the lemma is proved.ut

Corollary 3.16. The surface S is a non-minimal Enriques surface, embedded by

H = Hmin − 2E0 −
5∑
i=1

Ei.

P roof. In view of proposition 3.6, it is enough to show that h0(OS(2K)) > 0, or equiva-
lently that h0(OS(2K − 2

∑5
i=1Ei)) = h0(OS(4H − 2D)) 6= 0. If D′ denotes as in (3.14)

the intersection curve of S and Z, then the cohomology of the exact sequence
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0 −→ OS(K −D −H) −→ OS(4H − 2D) −→ OD′(4H − 2D) −→ 0

together with the vanishing of h1(OS(K −D −H)) = h1(OS(D +H)) = 0, since D+H is
ample, imply that it is enough to check that h0(OD′(4H − 2D)) 6= 0. But, by construction
OD′(D) = OD′(M), so we need in fact to show that h0(OD′(4H − 2M)) 6= 0, and we
check this on Z, where since D′ + M ∼ 5HZ − KZ this is equivalent to showing that
h1(OD′(HZ +M)) 6= 0. If N ∼ 3HZ − KZ denotes the intersection of Z and B, then
lemma 3.11 and the remarks after lemma 3.12 imply on Z that MN = ME + 5 = 20,
where the last intersection number is computed on the scroll Q. Thus M2 = −MKZ =
−10 and a similar argument shows in fact that OM (HZ − KZ) = OM . In particular
OM (HZ + M) = OM (KZ + M + HZ −KZ) = ωM = OM and thus h1(OZ(HZ +M)) =
h1(OM (HZ +M)) = h1(OM ) = 1 since Z is projectively Cohen-Macaulay. It follows from
the cohomology of the exact sequence

0 −→ OZ(M +HZ −D′) −→ OZ(M +HZ) −→ OD′(M +HZ) −→ 0

that all we need to check is that the map induced by the multiplication with the equation
of the divisor D′

H1(OZ(M +HZ −D′))
D′−→ H1(OZ(M +HZ)) = CI

is trivial. This is a consequence of the commutativity of the diagram

H1(OZ(M +HZ −D′))
D′−→ H1(OZ(M +HZ)) KZ+M−→ H1(OZ(2M +HZ +KZ))yKZ+D′

y∼=
H1(OZ(M +HZ +KZ)) restr.−→ H1(OM (M +HZ +KZ)) 0−→ H1(OM )

ut

As a remark to the above liaison construction, we sketch in the sequel an alternative
description of the H1-module of these Enriques surfaces. We need first some extra coho-
mological information:

Lemma 3.17. h0(OS(2H −
∑5
i=1Ei)) = 1.

Proof. Since, by (1.6), h0(IS(2)) = 0, it is enough to show on the Bordiga surface B

that h0(OB(2HB −
∑5
i=1Ei)) = 1. By lemma 3.10 this is equivalent to showing that

h0(OB(E −KB)) = 1. Now we observe that h0(OB(−KB)) = 0, since otherwise E ≡ (2l−∑5
i=1Ei)+(3l−

∑10
i=1Ei) would be reducible. Hence, by Riemann-Roch, h1(OB(−KB)) =

0 and the cohomology of the exact sequence

0 −→ OB(−KB) −→ OB(E −KB) −→ OE(E −KB) −→ 0

yields h0(OB(E −KB)) = h0(OE(E −KB)). Let now as in (3.10) G ≡ HB −KB be the
intersection of T and B. Then, by construction G ∩E = {p1, p2, . . . , p5}, while OE(KB +
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E) = ωE = OE by adjunction, and OE(KB+HB) = OE(2HB−G) = OE(p1+p2+. . .+p5)
since 2(p1 +p2 + . . .+p5) = 2τ = 0 in the group structure of E. Therefore OE(E−KB) =
OE(G+ (KB + E)− (KB +HB)) = OE and the claim of the lemma follows.ut

Lemma 3.18. h1(OS(1)) = 2 and h1(OS(k)) = 0 for k ≥ 2.

Proof. The first assertion follows from Riemann-Roch and Severi’s theorem. To show that
h1(OS(2)) = 0 we consider the cohomology of the exact sequence

0 −→ OS(2H −
5∑
i=1

Ei) −→ OS(2H) −→ O∑5

i=1
Ei

(2H) −→ 0.

Now h1(O∑5

i=1
Ei

(2H)) =
∑5
i=1 h1(OIP1(2)) = 0, χ(OS(2H −

∑5
i=1Ei)) = 1 by Riemann-

Roch, while h2(OS(2H −
∑5
i=1Ei)) = h0(OS(K +

∑5
i=1Ei − 2H)) = 0 because H(K +∑5

i=1Ei − 2H) = −10 < 0, so lemma 3.17 implies that h1(OS(2H −
∑5
i=1Ei)) = 0 and

thus also the desired vanishing. The rest of the claim follows by induction on k since
OH(k), for k ≥ 3, is non-special for the general hyperplane section of S.ut

We describe now the multiplicative structure of the dual of the H1-module of IS . Let V ⊂
ǏP

4
denote the locus of hyperplanes, where the multiplication map H1(IS(3)) H−→H1(IS(4))

has not maximal rank.

Lemma 3.19. V ⊂ ǏP
4

is a quintic hypersurface; namely the variety of trisecant lines to

an elliptic quintic scroll in ǏP
4
.

Proof. From the liaison exact sequences it follows that h0(IS(4)) = 0, thus Riemann-
Roch and lemma 3.18 yield h1(IS(3)) = h1(IS(4)) = 5 and consequently V is a quintic
hypersurface in ǏP

4
. Now for the general plane π containing a ruling f of the elliptic

scroll Q one has h1(Iπ∩S(4)) > 0, and thus also h1(IH(4)) > 0 for the general hyperplane
through f because h2(IH(3)) = h1(OH(3)) = h1(OS(3)) = 0. In conclusion, V is the dual
variety of the elliptic scroll Q and therefore it is the variety of the trisecant lines to an
elliptic quintic scroll in ǏP

4
(cf. [Seg]).ut

The equation of the variety of trisecant lines to an elliptic quintic scroll was determined
in [ADHPR]. Namely, in suitable coordinates y0 . . . , y4 of ǏP

4
, one has

V = {y | det (y3i+3jzi−j)i,j∈Z5 = 0},
for some parameter z ∈ IP4, defined by z0 = 2, z1 = a, z2 = 1

a and zi = z−i. (See also
chapter 7 for more information on the Moore matrices {y3i+3jzi−j}).
Remark 3.20. We have not been able to give examples, or give proof they do not exist,
of rational surfaces as in the proposition 3.6.

Proposition 3.21. If S is a smooth surface of degree 11, with π = 10, χ = 2 in IP4, then
S is a regular, minimal proper elliptic surface and its elliptic fibration is given by |2K|.
Proof. Since pg ≥ 1 and HK = 7 > 0, S is either proper elliptic or of general type.
Assume that S is a surface of general type and let S0 denote the minimal model of S and
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K0 denote its canonical divisor. If S has at least two (−1) curves, then HK0 ≤ 5 and
pa(K0) = K2

0 + 1 ≥ 3. Thus, necessarily HK0 = 5, pa(K0) = 3, whereas, by (0.34), K0

decomposes as the union of a plane quartic curve A and a line L which meet in one point.
Now K2

0 = 2 and A2 ≤ 1 by the index theorem, so L2 ≥ −1, which means that L is a
(−1) line on S0, a contradiction. Therefore S has only one (−1) line or conic E because
otherwise HK0 ≤ 4, while pa(K0) = K2

0 + 1 = 2, which is impossible by (0.34). If E is a
(−1) conic, then HK0 = 5, pa(K0) = 2, so K0 spans only a hyperplane in IP4, unless it
splits as the union of a plane quartic A and a line L which don’t meet. Now A2 + L2 = 1
and A2 ≤ 1 by Hodge index, so this case leads as above to a contradiction. Thus K0 spans
only a hyperplane and hence there is a residual curve C ∈ |H−K0|. This curve has degree
6 and arithmetic genus pa(C) = 5, so by (0.34) it is the union of a plane quintic Q and a
line L which don’t meet. But C2 = 2 and A2 ≤ 2 by the index theorem, hence L2 ≥ 0,
which is again absurd.
It follows that K2

0 = 1 and S has only one exceptional line E. Moreover S is regular,
otherwise K2

0 ≥ 2pg ≥ 4 by [Deb, Th.6.1] and S would have at least four (−1) curves.
In particular we obtain that pg = 1. For such a surface, |2K0| has no base points (see
[Ca]) and Φ = Φ|2K0| : S0 → IP2 is a morphism of degree 4. Let Φ̃ : S → IP2 denote
the composition of Φ with the blowing-down mapping S → S0. The restriction of Φ̃ to a
hyperplane section H of S has degree 4 on the image because through four given points of
S goes always at least one hyperplane section H. Therefore Φ̃(H) ⊂ IP2 is a cubic curve
and hence |6K0 − H| 6= ∅. Moreover, since an irreducible cubic has at most one double
point, there exists at most one (−2) curve F on S0 of degree ≤ 2 in IP4. On the other
hand K0(6K0 − H) = 0, so a divisor D ∈ |6K0 − H| is a sum of E and F with certain
multiplicities. But E(6K0−H) = −1 and F (6K0−H) = −FH ≥ −2, so the multiplicities
are 1 or 2, while H(6K0 −H) = 25, which is again a contradiction.
For S an elliptic surface, the assertions of the proposition follow from the double point
formula and Kodaira’s formula [BPV] for the canonical class of an elliptic fibration.ut

Remark 3.22. We have not been able to give examples, or give proof they do not exist,
of surfaces as in the above proposition.
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IV. Surfaces with d = 11, π = 11

The double point formula gives K2 = 6χ−17, so Hodge index implies χ ≤ 7, or equivalently
χ ≤ 4. For κ(S) ≥ 0, since K is pseudo-effective, (0.16) yields then χ ∈ {2, 3, 4}. In case
κ(S) = −∞, lemma 0.20 shows that the only possible value is χ = 1.

A first example of a smooth rational surface with these invariants was constructed in [DES].
We recall here the argument and provide constructions for two further examples.

Proposition 3.23. There exist smooth rational surfaces S ⊂ IP4, with d = 11, π = 11
and embedded by one of the following linear systems

a) H = 11l − 5E0 −
6∑
i=1

3Ei −
12∑
j=7

2Ej −
19∑
k=13

Ek

b) H = 10l − 4E0 −
3∑
i=1

3Ei −
13∑
j=4

2Ej −
19∑
k=14

Ek

c) H = 13l − 5E0 −
7∑
i=1

4Ei −
10∑
j=8

2Ej −
19∑
k=11

Ek.

P roof. We construct the surfaces via the Eagon-Northcott method, so we need first to
determine cohomology:

Lemma 3.24. If S ⊂ IP4 is a smooth surface with d = 11, π = 11, χ = 1, then
h1(OS(1)) = 3, h1(OS(2)) = 1 and h1(OS(k)) = 0, for all k ≥ 3.

Proof. Severi’s theorem gives h1(OS(1)) = 3 and, since h1(OH(2)) = h0(OH(K −H)) = 0
for irreducible hyperplane sections, we deduce that a = h1(OS(2)) ≤ 3. On the other side,
Riemann-Roch and (1.6) yield h1(OS(2)) ≥ 1. Consider now a hyperplane section H for
which h1(OH(2H)) ≥ 1. By lemma 0.37, we can find a decomposition H = C1 +C2, with
C1 ≥ 0, C2 > 0 and C1C2 ≤ (K −H)C2. We deduce

2 degC2 ≤ 2pa(C2)− 2 (∗)
and the equivalent inequality

2 degC1 ≥ 2 + (K +H)C1 + C1C2. (∗∗)
By lemma 0.36, any plane curve on S has degree at most five, and the bounds in (0.34)
show that the inequality (∗) is impossible, unless C2 is a plane quintic, or degC2 ≥ 8.
On the other side, since (K + H)C1 ≥ 0, it follows from (∗∗) that degC1 ≥ 2. In fact,
in case degC1 = 2, the 2-connectedness of the hyperplane sections [VdV] implies that
(K+H)C1 = 0, and thus, by (0.13), that C1 is the union of two (−1) lines (which can also
coincide), while C2

1 = HC1−C1C2 = 0, and this is a contradiction. In case degC1 = 3, we
obtain again equality in (∗), and namely degC2 = 8, pa(C2) = 9. Furthermore C2

1 + 1 =
(K +H)C1 ≥ 0 and thus C2

1 ≥ −1, whereas KC1 = 1−C1C2 ≤ −2 by formula (0.26) and
C2

1 ≤ 0 by Hodge index. It follows that C2
1 = 0, so h0(OS(C1)) ≥ χ(OS(C1)) ≥ 2 and thus

C2 would be a plane curve, which is absurd. Therefore, if a ≥ 2, it follows that S would
have a pencil of plane quintics. But this is impossible by
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Lemma 3.25. S has only finitely many plane curves.

Proof. Since any pencil of plane curves on S is linear, the residual curve in a hyperplane
section containing a general element of the family is again a plane curve. But then the
hyperplane section is contained in a quadric and this contradicts Severi’s theorem.ut

Assume now that h1(OS(3)) ≥ 1. Then h1(OH(3)) ≥ 1 for at least a web of hyperplane
sections H. But the general element in the web is smooth while OH(3H) is non-special
since 2π − 2 < 33, and this is a contradiction.ut

Corollary 3.26. Let π ⊂ IP4 be the base locus plane of the pencil of hyperplanes for
which h1(OH(2)) 6= 0. Then π ∩ S contains as component a plane quintic curve. Residual
to it, there is a pencil of smooth irreducible curves of degree 6, and arithmetic genus ≤ 1.
Moreover, when the genus is one, the plane π cuts S along a plane quintic curve with an
embedded point, and thus the surface has infinitely many 6-secant lines in this case.

Proof. It follows from the proof of the above lemma that π ∩ S contains as component
a plane quintic curve C. Let |D| = |H − C| denote the residual pencil. Then the genus
formula (0.2) gives pa(D) = D2, while Hodge index yields the bound D2 ≤ 3. In particular,
the general member in the pencil |H −C| is smooth. We show in the sequel that the cases
D2 ∈ {2, 3} cannot occur.

Assume first that D2 = 3. Then CD = 3, so the restriction of |D| defines a linear system
of degree 3 on C. Since C is not hyperelliptic, it follows that |D||C is a g1

3 , and the genus
formula tells us that C has, as its sole singularity, a node or an ordinary cusp, the g1

3 being
cut out by the pencil of lines through this double point. In particular h0(OC(H −D)) 6= 0,
while the cohomology of the exact sequence

0 −→ IH(1) −→ ID(1) −→ OC(H −D) −→ 0

gives h0(OC(H −D)) = 0 since, obviously, h0(ID(1)) = 0 and h1(IH(1)) = 0 by Severi’s
theorem, hence we’ve obtained a contradiction in this case.

If D2 = 2, then CD = 4 so either |D| cuts out a g1
4 on C, or |D||C has a base point P on

C, where D is tangent to the plane π. In the last case, C is again singular and the free
part of |D||C is cut out by the pencil of lines through the double point. One argues now
as in the previous case to obtain a contradiction.

Finally, when D2 = 1 we obtain CD = 5 and then |D||C must have a base point, otherwise,
since a g1

5 is cut out on C by the pencil of lines through a point outside the curve, the
previous arguments would lead again to a contradiction. The claim of the corollary follows
now easily.ut

For construction purposes we assume h0(IS(4)) = 0, thus in other words that the coho-
mology diagram is minimal
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i ↑

3 1 hi(IS(p))

2 1

−−−−−−−−−−−−−−−−−−−−−−−−−→
p

Then Beilinson’s spectral sequence yields for any such surface S a presentation

0 −→ 3Ω3(3)
ϕ−→ G −→ IS(4) −→ 0,

where G is the kernel of a morphism

0 −→ G −→ Ω2(2)⊕ 2Ω1(1)
ψ−→ O −→ 0.

Identifying IP4 = IP(V ), the morphism ψ is induced by a triple (ψ1, ψ21, ψ22), with ψ1 ∈
Λ2 V and ψ21, ψ22 ∈ V . It is easily seen that there are precisely four different choices
which induce surjective ψ’s:

1) (ψ1, ψ21, ψ22) ∈ Λ2 V × V × V generic,
2) ψ1 = 0 and (ψ21, ψ22) ∈ V × V generic,

3a) ψ1 ∈ Λ2 V a decomposable tensor, ψ21 ∈ V generic, and ψ22 = 0, or
3b) ψ1 ∈ Λ2 V indecomposable, ψ21 ∈ V generic, and ψ22 = 0.
Corresponding, we obtain four families of vector bundles G with minimal free resolutions
of type

0 ← G1 ← 25O(−1) 15O(−2) 3O(−3)↖
⊕ ←− ⊕

2O(−3) 3O(−4)
↖
O(−5) ← 0,

25O(−1) 16O(−2) 4O(−3)
0 ← G2 ← ⊕ ←− ⊕ ←− ⊕

O(−2) 3O(−3) 3O(−4)
↖
O(−5) ← 0,

25O(−1) 17O(−2) 6O(−3) O(−4)
0 ← G3a ← ⊕ ←− ⊕ ←− ⊕ ←− ⊕ ← 0,

2O(−2) 5O(−3) 4O(−4) O(−5)

and respectively
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0 ← G3b ← 25O(−1) 15O(−2) 6O(−3) O(−4)↖
⊕ ←− ⊕ ←− ⊕ ← 0.

5O(−3) 4O(−4) O(−5)

However, the choice 3b) doesn’t lead to any surface. Namely, in this case, G3b = Ω1(1) ⊕
H, where H = ker(Ω2(2) ⊕ Ω1(1)

(ψ1,ψ21)−→ O), and there is no sheaf monomorphism ϕ ∈
Hom(3Ω3(3),G3b) since in the minimal free resolution of H

0 ← H ← 15O(−1) 5O(−2) O(−3)↖
⊕ ←− ⊕

5O(−3) 4O(−4)
↖
O(−5) ← 0,

the 5 linear syzygies of the 15 generators involve only 10 of these, and thus the component
of ϕ going to H factorizes through a rank 4 sheaf. In all other three cases, by checking on
a computer via [Mac], we find that a general ϕ ∈ Hom(3Ω3(3),Gi), where i ∈ {1, 2, 3a},
defines a smooth surface Si ⊂ IP4 with the desired invariants.
In case 1) a mapping cone of the resolutions of F = 3Ω3(3) and G1 provides the minimal
free resolution

0 ← IS1 ← 10O(−5) 12O(−6) 3O(−7)↖
⊕ ←− ⊕

2O(−7) 3O(−8)
↖
O(−9) ← 0

and hence, in particular, we see that S1 is cut out by quintic hypersurfaces and thus has
no 6-secant lines. Let now Σ1 denote the image of S1 under the adjunction map, and Σ2

denote the image of Σ1 under the adjunction map defined by |H1 +K1|. Le Barz’s formula
gives N6 = 7 so there are 7 exceptional lines on S1, and we obtain from (0.13) the following
invariants

Σ1 ⊂ IP10 H2
1 = 18 H1K1 = −2 K2

1 = −4 π1 = 9
Σ2 ⊂ IP8 H2

2 = 10 H2K2 = −6 K2
2 = −4 + b π2 = 3,

where b is the number of (−1)-conics on S1. Since (H2 +K2)2 = b− 6 and the adjunction
maps Σ2 to IP2, theorem 0.13 implies b ∈ {6, 7}. If b = 6, then Σ2 is a conic bundle Σ2 →
IP1 with 6 singular fibres. Therefore S1 = IFe(p1, p2, . . . , p19) is a blown-up Hirzebruch
surface and we can recover through adjunction its embedding

H = 6C0 + (3e+ 8)F −
6∑
i=1

3Ei −
12∑
j=7

2Ej −
19∑
k=13

Ek,

where C0 denotes a section with self-intersection −e ≤ 0 and F a fibre of the ruling. Now
HC0 ≥ 1, so e ∈ {0, 1, 2} and we may choose (via elementary transformations) IP2 as
minimal model, whence

(1) H = 11l − 5E0 −
6∑
i=1

3Ei −
12∑
j=7

2Ej −
19∑
k=13

Ek.
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If b = 7, then Σ2 is IP2 blown-up in 6 points and we obtain

(2) H = 10l −
6∑
i=1

3Ei −
13∑
j=7

2Ej −
20∑
k=14

Ek.

To exclude the linear system (2) we’ll use the information provided by corollary 3.26.
Namely, since S1 has no 6-secant lines, it follows that the plane distinguished by the
H2-cohomology meets the surface along a plane quintic curve C, whose residual pencil
|D| = |H − C| is base point free and consists of rational curves of degree 6. Let now D1

be the image of a general element in this pencil through the adjunction map on S1. We
have H1D1 = (H +K)D = 4, and the cohomology of the exact sequence

0 −→ OS1(K) −→ OS1(K + C) −→ OC(K + C) −→ 0

gives h0(OΣ1(H1 −D1)) = h0(OS1(H +K −D)) = h0(OS1(K + C)) = h0(OC(K + C)) =
6. Therefore D1 ⊂ IP10 has degree 4 and spans a whole IP4, thus it is a rational normal
curve in the spanned linear subspace. The image of D1 through the map defined by
|H1 +K1| is then a curve of degree D1(H1 +K1) = 2−D2

1 ≤ 2, thus Σ2 ⊂ IP8 is a conic
bundle. It follows that in this case S1 is a rational surface of type a), i.e., embedded by a
linear system of type

H = 11l − 5E0 −
6∑
i=1

3Ei −
12∑
j=7

2Ej −
19∑
k=13

Ek.

In case 2) the ideal sheaf of S2 has syzygies

10O(−5) 13O(−6) 4O(−7)
0 ← IS2 ← ⊕ ←− ⊕ ←− ⊕

O(−6) 3O(−7) 3O(−8)
↖
O(−9) ← 0 .

This family was first constructed in [DES]. We recall in the sequel from [DES] the de-
scription of the embedding in IP4. First observe that the H1-module distinguishes a line L
such that IS2/(IS2)≤5 has support on it. Thus L is the unique 6-secant, and by Le Barz’s
formula there are 6 exceptional lines on S2. Denoting as above by Σ1 and Σ2 the first and
the second adjoint surfaces of S2 respectively, we obtain via (0.13) the following invariants

Σ1 ⊂ IP10 H2
1 = 18 H1K1 = −2 K2

1 = −5 π1 = 9
Σ2 ⊂ IP8 H2

2 = 9 H2K2 = −7 K2
2 = −5 + b π2 = 2,

where b is the number of (−1)-conics on S2. It follows that (H2 +K2)2 = 0, thus b = 10,
and the next adjunction morphism presents Σ2 as a conic bundle with 3 singular fibres.
Therefore S2 = IFe(p1, p2, . . . , p19) is a blown-up Hirzebruch surface and

H = 6C0 + (3e+ 7)F −
3∑
i=1

3Ei −
13∑
j=4

2Ej −
19∑
k=14

Ek.
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HC0 ≥ 1, so e ∈ {0, 1, 2} and we may choose IP2 as minimal model. In particular

H = 10l − 4E0 −
3∑
i=1

3Ei −
13∑
j=4

2Ej −
19∑
k=14

Ek

and S2 is a surface of type b). We remark that in this case the pencil described in corollary
3.26 is the pullback of the conic fibration on Σ2.
Finally, in case 3) we obtain a surface S3 with syzygies

10O(−5) 14O(−6) 6O(−7) O(−8)
0 ← IS3 ← ⊕ ←− ⊕ ←− ⊕ ←− ⊕ ←− 0

2O(−6) 5O(−7) 4O(−8) O(−9)

The quintics in the ideal cut out the surface S3 plus the plane π distinguished by the
H2-cohomology, namely π = spank(e0, e1, e2), if V = spank(e0, . . . , e4) and ψ1 = e1 ∧ e2,
ψ12 = e0 in the above construction. π meets S3 along a plane quintic curve C with an
embedded point P = IP(ke0), so the surface has infinitely many 6-secant lines. The residual
pencil |D| = |H − C| has only one base point at P and consists of elliptic curves. One
checks in an example that S3 has 9 exceptional lines. The adjunction process produces
surfaces with the following invariants

Σ1 ⊂ IP10 H2
1 = 18 H1K1 = −2 K2

1 = −2 π1 = 9
Σ2 ⊂ IP8 H2

2 = 12 H2K2 = −4 K2
2 = −2 + b π2 = 5,

where b is the number of (−1)-conics on S3. Now Hodge index gives b ≤ 3, so the next
adjoint surface

Σ3 ⊂ IP4 H2
3 = 2 + b H3K3 = −6 + b K2

3 = −2 + b+ c π3 = b− 1

where c is the number of (−1)-twisted cubics on S3, will be a surface of degree at most 5.
Let again D1 be the image on Σ1 of a general element in the pencil |D|. Then H1D1 = 5
and as above D1 spans a IP4, thus pa(D1) ≤ 1. If pa(D1) = 0, then |D1| has two base
points, hence D2

1 = 2, K1D1 = −4 and thus |D1| would map through the second adjunction
on a pencil of lines, absurd. Therefore |D1| is a pencil of elliptic curves of degree 5 with
only one base point. Similar arguments show in fact that |D| maps via adjunction on a
pencil of plane cubic curves on Σ3. Since the rational cubic scroll and the Veronese surface
do not possess such pencils, it follows that b = 3 and Σ3 is a Castelnuovo surface (see e.g.
[Ok2]), i.e., a surface in IP4 embedded by

HΣ3 = 4l − 2E0 −
7∑
i=1

Ei.

Going back through the adjunction process we recuperate the initial embedding in IP4

H = 13l − 5E0 −
7∑
i=1

4Ei −
10∑
j=8

2Ej −
19∑
k=11

Ek,
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thus S3 is a surface of type c) this time. We remark that in this case |D| = |3l−
∑7
i=0Ei|.ut

Remark 3.27. The above families of rational surfaces lie in different components of the
Hilbert scheme. The Eagon-Northcott method used in the previous proposition allows to
construct also schemes lying at the intersection of two such components. For example, let
ρ : IP1 × IP4 → IP4 be the projection onto the second factor and consider the bundle G on
IP1 × IP4 defined as

G = ker(ρ∗Ω2(2)⊕ 2ρ∗Ω1(1)
ψ−→O),

where ψ = (te0 ∧ e2, se0, te1), and s, t denote the coordinates in IP1. Then G(s:1) is a
bundle on IP4 of type G2, for all s 6= 0, while G(0:1) is of type G3a. The degeneracy locus
of a general morphism ϕ ∈ Hom(ρ∗Ω3(3),G) defines an irreducible flat family of surfaces
of degree 11, π = 11, χ = 1 in IP4, with general fibre a smooth rational surface of type
b), and with the fibre over (0:1) a scheme lying in the intersection of the components of
the Hilbert scheme containing rational surfaces of type b) and c), respectively. Explicit
computations in one example, via [Mac], show that a general such scheme is the union of
the plane spank(e0, e1, e2) and a smooth rational surface of degree 10, sectional genus 8
meeting the plane along a quartic curve.ut

Proposition 3.28. Let S be a smooth surface in IP4 with invariants d = 11, π = 11 and
χ = 2. Then either
a) S is a blown-up K3 surface, embedded by

H = Hmin − 5E1 −
5∑
i=2

Ei,

or
b) S is a blown-up K3 surface, embedded by

H = Hmin − 4E1 − 2E2 −
5∑
i=3

Ei,

or
c) S is a blown-up K3 surface, embedded by

H = Hmin − 3E1 −
3∑
i=2

2Ei −
5∑
j=4

Ej ,

or
d) S is a blown-up K3 surface, embedded by

H = Hmin −
4∑
i=1

2Ei − E5.

44



Proof. We use adjunction to produce a number of possible candidates for the embedding
|H| of S in IP4. Let S1 denote the image of S under the adjunction map, and S2 denote
the image of S1 under the adjunction map defined by |H1 + K1|. We obtain from (0.13)
the following invariants

S ⊂ IP4 H2 = 11 HK = 9 K2 = −5 π = 11
S1 ⊂ IP11 H2

1 = 24 H1K1 = 4 K2
1 = −5 + a π1 = 15

S2 ⊂ IP15 H2
2 = 27 + a H2K2 = a− 1 K2

2 = −5 + a+ b π2 = a+ 14,

where a is the number of (−1)-lines on S and b is the number of (−1)-lines on S1. Since
(H1K1)2 < H2

1 , lemma 0.18 shows that κ(S) ∈ {0, 1}, and thus S is either a K3 surface
or a proper elliptic surface. In particular a ≤ 5 and a + b ≤ 5. On the other hand
H2K2 = a − 1 ≥ 0, so S has at least one exceptional line. Now, in case S has at most
three (−1) lines, then HKmin ≤ HK−a−2b−](exceptional curves of higher degree) ≤ 2,
hence S is necessarily a K3 surface and H, easily reconstructed via the adjunction, is one
in the following list of candidates:

1) H = Hmin −
4∑
i=1

2Ei − E5

2) H = Hmin − 3E1 −
3∑
i=2

2Ei −
5∑
j=4

Ej

3) H = Hmin −
2∑
i=1

3Ei −
5∑
j=3

Ej

4) H = Hmin − 4E1 − 2E2 −
5∑
i=3

Ei.

When S has four exceptional lines, then K2
1 = −1 and H2K2 = 3. Therefore, either S2 is

minimal and S is a regular, proper elliptic surface embedded by

5) H = Hmin − 2E1 −
5∑
i=2

Ei, (elliptic)

or S is a blown-up K3 surface embedded by

6) H = Hmin − 5E1 −
5∑
i=2

Ei. (K3)

Finally, if S has five exceptional lines, then S1 is minimal, whence S is a proper elliptic
surface embedded by

7) H = Hmin −
5∑
i=1

Ei. (elliptic)

We go on to study these candidates, excluding all but 1), 2), 4) and 6). First a lemma
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Lemma 3.29. If S ⊂ IP4 is a smooth surface with d = 11, π = 11 and κ(S) ≥ 0, then
h1(OS(k)) = 0, for all k ≥ 2.

Proof. We observe that h2(OS(n)) = h0(OS(K − nH)) = 0 for all n ≥ 1 because
(K − nH)(K + H) = 6χ − 8 − 20n < 0. Riemann-Roch and Severi’s theorem then give
h1(OS(1)) ≤ 2. On the other side h1(OH(2)) = h0(OH(K −H)) = 0 since H(K−H) < 0,
thus h1(OS(k)) ≥ h1(OS(k + 1)) for all k ≥ 1, and therefore to prove the lemma it is
enough to check that h1(OS(2)) = 0. Assume that h1(OS(2)) > 0. Then the variety
V ⊂ ǏP

4
parametrizing hyperplane sections for which h1(OH(2)) > 0 contains a plane, so

there is a line L contained in a net of hyperplanes for which h1(OH(2)) doesn’t vanish.
The line L is contained in S and gives rise to a residual exact sequence

0 −→ OC(2H − L) −→ OH(2H) −→ OL(2H) −→ 0.

If the general section C ∈ |H − L| is irreducible, then the cohomology of the above exact
sequence implies that 2pa(C) − 2 ≥ (H − L)(2H − L), which combined with the genus
formula says that L2 ≥ −1, whereas L2 = −1 because of the assumption on the Kodaira
dimension. We obtain pa(C) = 10, and then the cohomology of the exact sequence

0 −→ OIP1 −→ OH(2H) −→ OC(2H) −→ 0

yields h1(OC(2H)) > 0, which is absurd since C is irreducible and 2HC > 2pa(C)−2 = 18.
The case when |H − L| is composed with a pencil can be ruled out as in (3.4). Therefore
h1(OS(2)) = 0 and the claim of the lemma follows.ut

From the above lemma, combined with Riemann-Roch and theorems 1.6 and 1.7, we deduce
h1(IS(2)) = h1(OS(2)) = 0, and thus h0(IH(3)) = 0 for all hyperplane sections H of S.

In case 3), there exist residual curves Di ∈ |H−Ei|, for i = 1, 2, of degree 8 and arithmetic
genus 8. Moreover, the cohomology of the exact sequence

0 −→ OS(H + Ei) −→ OS(2H) −→ ODi(2H) −→ 0

yields h1(ODi(2)) = 0 since h2(OS(H + Ei)) = h0(OS(K −H − Ei)) ≤ h0(OS(K −H)) =
0. Thus Riemann-Roch implies that h0(ODi(2)) = 9, and therefore either Di lies on a
smooth quadric surface Qi, as a curve of type (3, 5), or Di splits as the union of two plane
quartic curves which meet along a scheme of length 3. We sketch in the sequel only the
former case, but similar arguments apply to rule out also the second one. Let H1 and
H2 be the hyperplanes spanned by E1 and E2 respectively, and let π = H1 ∩H2 be their
intersection plane. Since D1D2 = 5, it follows from Bezout’s theorem that the two quadric
surfaces share a curve on the plane π. Assume first that Q1 and Q2 meet both π along
the same conic C. Then, since EiDj = 3, for i 6= j, we deduce that each twisted cubic Ei
intersects the conic C in a scheme of length 3, and thus either π cuts S along eleven points
on a conic, or C is contained in the surface S. In the former case the cohomology of the
exact sequences

0 −→ IH(1) −→ IH(2) −→ Iπ∩S(2) −→ 0
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0 −→ IS −→ IS(1) −→ IH(1) −→ 0

yields h1(IS(1)) = h1(IH(1)) > 0, which contradicts Severi’s theorem. In the last case we
may write Di = C +Gi, i = 1, 2, with Gi curves of type (2, 4) on the quadrics Qi. In this
setting we obtain CGi = 6, EiC = 3, EiGj = 1 and thus also G1G2 = (H −E1 −C)G2 =
−1, which is absurd for two effective divisors without common components. At last, the
case when the two quadrics Qi, i = 1, 2, share only a line in the plane π, can be excluded
in a similar way.

In case 5), the canonical divisor Kmin of the minimal model of S would be a plane cubic
curve in IP4. Thus residual to it there is a pencil |D| = |H −Kmin| of curves of degree 8
and arithmetic genus 8. As above one sees that h0(ID(2)) 6= 0. But then a hyperplane
section of S by a hyperplane containing the plane of Kmin will be contained in a cubic
surface, thus contradicting the fact that h0(IS(3)) = h1(IS(2)) = 0.

In case 7), we obtain HKmin = HK1 = 4 this time, so the elliptic curve Kmin spans only
a IP3. The residual curve D has degree 7 and arithmetic genus 7, thus splits by (0.34) as
D = A+B, where A is a plane quintic curve and B is a conic meeting A along a scheme
of length 2. This is a contradiction since, by (0.36), the degree of a plane curve on S is at
most 4. We have proved therefore the claim of the proposition.ut

(3.30.) Constructions. We’ll show in the sequel that all the types of surfaces in the
above proposition exist. For construction purposes we’ll assume that S lies on no quartic
hypersurface, i.e., that the cohomology table of IS() looks like

i ↑

1

2 hi(IS(p))

3 2

−−−−−−−−−−−−−−−−−−−−−−−−−→
p

Everything is determined by the module structure of the H1-module of the ideal sheaf.
Beilinson’s theorem suggests in all cases to take

E = O(−1)⊕ 2Ω3(3) and F = Syz1(H1(IS(∗+ 4)))

and to construct the surface S as the degeneracy locus of a morphism ψ ∈ Hom(E ,F).
Assuming that the k-dual of H1(IS(∗)) is generated by elements in the first non-zero twist,
a minimal free presentation of H1(IS(∗))∗ is of type

0←− H1(IS(∗))∗ ←− 2R(5)
ϕ←− 7R(4)⊕ aR(3),

47



where 0 ≤ a ≤ 3 depends on the number of linear syzygies of the linear part of ϕ. The
morphism ϕ = (ϕ1, ϕ2) is given by a 2 × (7 + a) matrix with linear entries in ϕ1 and
quadratic in ϕ2. For a generic choice, ϕ1 has artinian cokernel and we may think of it as
containing a 2 × 5 block whose cokernel is supported on 5 points. Assuming that the 5
points are the vertices {pi} of the standard simplex in k5 and performing column operations
on ϕ1, we obtain that

ϕ1 =
(

x0 x1 x2 x3 x4 0 0
a0x0 a1x1 a2x2 a3x3 a4x4 l1 l2

)
,

with li linear forms li =
∑4
j=0 bijxj , i = 1, 2. We distinguish four cases:

a) l1 and l2 are two general linear forms, whereas a = 0, thus the presentation matrix is
given by ϕ1 alone in this case. For this choice, the bundle Fa has a free resolution of type

10O(−2)
0 ← Fa ←− 20O(−1) ←− ⊕

5O(−3)
↖

7O(−4) ←− 2O(−5) ← 0

and one checks via [Mac] that the general ψ ∈ Hom(E ,Fa) leads to a smooth surface
Sa ⊂ IP4 with desired invariants and whose ideal sheaf has a minimal free resolution

0 ← ISa ←− 9O(−5) 8O(−6)↖
⊕

5O(−7)
↖

7O(−8) ←− 2O(−9) ← 0 .

In particular, since the ideal ISa is generated by quintics, Sa has no 6-secants and hence
N6(11, 11, 2) = 4 is the number of exceptional lines on Sa. It follows from proposition 3.28
that Sa is non-minimal K3 surface embedded by

H = Hmin − 5E1 −
5∑
i=2

Ei.

This family of K3 surfaces was first constructed in [DES].

b) l1 and l2 have a common zero at exactly one of the points pi. Then ϕ1 has 6 linear
syzygies, thus a = 1 and we take as ϕ2 a general column matrix of quadrics. We get this
time a bundle Fb with resolution of type

20O(−1) 11O(−2) O(−3)
0 ← Fb ←− ⊕ ←− ⊕ ←− ⊕

O(−2) 6O(−3) 7O(−4)
↖

2O(−5) ← 0

and the general morphism ψ ∈ Hom(E ,Fb) gives a smooth surface Sb ⊂ IP4 with resolution
of type

9O(−5) 9O(−6) O(−7)
0 ← ISb ←− ⊕ ←− ⊕ ←− ⊕

O(−6) 6O(−7) 7O(−8)
↖

2O(−9) ← 0 .
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This time there is precisely one sextic generator of ISb , and the 6 linear forms in the first
step of the resolution define a line L in the hyperplane dual to the point pi, which is the
support of ISb/(ISb)≤5 and thus the unique 6-secant of Sb. Consequently there are only
N6 − 1 = 3 exceptional lines, and hence Sb is a non-minimal K3 surface embedded by

H = Hmin − 4E1 − 2E2 −
5∑
i=3

Ei.

c) l1 and l2 have a common zero at two of the points pi. In this case ϕ1 has 7 linear
syzygies and we take ϕ2 to be a general 2× 2 matrix of quadrics (a = 2). The bundle Fc
has a minimal free resolution

20O(−1) 12O(−2) 2O(−3)
0 ← F ←− ⊕ ←− ⊕ ←− ⊕

2O(−2) 7O(−3) 7O(−4)
↖

2O(−5) ← 0

and the general morphism ψ ∈ Hom(E ,Fc) gives rise to smooth surface Sc ⊂ IP4 with
syzygies

9O(−5) 10O(−6) 2O(−7)
0 ← ISc ←− ⊕ ←− ⊕ ←− ⊕

2O(−6) 7O(−7) 7O(−8)
↖

2O(−9) ← 0 .

In this case the module ISc/(ISc)≤5 has support on two skew lines, L1 and L2, which are
the 6-secants of Sc. It follows that there are only N6 − 2 = 2 exceptional lines, and hence
Sc is a non-minimal K3 surface embedded by

H = Hmin − 3E1 −
3∑
i=2

2Ei −
5∑
j=4

Ej .

d) Finally l1 and l2 have a common zero at three of the points pi, say p0, p1 and p2. Now
ϕ1 has 8 linear syzygies and we take ϕ2 to be given by a general 2 × 3 matrix of quadric
forms. This leads to a vector bundle with resolution

20O(−1) 13O(−2) 3O(−3)
0 ← Fd ←− ⊕ ←− ⊕ ←− ⊕

3O(−2) 8O(−3) 7O(−4)
↖

2O(−5) ← 0

and the general morphism ψ ∈ Hom(E ,Fd) degenerates along a smooth surface Sd ⊂ IP4

with resolution

9O(−5) 11O(−6) 3O(−7)
0 ← ISd ←− ⊕ ←− ⊕ ←− ⊕

3O(−6) 8O(−7) 7O(−8)
↖

2O(−9) ← 0 .
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The choice we’ve made distinguishes a plane, namely Π = spank(p0, p1, p2), which meets
the surface Sd along a smooth plane quartic curve C and the 3 points p0, p1 and p2 outside
it. It follows that the 3 lines Lij = spank(pi, pj), for 0 ≤ i < j ≤ 2, are 6-secant lines to the
surface Sd, and they are the only ones since Π is the support of ISd/(ISd)≤5. Consequently
there is only one exceptional line, and thus Sd is a non-minimal K3 surface embedded by

H = Hmin − 2
4∑
i=1

Ei − E5. �

Proposition 3.31. A smooth surface S ⊂ IP4 with invariants d = 11, π = 11, χ = 3
is either a minimal, general type surface on the Noether’s line, or a regular, non-minimal
surface of general type with only one exceptional line.

Proof. The double point formula gives K2 = 1, so S is of general type. S is a regular
surface, hence pg = 2, otherwise [Deb. Th.6.1] yields K2

min ≥ 6, thus HKmin ≤ 4 while
pa(Kmin) ≥ 7, which is absurd by (0.34). Assume now that S is not minimal and let
E1, . . . , Ek denote the exceptional curves on S. If k ≥ 2, then HKmin ≤ 7 and pa(Kmin) =
K2

min + 1 ≥ 4 thus a curve D ∈ |Kmin − E1| would have degree at most 6 and arithmetic
genus at least 4. The only possibility is that k = 2, HE1 = HE2 = 1, whereas D spans
only a IP3, HD = 6 and pa(D) = 4. But then a curve in |H −D| would have degree 5 and
arithmetic genus 4, which is absurd. Therefore there exists only one exceptional curve E
on S. Assume that HE ≥ 2. Then a curve D ∈ |Kmin−E| has degree ≤ 5 and arithmetic
genus 3, thus it spans only a IP3 and equality in fact holds. By (0.34) the residual curve
H −D splits as H −D = A+B, where A is a plane quintic curve and B is a line disjoint
of A. It follows that A2 + B2 = 2, thus also A2 ≥ 3 since B2 ≤ −1 and this contradicts
Hodge index. In conclusion, if S is not minimal, then it has only one exceptional line.ut

Proposition 3.32. There exist smooth regular non-minimal surfaces of general type S ⊂
IP4 with d = 11, π = 11, χ = 3 and with only one exceptional line.

Proof. For construction purposes we assume that S doesn’t lie on a quartic hypersurface,
and thus, by lemma 3.29 above, that the cohomology table of IS(∗) is minimal

i ↑

2

1 hi(IS(p))

1 4 3

−−−−−−−−−−−−−−−−−−−−−−−−−→
p
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Beilinson’s theorem suggests to take

E = 2O(−1)⊕ Ω3(3) and F = Syz1(H1(IS(∗+ 4)))

and to define S as the degeneracy locus of a morphism ϕ ∈ Hom(E ,F). Thus we have
again to determine the module structure of the H1-module of the ideal sheaf. We assume
that M = H1(IS(∗)) is monogenous, i.e., that M is the tensor product of a monogenous
module M ′ with Hilbert function (1, 4, 3) in 4 variables, say over R′ = k[x0, . . . , x3], with
the Koszul complex of one hyperplane, say x4. However, it is easily seen that for the
generic choice of such a module no morphism in Hom(E ,F) can be injective. The trick is
to choose M ′ special, and for that we start with four general lines L1, L2, L3 and L4 in
IP3 = Proj(k[x0, . . . , x3]) and define M ′∗ as the cokernel of

0←− M ′
∗ ←− 3R′(4)

(θ1,θ2)←− 8R′(3)⊕R′(2),

where θ1 is the product γα of a random matrix γ ∈M3,4(k) with the direct sum α of the
four Koszul complexes built on the lines Li, i = 1, 4 in IP3, while θ2 is a column matrix of
general quadrics. Tensoring M ′ with the Koszul complex of x4 and sheafifing syzygies we
obtain a bundle F with minimal resolution:

15O(−1) 9O(−2) O(−3)
0 ← F ←− ⊕ ←− ⊕ ←− ⊕

4O(−2) 12O(−3) 11O(−4)
↖

3O(−5) ← 0

and this time a general morphism ϕ ∈ Hom(E ,F) provides a smooth surface S ⊂ IP4, with
desired invariants and syzygies

8O(−5) 8O(−6) O(−7)
0 ← IS ←− ⊕ ←− ⊕ ←− ⊕

4O(−6) 12O(−7) 11O(−8)
↖

3O(−9) ← 0

We check now what kind of surface we did obtain. By construction, it follows from the
cohomology of the exact sequence

0 −→ IS(2) −→ IS(3) −→ IH(3) −→ 0

that the hyperplane section H0, cut out on S by the hyperplane spanned by the four lines,
is the unique one such that h0(IH0(3)) = 1. One checks that for a general choice of the
construction data, the unique cubic containing H0 is a smooth Del Pezzo surface X ⊂ IP3.
Now cohomology in a another twist of the above exact sequence yields h0(IH0(5)) = 11,
thus we may link H0 in the complete intersection of X with a general quintic to a curve G
of degree 4, arithmetic genus −3. On another side, by construction, IS/IS≤5 is supported
on the four lines, and so we might guess that they are the 6-secants of S. Indeed, G is
the union of the four lines we’ve started with, and since we can always choose the basis of
Pic(X) such that X ⊂ IP3 is embedded by HX ∼ 3l−

∑6
i=1Ei, whereas the lines Li are of

class Ei, i = 1, 4 (see [Ha] or [GP2]), we deduce that H0 ∼ 15l −
∑4
i=1 6Ei − 5E5 − 5E6.

Intersection theory on X shows now that each line Li is a 6-secant to H0, and thus also to S,
and these are the only 6-secant lines to S. Since Le Barz’s formula gives N6(11, 11, 3) = 5
we deduce that there is one exceptional line on the surface S. This proves the claim of the
proposition.ut
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V. Surfaces with d = 11, π = 12

Adjunction and the double point formula give HK = 11 and K2 = 6χ − 22, thus Hodge
index yields χ ≤ 5. Now lemma 0.20 implies that χ ≥ 0, and equality holds only when
S is a (blown-up) ruled surface over an elliptic curve. Moreover, when κ(S) ≥ 0, the
pseudo-effectiveness (0.16) of K gives χ ≥ 2.

Lemma 3.33. There are no smooth surfaces S ⊂ IP4 with d = 11, π = 12 which are
birationally ruled over an elliptic curve.

Proof. We consider, once again, the adjunction mapping whose image

S1 = ϕH+K(S) ⊂ IP10 has invariants d1 = 11, H1K1 = −11, π1 = 1,

whence K2
1 = 0, S1 is geometrically ruled and ϕH+K is the contraction of 22 exceptional

lines on S. Therefore, the formula for the canonical class of a ruled surface shows that the
fibers of the ruling of S are embedded as (degenerated) twisted cubics in IP4. Let F be such
a ruling. The residual curve D = H−F has degD = 8 and pa(D) = 10, whence, according
to lemma 0.34, it contains a plane sextic curve as component. But this contradicts the
bound on the degree of a plane curve in (0.36).ut

Proposition 3.34. There are no smooth rational surfaces S ⊂ IP4, with d = 11 and
π = 12.

Proof. Assume such surfaces exist. Severi’s theorem gives h1(OS(1)) = 4. On the other
hand, if h1(OH(2)) = h0(OH(K −H)) 6= 0 for the general hyperplane section H of S,
then, since H(K−H) = 0, it would follow from Weil’s lemma (see [W] or [So]) that K−H
is trivial, which is absurd. Therefore h1(OH(2)) = 0 for the general H, and thus the long
cohomology sequence of

0 −→ OS(1) −→ OS(2) −→ OH(2) −→ 0

gives h1(OS(2)) ≤ 4. Now h0(IS(3)) = 0 by (1.7) and h2(OS(3)) = h0(OS(K − 2H)) = 0
because pg = 0, hence h1(OS(3)) ≥ 1 since by Riemann-Roch χ(IS(3)) = 1. It follows
that the variety V ⊂ ǏP

4
parametrizing hyperplane sections for which h1(OH(3)) 6= 0 is

non-empty. Let H be a hyperplane section of S corresponding to a point of V . Then
lemma 0.37 yields a decomposition H = C1 + C2, C1 ≥ 0, C2 > 0 such that

C1C2 ≤ (K − 2H)C2 (∗)

whence
3 degC2 ≤ 2pa(C2)− 2. (∗∗)

This is readily seen to be impossible for degC2 ≤ 5 by using the bounds for the arithmetic
genus in (0.34). Now lemma 0.36 shows that plane curves on S have degree at most 5.
Combined with the bounds in (0.34) this implies degC2 ≥ 9, whence degC1 ≤ 2. But the
inequality (∗) is equivalent to

3 degC1 ≥ (K +H)C1 + C1C2 + 11.
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Therefore, since (K +H)C1 ≥ 0 by (0.16) and C1C2 ≥ 1 by the 1-connectedness of H, we
obtain degC1 ≥ 4, which is a contradiction. ut

We discuss in the sequel the possible invariants for a surface S with κ(S) ≥ 0.

Proposition 3.35. Let S ⊂ IP4 be a smooth surface with d = 11, π = 12 and χ = 2.
Then S is a non-minimal K3 surface embedded by

H = Hmin − 2E1 −
10∑
i=2

Ei.

P roof. Let S1 be the image of S through the adjunction map. We compute the following
invariants for S1 ⊂ IP12: d1 = 23, π1 = 13, H1K1 = 1. Now pg ≥ 1, so |K1| consists of a
unique exceptional line and S is a blown-up K3 surface. In particular K2

1 = −1 and the
adjunction morphism ϕH+K is blowing down 9 exceptional lines on S.ut

An example of a smooth surface with the above invariants has been first constructed via
liaison by K. Ranestad (private communication). We’ll recall here his approach and prove
that the general surface can be obtained by this construction. First a remark:

Lemma 3.36. Let S ⊂ IP4 be a surface with d = 11, π = 12 and κ(S) ≥ 0. Then

a) h1(OS(1)) > h1(OS(2)) or h1(OS(2)) = 0
b) h1(OS(k)) = 0 for k ≥ 3.

Proof. First observe that h2(OS(n)) = h0(OS(K − nH)) = 0 for all n ≥ 1 because (K −
nH)(K+H) = 6χ−11(2n+1) < 0. Thus Severi’s theorem and Riemann-Roch give for the
speciality h1(OS(1)) = 5−χ ≤ 3. The argument used in the proof of proposition 3.34 gives
here h1(OH(2)) = 0 for a general hyperplane section H, hence h1(OS(2)) ≤ h1(OS(1)) =
5−χ. Assume first that h1(OS(2)) = h1(OS(1)). Then the variety V ⊂ ǏP

4
parametrizing

hyperplane sections for which h1(OH(2)) 6= 0 is a determinantal hypersurface of degree ≤
3. It is not contained in the dual variety of S since otherwise S would be degenerated when
deg V = 2 or would have too many plane curves when deg V = 3. Therefore one can find
a Lefschetz pencil δ (see [AF], [Z]) such that for H a general member in it h1(OH(2)) 6= 0
and hence OH(K−H) is trivial. But then Weil’s lemma applies again to show that K−H
is trivial, which is absurd. It follows that h1(OS(2)) ≤ 4− χ ≤ 2 or h1(OS(2)) = 0.
We show next that h1(OS(k)) = 0 for k ≥ 3. First of all h1(OH(k)) = 0 when k ≥ 3 and H
is a smooth hyperplane section, thus the claim follows by induction for χ = 4, 5. Assume
now χ ≤ 3 and h1(OS(3)) 6= 0. Then the variety W ⊂ ǏP

4
parametrizing hyperplane

sections for which h1(OH(3)) 6= 0 contains a plane, so there is a line L ⊂ S which is
the base locus of a net of hyperplanes for which h1(OS(3)) 6= 0. If the general divisor
C ∈| H − L | is irreducible, then it follows from the exact sequence

0 −→ OC(3H − L) −→ OH(3H) −→ OL(3H) −→ 0
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that h1(OC(3H − L)) 6= 0, and thus 2pa(C) − 2 ≥ (H − L)(3H − L). Combined with
formula (0.2), which reads

22 = 2pa(C)− 2− 2L2,

this gives L2 ≥ 7, which is impossible. If the general divisor C ∈| H − L | is not integral,
then | H−L | is composed with a basepoint free pencil of plane curves. We have OC(3H−
L) = OC(2H) and thus h1(OC(2H)) > 0. It follows that | H − L | is a pencil of plane
quintic curves. This is a contradiction since

2pa(C)− 2 = CK = HK − LK ≤ 11 + 2 + L2 = 4.

ut

Lemma 3.37. Let S ⊂ IP4 be a smooth surface as in proposition 3.35. Then h1(IS(k)) = 0
for all k ≥ 3.

Proof. Riemann-Roch gives χ(IS(3)) = 0, whence h1(IS(3)) = 0 because h0(IS(3)) = 0 by
(1.7) and h1(OS(3)) = h2(OS(3)) = 0 by lemma 3.36. It follows then from the cohomology
of the exact sequences

0 −→ IS(m− 1) −→ IS(m) −→ IH(m) −→ 0, m = 3, 4

that h1(IH(4)) = h1(IS(4)) and h1(IH(3)) = 2 for all hyperplane sections H. Assume
now that h1(IS(4)) > 0. Then each hyperplane contains at least one plane π for which
h1(Iπ∩S(4)) > 0. For the general hyperplane this plane section is a finite scheme of
length 11. If it contains a subscheme of length 10 which is contained in a conic, then
h1(Iπ∩S(3)) ≥ 3 and thus also h2(IH(2)) = h1(OH(2)) = h0(OH(K −H)) ≥ 1, which in
turn implies, as before, that K−H is trivial, whence a contradiction. It follows from lemma
0.41 that π ∩ S contains a subscheme of length 6 which is contained in a line. But this
means that the general hyperplane section to S contains 6-secant lines, which is absurd.
Therefore h1(IS(4)) = 0 and the lemma follows. ut

Corollary 3.38. A smooth K3 surface S ⊂ IP4 with d = 11, π = 12 is the degeneracy
locus of a morphism ϕ

0 −→ O(−1)⊕ 3Ω3(3)
ϕ−→ 2Ω2(2)⊕ 2O −→ IS(4) −→ 0,

and thus its ideal sheaf has a minimal free resolution of type:

2O(−4)
0 ← IS ←− ⊕

4O(−5)
↖

7O(−6) ←− 2O(−7) ← 0.
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Proof. The above lemmas give the cohomology table

i ↑

1

3 2 hi(IS(p))

2−−−−−−−−−−−−−−−−−−−−−−−−−→
p

hence the corollary follows from Beilinson’s spectral sequence. ut

Proposition 3.39. The general smooth K3 surface S ⊂ IP4 with d = 11, π = 12 is linked
(4, 4) to a reducible surface X5 = P ∪ P1 ∪ P2 ∪ P3 ∪ P4, where P is a plane and Pi are
planes cutting P along lines li, i = 1, 4, such that no three lines have common intersection
points.

Proof. Let S ⊂ IP4 be the degeneracy locus of a general morphism

ϕ =
(
ϕ11 ϕ12

ϕ21 ϕ22

)
∈ Hom(O(−1)⊕ 3Ω3(3), 2Ω2(2)⊕ 2O).

It follows from Severi’s theorem and lemma 3.36 that the variety W ⊂ ǏP
4

parametrizing
hyperplane sections for which h1(OH(2)) 6= 0 is a smooth rational cubic scroll in ǏP

4
,

namely the degeneration locus of the 2× 3 matrix with linear entries which defines ϕ22 ∈
Hom(3Ω3(3), 2Ω2(2)). The rulings of W , respectively its directrix, correspond to pencils
of hyperplanes for which h1(OH(2)) 6= 0; the pencil parametrized by the directrix l being
distinguished by the fact that

dim(
⋂

H∈H0(Ol(1))∗

ker(H1(OS(1)) ·H−→H1(OS(2)))) = 2,

where the above intersection is considered as a vector subspace of H1(OS(1)). In the case
of the pencils parametrized by rulings of W this dimension is only one. Recall now from
(3.35) that S is embedded by a linear system

H = Hmin − 2E1 −
10∑
i=2

Ei.

Consider the residual pencil |D| = |H − E1|. First of all, since DE1 = 3, |D| has no
fixed component since this would lie in the plane of the conic E1. Therefore the general
D is irreducible, of degree 9 and arithmetic genus 10. Moreover, it is in fact a complete
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intersection of two cubic surfaces since, by Riemann-Roch, h0(ID,H(3)) ≥ 2 and since if D
would lie on a quadric, then it would be a curve of type (3, 6) on a smooth quadric surface
and thus S would have too many 6-secants. Consider the exact sequence

0 −→ OS(H + E1) −→ OS(2H) −→ OD(2H) −→ 0.

From the above discussion OD(2H) = ωD and the natural restriction map H0(OIP4(2)) =
H0(OS(2H)) −→ H0(OD(2H)) is surjective, so taking cohomology of the exact sequence
we see that h1(OS(H + E1)) = 1. Now the natural multiplication maps

H1(OS(1)) ·H−→H1(OS(2)),

where H is a hyperplane section containing E1, factorize obviously

H1(OS(1)) ·E1−→H1(OS(H + E1))
·(H−E1)−→ H1(OS(2)),

thus the plane P of the exceptional conic E1 must coincide with the base locus of the
pencil of hyperplanes parametrized by the directrix l of W . The planes which are base
loci of the pencils parametrized by rulings of W build a non-normal cubic hypersurface
V ⊂ IP4 having P as double plane. V is the dual variety of W ⊂ ǏP

4
.

The general curve D is a complete intersection (3, 3), hence it cuts the plane P along a
scheme of length 9. Since DE1 = 3 and D2 = 6 it follows that P cuts S along E1 and a
scheme T of length 6 which is the base locus of |D|. Now a self-duality argument implies
that T is the set of mutual intersection points of 4 lines li, i = 1, 4 in the plane P , such
that no three of them have common intersection points. It is easy to see now that for each
line li, i = 1, 4, there is a plane Pi in the ruling of V such that P ∩Pi = li. The hyperplane
Hi, spanned by P and Pi, is special with respect to the pencil |D|, in the sense that the
two cubics containing the member Di ∈ |D|, lying in Hi, have Pi as component. Thus Di

splits as the union of a plane quintic curve Ci in the plane Pi and an elliptic normal curve
of degree 4. In particular, the union P ∪P1∪P2∪P3∪P4 is part of the variety of 5-secants
to S, and thus it is contained in the intersection of all quartic hypersurfaces containing S.
The claim of the proposition follows now by degree reasons.ut

Remark 3.40. The cubic hypersurface V ⊂ IP4, in the proof of proposition 3.39, intersects
the surface S ⊂ IP4 along the nine exceptional lines, twice the exceptional conic and the
union of the four plane quintic curves Pi ∩ S, i = 1, 4.ut

Proposition (Ranestad) 3.41. Let P ⊂ IP4 be a plane and let Pi ⊂ IP4 be general
planes cutting P along four general lines l1, l2, l3, l4. Then X5 = P ∪P1 ∪P2 ∪P3 ∪P4 can
be linked (4, 4) to a smooth K3 surface S ⊂ IP4, with d = 11, π = 12.

Proof. We denote by {pij} = li ∩ lj , 1 ≤ i < j ≤ 4, the mutual intersection points. One
sees easily that X5 is a local complete intersection scheme except for the points pij , where
it is only Cohen-Macaulay. Therefore the proposition will follow via the liaison argument

56



in (0.31) once we show that X5 is cut out by quartic hypersurfaces. To see this, one
proceeds by induction using the residual intersection sequences

0 −→ IXk−1(m− 1) −→ IXk(m) −→ IXk∩Hk,Hk(m) −→ 0, m ∈ Z,

where Xk = P ∪
⋃k
i=1 Pi and Hk is a general hyperplane through the plane Pk. We obtain

namely, that IXk(k−1) is globally generated and h1(IXk(k − 1)) = 0 for all k = 1, 5. Since
degX5 = 5, π(X5) = 0 and χ(X5) = 1 the linked surface has invariants d = 11, π = 12
and χ = 2 and is therefore, by (3.35), a non-minimal K3 surface. ut

Proposition 3.42. Let S be a smooth surface in IP4 with d = 11, π = 12, χ = 3. Then
S is either
a) a regular, proper elliptic surface embedded by

H = Hmin − 2E1 −
4∑
i=2

Ei,

or
b) a regular, proper elliptic surface embedded by

H = Hmin −
4∑
i=1

Ei,

or
c) a blown-up, general type Horikawa surface embedded by

H = Hmin −
5∑
i=1

Ei.

P roof. In this case K2 = −4 and the image of S through the adjunction morphism is a
surface S1 ⊂ IP13 with invariants

d1 = 29, H1K1 = 7, π1 = 19, K2
1 = −4 + a

where a ≥ 0 is the number of (−1) lines on S. In particular, Hodge index gives a ≤ 5.
Assume first that S is a surface of general type. Then K2

min ≥ 1, so there are at least 5
exceptional curves on S, say E1, . . . , Ek, for some k ≥ 5. Now a curve Di ∈ |Kmin − Ei|
has degree ≤ 11 − 5 − 2(k − 5) − 1 = 15 − 2k and arithmetic genus K2

min + 1 ≥ k − 3, so
it is easily seen that the only possibility is that k = 5 and all of the Ei’s are exceptional
lines. Lemma 0.39 shows further that S is in this case regular, and thus a surface of type
c). If S is not of general type, then it is a regular proper elliptic surface by lemma 0.38,
and in particular pg = 2. A similar argument as above shows now that there are at least
3 exceptional lines on S. Therefore, either S is a surface of type b), or there exist only 3
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exceptional lines on the surface and necessarily one more exceptional conic, and thus S is
of type b).ut

(3.43.) Constructions. We show in the sequel that types a) and c) in the above list of
surfaces with d = 11, π = 12, χ = 3 exist. Lemma 3.36, together with the general results
(1.6) and (1.7), provide the following cohomology table for the ideal sheaf of S ⊂ IP4

i ↑

2

2 1 hi(IS(p))

1 a

a+1−−−−−−−−−−−−−−−−−−−−−−−−−→
p

Assume first that the cohomology table is minimal, i.e., a = 0. Then Beilinson’s spectral
sequence produces a vector bundle resolution of the ideal sheaf of a surface S1

0 −→ 2O(−1)⊕ 2Ω3(3)
ϕ−→ Ω2(2)⊕ Ω1(1)⊕O −→ IS1(4) −→ 0,

and one checks, via [Mac], that the degeneracy locus of a general morphism ϕ is a smooth
surface in IP4 with the desired invariants and a minimal free resolution

O(−4)
0 ← IS1 ←− ⊕

8O(−5)
↖

13O(−6) ← 6O(−7) ← O(−8)← 0

In particular, IS1 is generated by quintic hypersurfaces and thus S1 has no 6-secant lines.
From Le Barz’s formula, which gives N6(11, 12, 3) = 3, we deduce that there are 3 excep-
tional lines on the constructed surface, hence S1 is a proper elliptic surface of type a). The
determinantal construction suggests also the equivalent liaison construction in proposition
3.44 below.

We construct now a family of surfaces with non-minimal cohomology

i ↑

2

2 1 hi(IS(p))

1 1

2−−−−−−−−−−−−−−−−−−−−−−−−−→
p
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Beilinson’s theorem suggests this time to take

E = 2O(−1)⊕ 2Ω3(3) and F = 2O ⊕ ker(Ω2(2)⊕ Ω1(1)
ψ−→O),

where ψ is a suitable epimorphism. We take ψ such that the component on Ω2(2) is given
by a decomposable element in the exterior algebra, i.e., without loss of generality, we set
ψ = (e1 ∧ e2, e0), where IP4 = IP(spank(e0, . . . , e4)). One checks, via [Mac], that the
degeneracy locus of a general morphism ϕ ∈ Hom(E ,F) is a smooth surface S2 ⊂ IP4, with
syzygies

2O(−4)
⊕

0 ← IS2 ←− 3O(−5) 5O(−6) O(−7)
⊕

↖
⊕ ←− ⊕

2O(−6) 5O(−7) 4O(−8)
↖
O(−9) ← 0

One checks further that the distinguished plane Π = spank(e0, e1, e2) meets the constructed
surface along a plane quintic curve with an embedded point at p = IP(ke0), thus S2 has
an infinity of 6-secant lines, namely all lines in Π going through p. By computing the base
locus of the canonical pencil, we find out that there are this time 5 exceptional lines on
the surface, thus S2 is a blown-up Horikawa surface of type c). We remark that S2 can be
linked in the complete intersection of two quartic hypersurfaces to a scheme Z of degree 5
and sectional genus 0, which decomposes as Z = 2Π ∪Q, where 2Π is a double structure
on the plane Π and Q is a rational cubic scroll.

Proposition 3.44. A smooth rational surface X ⊂ IP4 of degree 9, sectional genus 7
can be linked in the complete intersection of a quartic and a quintic hypersurfaces to a
smooth, non-minimal proper elliptic surface S ⊂ IP4, with d = 11, π = 12, χ = 3, which is
embedded by

H = Hmin − 2E0 −
3∑
i=1

Ei.

P roof. Smooth rational surfaces X ⊂ IP4, with d = 9 and π = 7 have been studied in [Al2]
and [AR]. They lie on a net of quartic hypersurfaces and on six extra independent quintic
hypersurfaces, so they can be linked (4, 5) to locally Cohen-Macaulay schemes S ⊂ IP4

with invariants d = 11, π = 12, χ = 3. We use the intrinsic description of the linear
system of the embedding X ⊂ IP4, which is due to J. Alexander [Al2], to describe this
liaison. We’ll also need and recall along the proof the results in [AR]. To begin with, it
follows from [Al2] that X is IP2 blown-up in 15 points and

HX ≡ 9l −
6∑
i=1

3Fi −
9∑
j=7

2Fj −
15∑
k=10

Fk,

where Fi, i = 1, 15 are the exceptional curves of the blow-up map, and where the 15 points
are chosen such that there exists a pencil

|D| = |6l −
6∑
i=1

2Fi −
9∑
j=7

Fj −
15∑
k=10

Fk|
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with base points on F7, F8 and F9. Residual to the pencil there is a plane cubic curve
HX −D ≡ 3l −

∑9
i=1 Fi, and we’ll denote in the sequel with Π its plane. Since the base

points of the pencil |D| are on the lines Fi, i = 7, 9, there exist on X three plane quartic
curves

Dm ≡ 6l −
6∑
i=1

2Fi −
9∑
j=7

Fj −
15∑
k=10

Fk − Fm+6,

for m = 1, 3. Let Π1, Π2, Π3 be the planes of these curves. Each pencil |HX − Dm|,
m = 1, 3, has a base point pm in the corresponding plane Πm, thus any line in Πm through
pm is a 5-secant to X, and it follows that any quartic containing X must also contain the
scheme Π1 ∪ Π2 ∪ Π3. Now Dm(HX − D) = 2 for all m, so each Πm meets Π along a
line, and thus Π is also contained in all quartics containing X. The liaison result in [AR]
says that the complete intersection of two general quartics containing X decomposes as
Π ∪Π1 ∪Π2 ∪Π3 ∪ T , where T is a cubic Del Pezzo surface intersecting Πi, i = 1, 3 along
lines and X along the hyperplane section cut on X by the hyperplane spanned by the Del
Pezzo surface.

We fix now a general quartic hypersurface containing X, and thus also the union Π∪Π1 ∪
Π2 ∪ Π3. A Bertini argument shows that we can link X on V , via a quintic hypersurface
W , to a smooth surface S. Now W cuts each of the planes Πi, i = 1, 3, along the
quartic Di and an extra line, call it Ei, which then necessarily lies on S. The same
argument shows that Π cuts the surface S along a conic, which we’ll denote in the sequel
by E0. On another side, the above discussion shows that there exists on V a pencil of
Del Pezzo surfaces T(λ:µ), all meeting X along hyperplane sections H(λ:µ) of it. Take
now the embedding HT(λ:µ) = 3l −

∑6
i=1Gi of T(λ:µ) such that each Πi intersects T(λ:µ)

along the line in the class Gi, for all i = 1, 3. Then the curve H(λ:µ) has numerical class
H(λ:µ) ≡ 4HT(λ:µ) −

∑3
i=1Gi ≡ 12l −

∑3
i=1 5Gi −

∑6
j=4 4Gj and thus the pencil T(λ:µ)

will cut on S a pencil of elliptic curves M(λ:µ) of degree 6, in the class 3l −
∑6
j=4Gj . In

particular, it follows that S is a proper elliptic surface. More precisely, the residual curve
C ≡ H − (5HT(λ:µ) −H(λ:µ)) of a member in the pencil has degree 5 and arithmetic genus
pa(C) = M2

(λ:µ) + 6, and since M2
(λ:µ) ≥ 0 we deduce that M2

(λ:µ) = 0 and C is a plane
curve. It follows that |M(λ:µ)| coincides with the residual pencil of the plane quintic curve
C, and moreover that |M(λ:µ)| = |Kmin|. In particular the exceptional part of the canonical
divisor on S has degree 5, and thus S is an elliptic surface of type a) in the notation of
proposition 3.42. Furthermore, it is easily checked that E1, E2 and E3 are the exceptional
lines of S, while E0 is the exceptional conic.ut

Proposition 3.45. Let S be a smooth surface in IP4 with d = 11, π = 12, χ = 4. Then
S is either
a) a blown-up, general type Horikawa surface embedded by

H = Hmin − E1,

and having no 6-secant lines, or
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b) a minimal, regular, general type surface with only one 6-secant line, or
c) a regular, non-minimal, general type surface embedded by

H = Hmin − E1 − E2,

and having infinitely many 6-secant lines, namely all lines in one of the rulings of a
smooth quadric surface.

Proof. The double point formula gives K2 = 2, thus S is of general type. Furthermore S
is regular. Otherwise, the inequality in [Deb, Th.6.1] reads

K2
min ≥ 2pg ≥ 8

so S would have at least 6 exceptional curves, whence HKmin ≤ 5 while pa(Kmin) =
K2
min + 1 ≥ 9, which is absurd. Riemann-Roch and lemma 3.36 yield then the following

cohomology table for the ideal sheaf of S

i ↑

3

1 hi(IS(p))

2 a

a−−−−−−−−−−−−−−−−−−−−−−−−−→
p .

We’ll discuss in the sequel the possible values for a and their corresponding linear systems.
Let ∆(4) be the locus in ǏP

4
where (h0(IH(4))) · (h1(IH(4))) 6= 0.

Lemma 3.46. If S has a 6-secant, then ∆(4) contains a plane.

Proof. Let π be a general plane through the 6-secant. Then h1(Iπ∩S(4)) > 0 and since
h1(OH(3)) = h0(OH(K − 2H)) = 0 for the general hyperplane containing π ∩S, it follows
that h1(IH(4)) > 0 and thus the claim of the lemma. ut

Lemma 3.47. Any hyperplane section H ∈ ∆(4) has a proper 6-secant or contains a
plane curve as component.

Proof. Assume that H has no plane curve as component. Then the sequence

0 −→ IH(3) H′−→ IH(4) −→ IH∩H′(4) −→ 0

is exact for all hyperplane sections H ′. Now h1(IH(3)) = h1(IS(3)) = 2 so taking coho-
mology of the exact sequence we see that there is at least one plane section π ∩ S in H
for which h1(Iπ∩S(4)) > 0. This plane section is a scheme of length 11. If it contains a
subscheme of length 10 which is contained in a conic then h0(Iπ∩S(3)) > 1. On the other
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hand, from the above cohomology table h0(IH(3)) = 0, hence taking cohomology of the
exact sequence

0 −→ IH(2) −→ IH(3) −→ Iπ∩S(3) −→ 0

we see that h1(IH(2)) ≥ 2. But, since h2(IS(1)) = 1 this implies that h1(IS(2)) > 0, which
is a contradiction. Therefore, it follows from lemma 0.41 that π ∩ S contains a subscheme
of length 6 which is contained in a line, and the lemma follows.ut

Lemma 3.48. S has only finitely many plane curves.

Proof. Since any pencil of plane curves on S is linear the residual curve in a hyperplane
section containing a general element of the family is again a plane curve. But then the
hyperplane section is contained in a quadric and this contradicts Severi’s theorem.ut

If a ≥ 3 then ∆(4) = ǏP
4

and the above lemmas show that the general hyperplane section of
S has 6-secants, while S is contained in at least a net of irreducible quartics, a contradiction.
Thus we are left to consider the cases where a ∈ {0, 1, 2}.
When a = 0 we easily see that ∆(4) = ∅, hence S has no 6-secant lines by lemma 3.46. On
the other hand, Le Barz’s formula (0.11) gives N6 = 1, so S has exactly one exceptional
line E1. If there exists also another exceptional curve E2 on S then K2

min ≥ 4, HKmin ≤ 8,
thus a curve D ∈ |Kmin − E1 − E2| would have degree at most 5 and arithmetic genus at
least 5. Since in any case pa(D) 6= 6, this is a contradiction by lemma 0.34 and therefore
S is embedded by H = Hmin − E1.

In case a = 1 the above lemmas imply that ∆(4) = IP2 and that S has only one 6-
secant line. Therefore there are no exceptional lines on S this time. In fact S is minimal.
The adjunction mapping process and a reasoning similar to the previous case show that
the only other alternative is that there exists an exceptional conic E on S. But then a
general curve D ∈ |H − E| is irreducible, of degree 9 and arithmetic genus 10 and, since
h2(OS(2H −D)) = h0(OS(K −H − E)) = 0, the cohomology of the sequence

0 −→ OS(2H −D) −→ OS(2H) −→ OD(2H) −→ 0

shows that h1(OD(2)) = 0, whence finally by Riemann-Roch that D lies on a quadric. It is
necessarily a curve of type (3, 6) on a smooth quadric, so S would have too many 6-secants,
which is absurd.

In the last case a = 2 and ∆(4) is a determinantal hyperquadric in ǏP
4
. The above lemmas

imply that all lines in one of the rulings of the dual quadric surface Q are 6-secants to S.
Moreover, if π is a general plane spanned by two concurrent rulings of the quadric Q, then
h0(Iπ∩S(3)) = 1 and h0(Iπ∩S(4)) = 5. It follows that π meets S in at most two points
outside the two chosen rulings, and therefore the quadric Q cuts S along a curve D of
type (6, a), with a ≥ 3. On another side, if a = 4, then the residual curve H − D is a
line and thus pa(H − D) = 0 yields D2 = 24, which would contradict Hodge index. We
conclude that Q meets S along a curve D of type (6, 3). Consider now again the residual
curve H − D. It has degree 2 and arithmetic genus D2 − 6, and Bezout’s theorem gives
D(H −D) ≤ 4, i.e., D2 ≥ 5, so either equality holds and H −D is the union of two skew
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lines, or D2 = 6 and H − D is a conic. The last case cannot occur, since otherwise the
6-secants of S would fill up a 3-fold, which is impossible for a surface contained in a pencil
of irreducible quartics. Therefore H−D = E1 +E2, with HE1 = HE2 = 1 and E1E2 = 0,
and since E2

1 +E2
2 = (H −D)2 = −2, while E2

i ≤ −1, i = 1, 2, we deduce that E1 and E2

are exceptional lines on S. An argument similar to that used in case a) shows that there
are no further exceptional curves on S, whence S is embedded by H = Hmin −E1 −E2.ut

(3.49.) Constructions. We’ll show in the sequel that all types of surfaces in proposition
3.45 exist. For convenience, we denote by S0, S1 and S2 surfaces corresponding to types
a), b) and respectively c). Then Beilinson’s spectral sequence and the above discussion
imply that the ideal sheaf of any of the surfaces has a resolution of type

0 −→ 3O(−1)⊕ Ω3(3)
ϕa−→ Ga ⊕ aO −→ ISa(4) −→ 0 (∗)

where a ∈ {0, 1, 2}, and Ga is a vector bundle, kernel of a morphism

0 −→ Ga −→ 2Ω1(1)
ψa−→ aO −→ 0.

Also ∆(4) coincides with the locus in ǏP
4

where the 2 × a matrix defining ψa is dropping
rank. Vice-versa, we use the information on ∆(4) to construct such surfaces, and take
G0 = 2Ω1(1) and as Ga, a = 1, 2, the kernel of a suitable epimorphism ψa : 2Ω1(1) → aO
such that the 2 × a matrix Ma defining it degenerates on a plane if a = 1, or on a point
quadric cone if a = 2. Namely, without loss of generality, one can take M1 = (e1, e2)

and M2 =
(
e3 e4

e0 e1

)
, and define Sa as the degeneracy locus of a general morphism ϕa as

above in (∗). Smoothness can be checked in examples with [Mac]. From (∗) we obtain also
the following minimal free resolutions of the ideal sheaf:

0 ← IS0 ← 12O(−5) ←− 19O(−6) ←− 10O(−7) ←− 2O(−8) ← 0

thus S0 is cut out by quintics and has no 6-secants,

O(−4)
⊕

0 ← IS1 ← 7O(−5) 10O(−6) 3O(−7)
⊕

↖
⊕ ← ⊕

O(−6) 3O(−7) 3O(−8)
↖
O(−9) ← 0

where the linear part of the last syzygy are the equations of the unique 6-secant to S1, and

2O(−4)
⊕

0 ← IS2 ← 2O(−5) 3O(−6)
⊕

↖
⊕

4O(−6) 10O(−7)
↖

8O(−8) ←− 2O(−9) ← 0 .
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The quartics and the quintics in the ideal IS2 cut out the union of S2 with the quadric of
6-secant lines.

Remark 3.50. A surface S ⊂ IP4, with d = 11, π = 12, χ = 4, of type c) in the above
proposition, can be linked (4, 4) to a scheme Z of degree 5, sectional genus 0, which is the
union of a double structure on a quadric and a plane which meets the quadric along one
of its rulings.

Proposition 3.51. A smooth surface S ⊂ IP4, with d = 11, π = 12, χ = 5 is a regular,
minimal surface of general type.

Proof. The same argument we used in proposition 3.45 shows that S is regular. Moreover,
Severi’s theorem and lemma 3.36. yield h1(OS(k)) = 0, for all k ≥ 1, thus combining
with (1.6) and (1.7) we obtain also h1(IS(2)) = 1 and h1(IS(3)) = 3. It follows that
h1(IH(3)) = 3 for some hyperplane sections H, or equivalently h0(IH(3)) = 1, whence
h0(IH(4)) ≥ 4, and furthermore h0(IS(4)) ≥ 1. Assume that S is not minimal and
let E be an exceptional curve on it. Then a curve D ∈ |Kmin − 2E| will have degree
≤ HK − 3HE ≤ 8 and arithmetic genus pa(D) = K2

min + 1 ≥ 10. Then by lemma 0.34
such a curve would have as component a plane curve of degree at least 6 which is impossible
by lemma 0.36. Therefore S is a minimal surface as claimed.ut

(3.52.) Construction. As a consequence of the above discussion the ideal sheaf of the
surface S has the following cohomology table

i ↑

5

hi(IS(p))

1 3 2

1−−−−−−−−−−−−−−−−−−−−−−−−−→
p

since if h1(IS(4)) = 3, then h0(IS(4)) = 2 and Beilinson’s spectral sequence implies that
the two quartics in IS would have non-trivial linear syzygies, which is impossible if the
surface is smooth. Similar arguments, together with the information in the proof of (3.51)
allows to exclude the cases when h1(IS(4)) ≥ 4. Beilinson’s theorem suggests to take

E = 5O(−1) and F = Syz1(H1(IS(∗+ 4))),

and since a monogenous artinian module with Hilbert function (1, 3, 2) is the tensor product
of a similar module on 3 variables with the Koszul complex of a plane, we have without
loss of generality

F = ker(4O(−1)⊕O ψ−→O(1)),
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with ψ = (x0, x1, q1, . . . , q4), where qi ∈ k[x2, x3, x4] are general quadrics. The degeneracy
locus of a general morphism ϕ ∈ Hom(E ,F) is a smooth surface S ⊂ IP4 with the desired
invariants and syzygies

O(−4)
⊕

0 ← IS ←− 6O(−5) 8O(−6) 2O(−7)
⊕

↖
⊕ ←− ⊕

3O(−6) 8O(−7) 7O(−8)
↖

2O(−9) ← 0

The quintics in the ideal IS cut out the surface and an extra plane Π. The plane Π meets
the surface along a plane quartic curve and in three other points, thus S has three 6-secant
lines, namely the three lines joining pairwise these points. Since S is minimal, this matches
Le Barz’s formula which gives N6(11, 12, 6) = 3.
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VI. Surfaces with d = 11, π = 13

The double point formula gives K2 = 6χ−27, so Hodge index implies χ ≤ 7. On the other
side, Lemma 0.20 yields χ ≥ 1. Also, when κ(S) ≥ 0, the pseudo-effectiveness of K gives
via (0.15) χ ≥ 3, whence in particular κ(S) ≥ 1.

Proposition 3.53. There are no smooth, rational surfaces S ⊂ IP4 with invariants d = 11,
π = 13.

Proof. We use the adjunction mapping to exclude this case. Theorem 0.13 gives for the
surface S1 = ϕH+K(S) ⊂ IP12

d1 = 16, H1K1 = −8, π1 = 5, K2
1 = −21 + a

where a ≥ 0 is the number of (−1) lines on S. Now (0.13) applied for S1 implies that
(H1 +K1)2 = −21 + a ≥ 0. If a > 21 then S2 = ϕH1+K1(S1) is a surface in IP4 with
invariants

d2 = −21 + a, H2K2 = −29 + a, π2 = −26 + a

whence necessarily a ≥ 26. But this is impossible since by Hodge index K2
1 = −21 + a ≤

64
16 = 4. We are left with the case a = 21 which means that S1 is a conic bundle having,
since K2

1 = 0, eight singular fibres in the ruling. Let IFe = IP(OIP1 ⊕OIP1(−e)), e ≥ 0 be
the relative minimal model of S1, C0 a section with minimal negative self-intersection −e
and f a ruling. Thus we may write, pulling back C0 and f

H ≡ 4C0 + (2e+ 8)f −
8∑
i=1

2Ei −
29∑
j=9

Ej

Let now B ≡ f − Ej , for some j ≥ 9. Then HB = 3, so B is contained in a hyperplane
section of S. Let C be the residual curve. It has degree 8 and arithmetic genus 10, hence
by Lemma 0.34 contains a plane sextic curve as component. But this is a contradiction
since h1(OS(1)) = 5 and hence, by Lemma 0.36, the maximal degree of a plane curve on
S is 5.ut

Proposition 3.54. There are no smooth surfaces S ⊂ IP4 with d = 11, π = 13, χ = 3.

Proof. In this case K2 = −9 and the image of S through the adjunction morphism is a
surface S1 = ϕH+K(S) ⊂ IP14 with invariants

d1 = 28, H1K1 = 4, π1 = 17, and K2
1 = −9 + a

where a ≥ 0 is the number of (−1) lines on S. Now H2
1 > (H1K1)2, so by lemma 0.18 S is

a proper elliptic surface. Moreover, since H1K1 = 4, Kodaira’s formula for the canonical
class of an elliptic fibration [BPV] implies that pg = 2 and that S is either minimal, or has
exactly one (−1) line.
In the first case the moving part of |K| is a pencil of elliptic quartic curves and hence
the residual of a general member in the hyperplane section it spans will be a curve D of
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degree 7 and arithmetic genus 9. By Lemma 0.34 such a curve has a plane sextic curve as
component and since h1(OS(1)) = 3 this contradicts the bound in (0.36).
In the second case the elliptic fibration of S is by plane cubic curves and the residual of
a fibre in a hyperplane section containing it will have degree 8 and arithmetic genus 10.
Again, by Lemma 0.34, such a curve has a plane sextic as component contradicting the
results of (0.36) ut

Proposition 3.55. There are no smooth surfaces S ⊂ IP4 with d = 11, π = 13, χ = 4.

Proof. In the above hypothesis K2 = −3. Let Smin be the minimal model of S. If S is of
general type, then by Noether’s inequality [BPV]

K2
min ≥ 2pg − 4 ≥ 4

Thus S has at least 5 exceptional curves Ei, i = 1, 5 and HKmin ≤ 13 − 5 = 8 and
pa(Kmin) ≥ 3. Since pg ≥ 3 we can find a curve C ∈ |Kmin − E1 − E2|. It has degree
HC ≤ 6 and arithmetic genus pa(C) ≥ 3. If one of E1 or E2 has degree at least 2 then
HC ≤ 4 and pa(C) ≥ 3 which is absurd in view of Lemma 0.34. Therefore S has only (−1)
lines and it is easily seen that there are two possibilities, either 5 or 6 exceptional lines.
Nevertheless, in both cases, arguments as above or as in (0.38) give pg = 3 and q = 0.
In the first case we compute K2

min = 2, whence HC = 6, pa(C) = 3. If C is irreducible then
it spans only a hyperplane and the residual curve will have degree 5 and arithmetic genus 5
which is impossible by Lemma 0.34. It remains that C decomposes as the union of a plane
quintic curve A and two skew lines L1 and L2 or as the union of a plane quartic curve A
and a conic Q such that each line (resp. the conic) meets A in one point. Neither of the
lines L1 or L2 is exceptional since, e.g., from L1 = E1 and CE1 = (Kmin−E1−E2)E1 = 1
would follow AL1 = AE1 = 2. Therefore L2

i ≤ −2, i = 1, 2 (resp. Q2 ≤ −2) whence
A2 ≥ 0 because C2 = 0. On the other side Hodge index gives A2 ≤ 1. The residual pencil
|H − A| has degree 7 and arithmetic genus 7 + A2 ≥ 7 so, by Lemma 0.34, A2 = 0 and
each of its members decomposes into a plane quintic curve and a conic which meet along
a subscheme of length two. This means that the plane spanned by A cuts the surface S
along a curve of degree at least 6, thus contradicting the bound in (0.36). In the case of 6
exceptional lines we compute K2

min = 3, HC = 5, pa(C) = 4 which is again impossible by
Lemma 0.34.
The last case we have to discuss is when S is a proper elliptic surface. Then Kmin is
numerically equivalent to nF +

∑k
i=1 Fi, n ≥ pg − 1 ≥ 2, k ≥ 0, where F is a fibre of

the elliptic fibration and the Fi’s are reduced parts of not necessarily distinct fibers. Since
HKmin ≤ 13− 3 = 10 we get HF ≤ 5.
If HF = 5 then pg = 2, k = 0 and S has exactly 3 exceptional lines. A curve D ≡ F −E1

has degree 4 and arithmetic genus 1, hence it spans only a IP3. But then the residual curve
H −D will have degree 7 and arithmetic genus 8 which is impossible by lemma 0.34.
If HF ≤ 4, since a curve D ≡ F − E1 with E1 exceptional curve has degree at least 3,
it follows that HF = 4, n = 2, k ≥ 1 and S has 3 exceptional lines. But then HF1 ≤ 2
which is absurd for a curve of arithmetic genus 1.ut
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Proposition 3.56. A smooth surface S ⊂ IP4 with d = 11, π = 13 and χ = 5 is the
degeneracy locus of a morphism ϕ inducing

0 −→ 4O(−1)⊕ Ω3(3)
ϕ−→ Ω2(2)⊕ 3O −→ IS(4) −→ 0.

P roof. To show regularity we proceed as in (3.45). Namely, when q ≥ 1, the inequality
in [Deb, Th.6.1] gives K2

min ≥ 10, hence HKmin ≤ 6 while pa(Kmin) ≥ 11, which is
absurd. We determine next the cohomology table of S. First of all h0(OS(K −H)) = 0
by lemma 0.17, so Riemann-Roch gives h1(OS(1)) = 1. Assume now that h1(OS(2)) ≥ 2.
Then there exists a line L ⊂ IP4 which is the base locus of a net of hyperplanes for which
h1(OH(2)) ≥ 2. The line L lies on S; otherwise the general H in the net is smooth,
whence hyperelliptic by Clifford’s theorem and this is impossible by theorem 0.13 and [E].
Therefore the general H in the net decomposes H = L + C, where C is a smooth curve
with HC = 10 and g(C) = 13 + L2. Moreover C is irreducible since otherwise |H − L|
would be composed with a pencil of plane curves and this leads to a contradiction as in
the proof of lemma 3.36. Consider the cohomology of the exact sequence

0 −→ OC(2H − L) −→ OH(2H) −→ OL(2H) −→ 0.

h1(OH(2H)) = 2, whereas h1(OL(2H)) = 0, so h0(OC(K −H)) = h1(OC(2H − L)) ≥ 2.
Therefore, either (K − H)C = 5 + L2 ≥ 3, or L2 = −3, h1(OC(2H − L)) = 2 and C is
hyperelliptic. When L2 ≥ −2, it follows from the exact sequence

0 −→ OIP1(L2 + 1) −→ OH(2H) −→ OC(2H) −→ 0

that h0(OC(K −H − L)) = h1(OC(2H)) = 2. This implies again that C is hyperelliptic
and L2 = −1, because C(K −H −L) = 2L2 + 4 and, in any case, L2 ≤ −1. In both cases
we obtained a contradiction, since a hyperelliptic curve C can never be embedded in a
projective space with degree at most g(C) + 2 (see for instance [ACGH, p.221]). Therefore
Riemann-Roch and (1.6) give h1(OS(2)) = 1 and thus also h1(OS(k)) = 0, for k ≥ 3,
since otherwise h1(OH(3)) > 0 for at least a web of hyperplane sections, which is absurd
because the general H in the web is smooth and OH(3H) is non special. From (1.7) it
follows h1(IS(3)) = 0 and a similar argument to that used in the proof of (3.37) shows
that h1(IS(4)) = 0. We obtain the following cohomology table

i ↑

4

1 1 hi(IS(p))

3−−−−−−−−−−−−−−−−−−−−−−−−−→
p
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and thus the claim of the proposition is a consequence of Beilinson’s spectral sequence.ut

Corollary 3.57. A smooth surface S ⊂ IP4 with d = 11, π = 13, χ = 5 is a regular,
non-minimal, general type surface with only one exceptional line.

Proof. S has one exceptional line E1 since N6 = 1 by Le Barz’s formula, and because it
follows from the above proposition that there are no 6-secants. If E2 is another exceptional
curve, then for a curve D ∈ |Kmin − 2E2| we would have HD ≤ 6 and pa(D) ≥ 5, whence
necessary E2 is a (−1) conic, K2

min = 5 and D decomposes, by (0.34), as D = A + L,
where A is a plane quintic and L a line which doesn’t meet A. But L2 ≤ −1 and A2 ≤ 2
by Hodge index, so D2 = A2 + L2 = 1 implies that L2 = −1 and thus that L coincides
with E1, which is absurd because DE1 = 0.ut

(3.58.) Construction. A surface S ⊂ IP4 with the above invariants can be constructed
as the degeneracy locus of a general morphism ϕ ∈ Hom(4O(−1)⊕Ω3(3),Ω2(2)⊕ 3O). In
particular the ideal sheaf has a minimal free resolution of type

3O(−4) O(−5)
0 ← IS ←− ⊕ ←− ⊕

2O(−5) 4O(−6)
↖
O(−7) ← 0

where the three linear syzygies in the top row are the equations defining the unique excep-
tional line of S. An equivalent construction, which provides also a smoothness argument,
is contained in the following

Proposition 3.59. A smooth, general type surface Y ⊂ IP4, with d = 9 and π = 8 can
be linked in the complete intersection of a quartic and a quintic hypersurface to a smooth
surface S ⊂ IP4 with invariants d = 11, π = 13, pg = 4 and q = 0.

Proof. It follows from [AR] that Y is cut out by quartic hypersurfaces, so S is smooth
for a general choice of the liaison. Formula (0.26) and the cohomology of the liaison exact
sequence

0 −→ OS(K) −→ OΣ(4) −→ OY (4) −→ 0,

where Σ is the complete intersection (4, 5), give further π(S) = 13, pg(S) = 4, q(S) = 0.ut

Proposition 3.60. A smooth surface S ⊂ IP4 with d = 11, π = 13, χ = 6 is a regular,
minimal, general type surface, linked in the complete intersection of two quartic hypersur-
faces to an elliptic quintic scroll.

Proof. We have K2 = 9, so S is of general type. A smooth curve of degree 11 and
genus 13 in a projective space spans only a IP3, thus h0(OH(H)) = 4. By Lemma 0.17
h0(OS(K −H)) = 0 so h1(OS(1)) = 0 and the cohomology of the exact sequence

0 −→ OS −→ OS(H) −→ OH(H) −→ 0

give q = h1(OS) = 0, i.e., S is a regular surface.
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We determine next the cohomology table of S. Since h1(OH(2)) = h0(OH(K −H)) ≤ 1
( if non-zero, h0(OH(K −H)) ≤ H(K − H) = 2 and in case of equality S would have
hyperelliptic hyperplane sections, which is impossible by [So], [E] ) the cohomology of the
above exact sequence twisted by H yields h1(OS(2)) ≤ 1. In any case h1(OH(3)) = 0 for
all irreducible hyperplane sections H and thus h1(OS(n)) ≥ h1(OS(n+ 1)) for all n ≥ 2
and, in particular h1(OS(3)) ≤ 1. But if h1(OS(3)) > 0, then h1(OH(3)) > 0 for at least
a web of hyperplane sections, which is absurd, since the general H in the web is smooth,
while OH(3) is non-special. It follows that h1(OS(k)) = 0, for all k ≥ 3.

S is not contained in a cubic hypersurface, because otherwise h1(IS(3)) = h0(IS(3)) −
χ(IS(3)) ≥ 2, and this is impossible for a surface which, by theorem 1.7, is in the liaison
class of the Veronese surface. Therefore h0(IS(3)) = 0 and h1(IS(3)) = 1.

Claim. h1(OS(2)) = h1(IS(2)) = 0.

Proof of the claim. Assume that this is not the case; i.e., h1(OS(2)) = h1(IS(2)) = 1.
Then the cohomology table of S has the shape:

i ↑

5

1 hi(IS(p))

1 1 a

a+2−−−−−−−−−−−−−−−−−−−−−−−−−→
p

where a ∈ IN. Since the E∞-terms outside the diagonal in Beilinson’s spectral sequence
vanish, there should exist a monomorphism

Ω2(2)
ϕ−→G⊕(a+ 2)O,

where G is the kernel of a morphism Ω1(1)
ψ−→aO. Thus, by rank considerations, a ≥ 1.

On the other hand, if a = 1, then for such a monomorphism to exist, ψ must vanish
identically. But then Beilinson’s spectral sequence implies that Z, the codimension two
subscheme defined as the degeneracy locus of ϕ, would be a component of S, which is a
contradiction to the smoothness assumption. Therefore, necessary a ≥ 2. We’ll show that
this leads to a contradiction. First, taking cohomology of the exact sequence

0 −→ IS(2) −→ IS(3) −→ IH(3) −→ 0

we see that h1(IH(3)) = 2, for all hyperplane sections H in a web. Since the general
hyperplane section H in the web is smooth and OH(3) non-special, we get h0(OH(3)) = 21,
whence h0(IH(3)) = 1. Now, from the cohomology of the above exact sequence twisted by
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H, we deduce that there are hyperplane sections H0 in the web, for which h1(IH0(4)) = 2.
But h1(OH0(4)) = 0, since h1(OS(4)) = h2(OS(3)) = 0, thus h0(IH0(4)) = 5. This means
that H0 is contained in a cubic and an independent quartic surface, so it could be linked
in their complete intersection to a curve of degree 1 and arithmetic genus −2, which is a
contradiction.ut

Therefore h1(OS(2)) = h1(IS(2)) = 0, and since a morphism Ω1(1) −→ O is never sur-
jective (its cokernel has support on one point), we deduce that h1(IS(4)) = 0. Hence we
obtain the cohomology table

i ↑

5

hi(IS(p))

1

2−−−−−−−−−−−−−−−−−−−−−−−−−→
p

and thus S is the degeneracy locus of a morphism

0 −→ 5O(−1) −→ Ω1(1)⊕ 2O −→ IS(4) −→ 0.

In particular, S can be linked (4, 4) to an elliptic quintic scroll. Dualizing the last exact
sequence we obtain

0 −→ O(−5) −→ 2O(−1)⊕Ω3(3) −→ 5O −→ ωS −→ 0,

so |K| has no base points and S is minimal.ut

Remark 3.61. a) The homogenous ideal of an elliptic quintic scroll is generated by cubic
hypersurfaces, so the scroll can be linked (4, 4) to a smooth surface as in the above propo-
sition.
b) The surfaces described in the previous proposition are hyperplane sections of smooth,
log-general type, unirational threefolds X ⊂ IP5, with d = 11, π = 13, χ = 1 and
κ(X) = −∞ (cf. [BSS] and [Ch]). An easy argument shows also the uniqueness of the
examples given in [BSS] for threefolds with these invariants.

Proposition 3.62. There are no smooth surfaces S ⊂ IP4 with invariants d = 11, π = 13,
χ = 7.

Proof. We compute χ(OS(1)) = 6, so by Riemann-Roch and Severi’s theorem it follows
that h0(OS(K −H)) = h2(OS(H)) ≥ 1. But a curve C ∈ |K −H| will have degree 2 and
arithmetic genus 2 which is absurd.ut
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VII. Surfaces with d = 11, π = 14

In this last case we compute K2 = 6χ− 32 and HK = 15, so Hodge index implies χ ≤ 8.
Lemma 0.20 yields χ ≥ 1 and, in case κ(S) ≥ 0, the pseudo-effectiveness of K implies via
(0.16) that χ ≥ 3 and in particular that κ(S) ≥ 1.

Proposition 3.63. There are no smooth rational surfaces with d = 11, π = 14.

Proof. We use again the adjunction mapping to rule out the various candidates. If S1

denotes the image of S under the adjunction mapping, we obtain the following invariants:

S ⊂ IP4 H2 = 11 HK = 15 K2 = −26 π = 14
S1 ⊂ IP13 H2

1 = 15 H1K1 = −11 K2
1 = −26 + a π1 = 3,

where a is the number of the (−1)-lines on S. The adjoint linear system of S1 has projective
dimension two, so theorem 0.31 implies that either (H1 + K1)2 = a − 33 = 1 and S1 is
IP2 blown-up in one point, or (H1 +K1)2 = a− 33 = 0 and S1 is a conic bundle with one
singular fibre in the ruling. In the first case we may write

H = 7l − 2E0 −
34∑
i=1

Ei. (∗)

In the second case, if IFe = IP(OIP1 ⊕OIP1(−e)), e ≥ 0, is the relative minimal model of
S1, C0 is a section of IFe with minimal self-intersection −e and f is the class of a ruling,
then working back through the adjunction process we may write

H ≡ 4C0 + (2e+ 6)f − 2E1 −
34∑
i=2

Ei.

Now HC0 ≥ 1 so e ∈ {0, 1, 2}, and we may choose IP2 as minimal model

H = 8l − 4E0 − 2E1 −
34∑
i=2

Ei. (∗∗)

We use cohomological information to exclude both cases. First, Riemann-Roch and Sev-
eri’s theorem yield h1(OS(1)) = 6, χ(IS(2)) = 7 and χ(IS(4)) = 11. Now the generic
hyperplane section H of S is not hyperelliptic, so h1(OH(2)) = h0(OH(K −H)) ≤ 2 by
Clifford’s theorem, and from the cohomology of the exact sequence

0 −→ OS(1) −→ OS(2) −→ OH(2) −→ 0

we obtain h1(OS(2)) ≤ h1(OS(1)) + 2 = 8. Since (K − 2H)H < 0, we get also that
h1(OH(k)) = 0, for k ≥ 3 and H an irreducible hyperplane section, and thus it follows
from the cohomology of the above sequence that h1(OS(k)) ≥ h1(OS(k + 1)) for all k ≥ 2.
Therefore h1(OS(4)) ≤ 8, and since χ(IS(4)) = 11 we deduce that S is contained in at
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least a net of irreducible quartic hypersurfaces. In particular the 5-secants of S can fill at
most a surface of degree 5 in IP4.

Assume now that S is embedded by the linear system (∗). Then residual to the curve E0

there is a pencil |D| = |H−E0| of curves of degree 9 and sectional genus 12. If the general
D is irreducible, then either it is a curve of type (3, 5) on a smooth quadric, or it is linked
(2, 5) on a quadric cone with one of its rulings. In both cases the quadric would consist of
5-secants to S, and thus we obtain a contradiction since S would have too many 5-secant
lines. If the general element of D is not irreducible, then the only possibility is that D has
as base component a line L in this plane. Similar arguments rule also this case out.

Finally, assume that S would be embedded by the linear system (∗∗). Then a curve
Ci = l − E0 − Ei, for i = 2, 34, has degree 3 and thus spans only a hyperplane in IP4.
Residual to it there is a curve Di of degree 8 and arithmetic genus 11. By (0.34), such
a curve decomposes as Di = Ai + Bi, where Ai is a plane sextic curve and Bi is a conic
meeting Ai along a scheme of length 2. Therefore, by Bezout, the plane spanned by Ai
lies in the intersection of all the quartic hypersurfaces containing S, and since the planes
spanned by the various plane sextics are obviously distinct, the surface S would have again
too many 5-secants.ut

Proposition 3.64. There are no smooth surfaces S ⊂ IP4 with invariants d = 11, π = 14
and χ = 3.

Proof. The claim is a consequence of the following refinement of the Castelnuovo inequality
for space curves (cf. [Deb, Prop. 3.1])

Let X be a smooth non-ruled surface, and let L be a line bundle on X such that the
induced mapping ϕL is birational on the image. Then

4h0(L)− 6 ≤ h0(L⊗2)

which we apply for the adjoint linear system |H +K| on S. Namely, in case such a surface
would exist, we get h0(OS(H +K)) = 16, while h0(OS(2H + 2K)) = χ(OS(2H + 2K)) =
56 since h1(OS(2H + 2K)) = 0 by Kodaira’s vanishing theorem.ut

Proposition 3.65. There are no smooth surfaces S ⊂ IP4, with d = 11, π = 14 and
χ = 4.

Proof. The double point formula yields K2 = −8, while pg ≥ 3, thus S has at least 8
exceptional curves which are part of any canonical divisor on S. Let S0, with canonical
divisor K0, denote the minimal model of S. Now S0 is either elliptic or of general type.

If S0 is elliptic, then K0 is numerically equivalent to nF +
∑k
i=1 aiFi, n > 1 and k, ai ≥ 0,

where F is a fibre of the elliptic fibration and the Fi’s are the reduced parts of the multiple
fibers. Since HK0 ≤ 7, we deduce that n = 2 and HF = 3. But then there is a curve
C ∈ |F −E|, where E is one of the exceptional curves on S, with HC ≤ 2 and pa(C) = 1,
which is a contradiction.
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If S0 is a surface of general type, then Noether’s inequality gives

K2
0 ≥ 2pg − 4 ≥ 2,

thus S has at least ten (−1) curves Ei, i = 1, 10, while HK0 ≤ 5 and pa(K0) = K2
0 +1 ≥ 3.

Since pg ≥ 3, we can find a curve C ≡ K0 − E1 − E2 on S. It has degree HC ≤ 3
and arithmetic genus pa(C) ≥ 3, and thus we have reached again a contradiction to the
smoothness of S.ut

Proposition 3.66. There are no smooth surfaces S ⊂ IP4, with d = 11, π = 14 and
χ = 5.

Proof. We compute K2 = −2, so S has at least two (−1) curves E1 and E2. As above,
let S0, with canonical divisor K0, denote the minimal model of S.

If S0 is elliptic, then we argue as in proposition 3.65 to obtain that K0 ≡ nF , where F
is a fiber of the elliptic fibration and n ∈ {2, 3}. If n = 3, then HF = 4, HE1 = 1 and
HE2 = 2, hence there exists a residual curve D ∈ |F − E2| of degree 2 and arithmetic
genus pa(D) = 1, which is impossible. If n = 2, then HF = 4, HE1 = 1 and HE2 = 2.
The residual curve C ∈ |F − E2| has degree 4 and arithmetic genus 1, so it spans only
a hyperplane in IP4. Therefore there is a curve D ∈ |H − C| of degree 7 and arithmetic
genus 9. By lemma 0.33, D decomposes into a plane sextic curve A and a conic B, which
doesn’t meet A. The curve B is not exceptional, because otherwise it would be equal to
E2, while B2 = B2 +AB = DB = DE2 = (H − F +E2)E2 = 1, which is a contradiction.
Therefore B2 ≤ −2, and then D2 = A2 + B2 = 2 implies A2 ≥ 4, which is impossible by
the index theorem (HA = 6 implies that A2 ≤ 3).

We are left to consider the case when S0 is a surface of general type. Then Noether’s
inequality yields K2

0 ≥ 4, so there are at least 6 exceptional curves Ei, i = 1, 6, while
HK0 ≤ 9 and pa(K0) = K2

0 +1 ≥ 5. Since pg ≥ 4 we can find a curve D ≡ K0−E1−E2−E3

on S. It has degree HD ≤ 6 and arithmetic genus pa(D) = pa(K0) ≥ 5. Hence, either D
is a plane quintic curve, K2

0 = 5 and S has seven (−1) lines, or HD = 6, pa(D) = 5 and
S has six (−1) lines.
In the first case, residual to the plane quintic we get a pencil of curves of degree 6 and
arithmetic genus 6. By (0.33), such a curve splits as the union of a plane quintic curve A
and a line B, which meet in one point. Since the line doesn’t move, it lies in the plane
spanned by the quintic, so B(A+B) = B(H −D) = 1−BD = −4, whence B2 = −5. But
A2 +B2 = 1, thus A2 ≥ 6, which contradicts the index theorem.
In the second case, D decomposes as the union of a plane quintic curve A and a line B,
which does not meet A. As above B2 ≤ −2, A2 + B2 = 1, thus A2 ≥ 3 and we get again
a contradiction by the index theorem.ut

Proposition 3.67. There are no smooth surfaces S of degree 11 in IP4, with π = 14 and
χ = 6.

Proof. The double point formula gives K2 = 4, so S is of general type. On the other
side h2(OS(1)) = h0(OS(K −H)) = 0 since K2 −H2 < 0, so Riemann-Roch and Severi’s
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theorem yield for the speciality h1(OS(1)) = 1. Now Clifford’s theorem gives h1(OH(2)) =
h0(OH(K −H)) ≤ 2 for the generic hyperplane section H, whence h1(OS(2)) ≤ 3. On
another side, Riemann-Roch and theorems 1.6 and 1.7 yield h1(OS(2)) ≥ χ(IS(2)) = 2
and h1(OS(3)) ≥ χ(IS(3)) = 2, while h1(OS(2)) ≥ h1(OS(3)) since (K − 2H)H < 0 and
thus h1(OH(3)) = 0 for an irreducible H. It follows that the variety V ⊂ ǏP

4
parametrizing

hyperplane sections for which h1(OH(3)) > 0 is ruled in lines or contains at least a plane.
Now S is in any case a regular surface since otherwise, K2

min ≥ 12 by [Deb, Th.6.1] while
HKmin ≤ 7, pa(Kmin) ≥ 13 and pg = 6, which is absurd. Therefore an argument as in
lemma 3.25. shows that there are only finitely many plane curves on S. In particular V
cannot be ruled in lines since each line of the ruling would correspond to a IP2 cutting S
along a plane curve. On the other side, if V contains a plane π, then the line L, base locus
of the net of hyperplanes parametrized by π, needs to be contained in S and thus we have
an exact sequence

0 −→ OC(3H − L) −→ OH(3H) −→ OL(3H) −→ 0,

where C = H − L. The general element in |C| is irreducible since otherwise |C| would be
composed with a basepoint free pencil of plane curves, thus 2pa(C)−2 ≥ (H−L)(H−3L)
which implies L2 ≥ 3, a contradiction.ut

Proposition 3.68. If S is a smooth surface of degree 11, with π = 14 and χ = 7, then S
is a minimal regular surface of general type, contained in a cubic hypersurface. S is linked
to a Veronese surface in the complete intersection of the cubic and a quintic hypersurface.

Proof. We have K2 = 10, so S is of general type. Riemann-Roch gives χ(OS(1)) = 5,
thus Severi’s theorem implies h1(OS(1)) = 0, since h2(OS(1)) = h0(OS(K −H)) = 0 by
lemma 0.17. The cohomology of the exact sequence

0 −→ OS(1) −→ OS(2) −→ OH(2) −→ 0

yields then h1(OS(2)) = h1(OH(2)) = h0(OH(K −H)). Since the general hyperplane
section is not hyperelliptic, Clifford’s theorem implies h1(OS(2)) ≤ 2. On the other side,
Riemann-Roch and (1.6) give h1(OS(2)) ≥ 1.

Claim. h1(OS(3)) = 0.

Proof of the claim. Assume the contrary. If h1(OS(2)) = 1, then there would exist a web
of hyperplane sections H such that h1(OH(3)) 6= 0, which is absurd because the general
element in the web is smooth and OH(3) is non-special. If h1(OS(2)) = 2, then S cannot
be contained in a cubic hypersurface because theorem 1.7 implies that at most one of the
two Hartshorne-Rao modules of S would be non-trivial in this case. Therefore Riemann-
Roch gives h1(OS(3)) = 1 + h1(IS(3)). If h1(OS(3)) = 2, then there exists a quadric cone
such that, for all hyperplanes H containing one of its rulings, h1(OH(3)) = 1. Each such
line lies on S; otherwise the general hyperplane through it cuts out an integral curve and
this is impossible ((K − 2H)H = −7 < 0). But then it would follow that S is ruled, which
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is again impossible. If h1(OS(3)) = 1, one uses Beilinson’s spectral sequence to obtain a
contradiction as in proposition 3.60. ut

Therefore h1(OS(3)) = 0 and thus h0(IS(3)) ≥ 1. Theorem 1.7 implies then h1(OS(2)) =
1, h1(OS(k)) = 0, for k ≥ 3, and h1(IS(k)) = 0 for all k. In particular, it follows that
S can be linked in the complete intersection of a cubic and a quintic hypersurface to a
Veronese surface. All the other claims are immediate.ut

Remark 3.69. Since the homogeneous ideal of the Veronese surfaces is generated by 7
cubics, we can link them (3, 5) to smooth surfaces as in the previous proposition.

Proposition 3.70. If S is a smooth surface of degree 11, with π = 14 and χ = 8, then S
is a minimal regular surface of general type. S can be linked in the complete intersection
of two quartic hypersurfaces to a Castelnuovo surface of degree 5, thus it is projectively
Cohen-Macaulay.

Proof. Riemann-Roch and Severi’s theorem give h2(OS(1)) = h0(OS(K −H)) = 1 +
h1(OS(1)) > 0, thus S is a minimal surface of general type. On the other sideH(K−H) = 4
and pa(K − H) = 0, so no part of |K − H| can move on S, thus h2(OS(1)) = 1 and
h1(OS(1)) = 0. Now the cohomology of the exact sequence

0 −→ OS(1) −→ OS(2) −→ OH(2) −→ 0

yields h1(OH(2)) = 1 + h1(OS(2)), while Clifford’s theorem gives h0(OH(K −H)) ≤ 2.
Hence h1(OS(2)) ≤ 1, and the argument we used in (3.56) shows that h1(OS(k)) = 0, for
all k ≥ 0. In particular, h1(IS(3)) = h0(IS(3)) = 0 (by theorem 1.6) and h0(IS(4)) ≥ 4.
If we cut to a general plane Π in IP4, we get a linear system |C| of plane quartic curves
through 11 points, whose general member is irreducible. The projective dimension of |C| is
at least 4, and an argument similar to that used in [Ra1] for the proof of (0.34) shows that
|C| has only 11 base points. Thus the linear system of quartic hypersurfaces containing S
has no base locus of codimension two outside S. By Bertini, we can link S in the complete
intersection of two general quartic hypersurfaces to an irreducible surface Y ⊂ IP4, with
d = 5 and π = 2. The general hyperplane section HY of Y is an irreducible curve of degree
5 and arithmetic genus 2. Therefore HY is projectively normal, and so are Y and S. Hence
Y is a Castelnuovo surface.ut

Remark 3.71. a) The homogeneous ideal of Castelnuovo surfaces is generated by a
quadric and two cubic hypersurfaces, hence they can be linked (4, 4) to smooth surfaces
as described in the above proposition.
b) The above proposition yields an easy proof for the uniqueness of the examples provided
in [BSS] of smooth threefolds, with invariants d = 11 and π = 14. In particular, we obtain
that any such threefold has Kodaira dimension 0 and χ(X) = 0.
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4. Examples of smooth surfaces of degree 12

We construct in the sequel several examples of smooth, non-general type surfaces of degree
12 in IP4. In [DES] the authors constructed a smooth, blown-up K3 surface S ⊂ IP4 with
d = 12, π = 14, with one exceptional quartic and ten exceptional lines. We’ll provide here
examples of smooth, regular, proper elliptic surfaces.

Recall first that for a smooth surface S of degree 12 in IP4 the double point formula reads

K2 = 47− 5π + 6χ,

while Severi’s theorem and Riemann-Roch give

π = χ+ 8 + h1(OS(H))− h0(OS(K −H)).

Proposition 4.1. There exist smooth, regular, minimal proper elliptic surfaces S ⊂ IP4,
with d = 12, π = 13, χ = 3, and 10 skew 6-secant lines.

Proof. For construction we use the Eagon-Northcott approach. A promising Beilinson
cohomology table is

i ↑

2

2 hi(IS(p))

4 5

−−−−−−−−−−−−−−−−−−−−−−−−−→
p

so we may set F = 2O(−1)⊕ 2Ω3(3) and G = ˜(kerψ), where 4R(1)
ψ←−15R is the minimal

free presentation of the cohomology module H1(IS(∗+ 4)) = H1(G(∗)), and try to con-
struct the surface as the degeneracy locus of a general morphism ϕ ∈ Hom(F ,G). However,
for a general choice of the matrix ψ, the module M = cokerψ has a minimal free resolution
of type

M ← 4R(1)
ψ←− 15R 15R(−1)↖

⊕
10R(−2)

↖
30R(−3) ← 21R(−4) ← 5R(−5) ← 0

and thus Hom(Ω3(3),G) = 0 in this case. What is needed is that the matrix defining ψ
has at least two linear syzygies of second order. We’ll choose ψ carefully.
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Let F be the Horrocks-Mumford bundle on IP4 (see [HM]). It is a stable rank 2 vector
bundle with Chern classes c1 = −1, c2 = 4, and its H1-cohomology module has a minimal
free resolution of type (cf. [De1], [De2])

0← H1(F (∗)) ← 5R ← 15R(−1) 10R(−2)↖
⊕

4R(−3) 2R(−3)
⊕

↖
⊕

15R(−4) 35R(−5) ← 20R(−6) ↖
2R(−8) ← 0.

We provide a somewhat different construction of this module in chapter 7. From [HM], or
just by looking to the above resolution since F (−1) is the cokernel of the unique morphism
0→ 2Ω3(2) θ−→Syz1(H1(F (∗))), we have h0(F ) = h0(F (1)) = 0 and h0(F (2)) = 4.

Consider now a rank 3 vector bundle E on IP4 constructed as the extension

(4.2) 0 −→ F −→ E −→ O −→ 0

corresponding to a non-trivial element 0 6= ξ ∈ H1(F ) = Ext1(O, F ). E has Chern
classes c1(E) = −1, c2(E) = 4 and c3(E) = 0, and is stable because F is. Also h1(E) =
h1(F )−1 = 4 by construction. We’ll assume in the sequel that the extension E comes from
a generic element ξ ∈ H1(F ), meaning by this that ξ satisfies the following two conditions:

- the map CI ξ ⊗ H0(OIP4(1)) → H1(F (1)) induced by multiplication with linear forms is
injective, while
- the similar natural map CI ξ ⊗H0(OIP4(2))→ H1(F (2)) is surjective.

To see that such a choice is possible one either checks it for a random ξ with [Mac], or uses
the invariance of H1(F (∗)) under the group G = IH5oZ2, where IH5 is the Heisenberg
group of level 5. Namely, using notations and facts mentioned in (7.4), if IP4 = IP(V )
then we can find a basis e0, . . . , e4 of V such that, under the Schroedinger representation
of IH5 on IP4, H1(F ) = V3, H1(F (1)) = 2V ]1 , H1(F (2)) = 2V ]0 , while the multiplication
map V ∗ ⊗ H1(F ) → H1(F (1)) is given by the projection on the second factor V ∗ ⊗ V3 =
3V1 ⊕ 2V ]1 → 2V ]1 . One checks easily that ξ =

∑4
i=0(−1)iei ∈ H1(F ) has the desired

properties, and thus deduces that there is a Zariski open subset of H1(F ) fulfilling the two
conditions.

With this general choice of ξ, the cohomology of the exact sequence (4.2) gives h0(E(1)) =
0, h0(E(2)) = 5, h1(E(1)) = 5 and h1(E(m)) = 0 for all m ≥ 2 or m ≤ −1. In conclusion,
we deduce that M = H1(E(∗)) is an artinian module with Hilbert function (4, 5) and with
the desired syzygies

M ← 4R
ψ←− 15R(−1) 15R(−2) 2R(−3)↖

⊕ ←− ⊕
12R(−3) 30R(−4)

↖
21R(−5) ← 5R(−6) ← 0
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The two above linear syzygies of second order are inherited from those of H1(F (∗)), and
thus they involve too two proper Koszul complexes (see (7.5)).

As we can check in an example, the dependency locus of two general sections in H0(E(2))
is a smooth surface S ⊂ IP4 with d = 12, π = 13 and χ = 3:

(4.3) 0 −→ 2O −→ E(2) −→ IS(5) −→ 0.

This description of S is equivalent to that as the degeneracy locus of a general morphism
ϕ ∈ Hom(F , Syz1(H1(E(∗+ 1)))); we compute for S a minimal free resolution of type

3O(−5)
0 ← IS ← ⊕

12O(−6)
↖

30O(−7) ←− 21O(−8) ←− 5O(−9)← 0.

Dualizing (4.3) we obtain

0 −→ O(−5) −→ E∨(−2) −→ 2O −→ ωS −→ 0

thus ωS is globally generated, pg = 2, and since the double point formula yields K2 = 0
we deduce that S is a minimal proper elliptic surface. Le Barz’s formula (0.11) gives
N6 = 10, hence there are ten 6-secant lines to S because E(2) is globally generated outside
a 3-codimensional set. ut

Corollary 4.4. There exist smooth non-minimal K3 surfaces X ⊂ IP4 with d = 13,
π = 16 which are embedded by a linear system

H = Hmin − 7E0 −
10∑
i=1

Ei.

P roof. The minimal proper elliptic surface S ⊂ IP4 we’ve constructed above can be linked
in the complete intersection of two quintic hypersurfaces to a surface X with invariants
d = 13, π = 16, χ = 2 and a resolution of type

(4.5) 0 −→ E∨(−2) −→ 4O −→ IX(5) −→ 0.

Smoothness can be checked in an example. X is cut out by quintic hypersurfaces, hence
there are no 6-secant lines. On the other hand, Le Barz’s formula gives N6 = 10, so
there exist 10 exceptional lines on X, namely the 6-secant lines of S. Let now X1 denote
the image of X under the adjunction map, and X2 denote the image of X1 under the
adjunction map defined by |H1 +K1|. From (0.13) we obtain the following invariants

X1 ⊂ IP16 H2
1 = 36 H1K1 = 6 K2

1 = −1 π1 = 22
X2 ⊂ IP22 H2

2 = 47 H2K2 = 5 K2
2 = −1 + b π2 = 27,

where b is the number of (−1)-conics on X. Hodge index gives K2
2 = −1 + b ≤ 0, thus

lemma 0.18 implies that X is either a K3 or a proper elliptic surface. Moreover, in case it
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is elliptic, X has a (−1) conic or a (−1) cubic and the proper transform of the canonical
divisor on the minimal model is an elliptic curve of degree 4 or 5, while in case X is a
K3 surface there is an exceptional rational septic curve on it. Now it is easily seen that
in the case of an elliptic surface Kodaira’s formula for the canonical divisor implies that
p2 = h0(ωX⊗2) ≥ 2, so to prove the claim of the corollary we check that p2 = 1. Dualizing
(4.5) we obtain a resolution of ωX

0 −→ O(−5) −→ 4O −→ E(2) −→ ωX −→ 0,

and thus one of the associated scandinavian complexes yields the resolution:

(4.6) 0 −→ 6O −→ 4E(2) −→ S2(E)(4) −→ ωX
⊗2 −→ 0.

Splitting up (4.6) in short exact sequences and using the fact that h1(E(2)) = 0 and
h0(E(2)) = 5 we obtain that p2 = h0(S2(E)(4)) − 14. Now, by (4.2), the bundle S2(E)
can be realized as an extension

0 −→ S2(F ) −→ S2(E) −→ E −→ 0

and since h0(S2(F )(4)) = 0 and h1(E(4)) = 0 we need to compute the rank of the cobord
morphism H0(E(4))−→H1(S2(F )(4)). One checks in an example, via [Mac], that the kernel
of the previous cobord is 15, thus p2 = 1 and X is a K3-surface of the claimed type. From
(4.5) we obtain also a minimal free resolution of type

4O(−5)
0 ← IX ← ⊕

5O(−6)
↖

16O(−7) ← 10O(−8) ← 2O(−9)← 0

ut

Proposition 4.7. There exist smooth, regular, proper elliptic surfaces S ⊂ IP4, with
invariants d = 12, π = 14, χ = 3 and embedded by one of the following linear systems

a) H = Hmin − 2E0 −
4∑
i=1

Ei,

b) H = Hmin −
5∑
i=1

Ei.

P roof. A possible Beilinson cohomology table is

i ↑

2

3 2 hi(IS(p))

1 1

−−−−−−−−−−−−−−−−−−−−−−−−−→
p
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Thus we may take F = 2O(−1)⊕3Ω3(3) and G = kerψ, for some epimorphism ψ : 2Ω2(2)⊕
Ω1(1) → O, and check for the degeneracy locus of a general morphism ϕ ∈ Hom(F ,G).
Identifying IP4 = IP(V ), with V = spank(e0, . . . , e4), the morphism ψ is induced by a triple
(ψ11, ψ12, ψ2), where ψ11, ψ12 ∈ Λ2 V and ψ2 ∈ V . We check the various possibilities for
ψ and see that only two of them lead to smooth surfaces. Namely, if we take
α) ψ generic, then the corresponding vector bundle G has a minimal free resolution of type

0 ← G ← 25O(−1) 10O(−2) O(−3)↖
⊕ ←− ⊕

4O(−3) 4O(−4)
↖
O(−5) ← 0,

and a general morphism ϕ ∈ Hom(F ,G) gives a smooth surface Sα ⊂ IP4 with minimal
free resolution

0 ← ISα ← 8O(−5) 7O(−6) O(−7)↖
⊕ ←− ⊕

4O(−7) 4O(−8)
↖
O(−9) ← 0

while, if we take
β) ψ distinguishing a plane, e.g., say ψ11 = 0, ψ12 = e0 ∧ e1 and ψ2 = e2, then we obtain
a vector bundle G with resolution

25O(−1) 12O(−2) 2O(−3)
0 ← G ← ⊕ ←− ⊕ ←− ⊕

2O(−2) 5O(−3) 4O(−4)
↖
O(−5) ← 0,

and the generic ϕ ∈ Hom(F ,G) defines a smooth surface Sβ ⊂ IP4 with syzygies

8O(−5) 9O(−6) 2O(−7)
0 ← ISβ ← ⊕ ←− ⊕ ←− ⊕

2O(−6) 5O(−7) 4O(−8)
↖
O(−9) ← 0.

Smoothness can be checked in examples on a computer via [Mac]. It is easily seen, as in
the proof of (3.18), that all other choices of ψ lead to singular surfaces or to determinantal
loci which are not in the expected codimension. We determine next what type of surfaces
we’ve constructed.

Let now S1 denote the image of Sα (or Sβ resp.) under the adjunction map, and let S2 be
the image of S1 under the adjunction map defined by |H1 + K1|. From (0.13) we obtain
the following invariants

S1 ⊂ IP16 H2
1 = 35 H1K1 = 9 K2

1 = −5 + a π1 = 23
S2 ⊂ IP24 H2

2 = 48 + a H2K2 = 4 + a K2
2 = −5 + a+ b π2 = 27 + a,

where a is the number of (−1)-lines and b is the number of (−1)-conics on Sα (or Sβ resp.).

In case α), the ideal ISα is generated by quintic hypersurfaces so Sα has no 6-secant lines
and, since Le Barz’s formula (0.11) gives N6 = 4, there are 4 exceptional lines E1, E2, . . . E4
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on Sα. Let Smin denote the minimal model of Sα and assume first that it is a surface of
general type. Then Sα has at least two other exceptional curves F1 and F2 of degree ≥ 2,
and thus there would exist a curve in |Kmin−F1| of degree ≤ HKmin−2 ≤ 4 and arithmetic
genus pa(Kmin) ≥ 2, which is a contradiction. It follows that Sα is a non-minimal elliptic
surface, and thus K ∼ Kmin +

∑4
i=1Ei + E0, where E0 is a (−1) curve of degree ≥ 2.

On the other side a curve in |Kmin − E0| has arithmetic genus one, so HE0 ≤ 3. We
investigate first the case when HE0 = 3. Then a curve D ∈ |Kmin −E0| has degree 4 and
arithmetic genus one, so it spans only a hyperplane in IP4. The residual curve G ∼ H −D
has degree 8 and genus 9. We check now that G lies on a quadric surface in IP3. Namely,
since Riemann-Roch gives χ(OG(2H)) = 8 it is enough to check that h1(OG(2H)) ≤ 1.
But this follows from the cohomology of the exact sequence

0 −→ OS(H +D) −→ OS(2H) −→ OG(2H) −→ 0

since, in the constructed example, h1(OS(1)) = 3, h1(OS(2)) = 2 and h2(OS(H +D)) =
h0(OS(K −D −H)) = 0, while the composite multiplication map

H1(OS(H)) D−→H1(OS(H +D))H−D−→H1(OS(2H))

drops rank at most one on ǏP
4
, for a general choice of the morphism ϕ ∈ Hom(F ,G). Now

the curve D lies on two quadrics, thus for the hyperplane section H cut out by the IP3 of D
on Sα, we get h0(IH(4)) ≥ 2. This is a contradiction, since under the previous assumption
of minimal cohomology table we have h0(IH(4)) ≤ h1(IS(3)) = 1, for all hyperplane
sections H. Therefore E0 is an exceptional conic and Sα is a non-minimal elliptic surface
embedded by a linear system of type a), as claimed in the statement of the proposition.

In case β), it is easily seen that the distinguished plane Π = IP(span(e0, e1, e2)) meets
Sβ along a plane quintic curve C and the point P = IP(span(e2)) outside C. Therefore
Sβ has infinitely many 6-secant lines, namely all lines in Π going through P , and so Le
Barz’s formula doesn’t apply in this case. In fact, using the explicit form of the syzygies
of the ideal sheaf ISβ , it is easily seen that these are all the 6-secant lines to Sβ . Taking
cohomology of the exact sequences

0 −→ ISβ (k − 1) −→ ISβ (k) −→ IH(k) −→ 0 k = 3, 4

we observe that h1(IH(3)) = 3 for all hyperplane sections H of Sβ , and that h1(IH(4)) = 1
if and only if P ∈ H. Therefore each hyperplane through P contains a plane π such that
h1(Iπ∩Sβ (4)) = 1. In particular, for the pencil of hyperplanes through Π there exists a
quadric cone

Q =
{

det
(

l m
x3 x4

)
= 0

}
,

where l and m are suitable linear forms, such that h1(Iπ(λ:µ)∩Sβ (4)) = 1 holds for all
planes π(λ:µ) = {µl + λm = µx3 + λx4 = 0} in one of the rulings of Q. Now the plane Π
is obviously a member of the opposite ruling of Q, and thus residual to C in the complete
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intersection Sβ ∩ Q there is a curve G ∼ 2H − C of degree 19 and arithmetic genus 23.
On another side, residual to C, in the hyperplane sections through Π, there is a pencil |D|
with base point P , of curves of degree 7 and genus 3. It follows that the curve G splits as
G = G1 +G2, where G1 is a union of plane curves contained in planes of the ruling π(λ:µ),
while G2 is a curve of degree 14 which maps down via projection from the vertex of Q to
a complete intersection of type (7, 7) on the quadric surface which is the base of the cone.
It is easily checked that G1 splits as the union of 5 exceptional lines E1, E2, . . . , E5 on Sβ .
Therefore, on the first adjoint surface S1 we obtain K2

1 ≥ 0, and in fact, by Hodge index,
the equality K2

1 = 0 holds. We argue further as in case α). If Sβ would be a surface of
general type then it contains further an exceptional curve E of degree ≥ 2 and thus a curve
N ∈ |Kmin − E| would have degree at most 5 and arithmetic genus at least 2. Thus the
only possibility is K2

min = 1, HE = 2 and HN = 5, pa(N) = 2. If N spans only a IP3, then
the residual curve H −N would have degree 7 and arithmetic genus 8, which is impossible
by lemma 0.34. Therefore N spans all of IP4 and necessarily splits as N = A+B, with A
a plane quartic curve and B a line disjoint of it. But then A2 + B2 = N2 = 0, B2 ≤ −2
since B cannot be exceptional, while Hodge index yields A2 ≤ 16

12 , and thus we obtained a
contradiction. It follows that Sβ is this time a non-minimal elliptic surface embedded by
a linear system of type b).ut
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5. Examples of Enriques surfaces of degree 13

We construct in this chapter two examples of smooth, non-minimal Enriques surfaces
S ⊂ IP4 with invariants d = 13, π = 16.

Lemma 5.1. Let S ⊂ IP4 be a smooth surface with d = 13, π = 16, pg = q = 0. Then
either:
a) S is rational, or
b) S is a non-minimal Enriques surface with 17 exceptional lines.

Proof. Adjunction and the double point formula give HK = 17 and K2 = −17. Let now
S1 = ϕH+K(S) ⊂ IP15 be the image of S through the adjunction morphism. We obtain
for its invariants

H2
1 = 30, H1K1 = 0, π1 = 16, K2

1 = −17 + a

where a is the number of (-1) lines on S. Hence, since H1(nK1) = 0 for all n, it follows
that either p2 = 0 and S is rational by Castelnuovo’s criterion, or 2K1 ∼ 0 and S is an
Enriques surface with 17 exceptional lines. ut
Remark 5.2. Le Barz’s 6-secant formula gives N6 = N6(13, 16, 1) = 17, thus a surface S
which is cut out by quintic hypersurfaces is necessarily an Enriques surface of type b).

(5.3.) Constructions. We provide in the sequel a construction of smooth Enriques
surfaces as in the above lemma. A possible Beilinson cohomology table is

i ↑

6 5 1 hi(IS(p))

1

−−−−−−−−−−−−−−−−−−−−−−−−−→
p

Riemann-Roch gives also h2(OS(−1)) = h0(OS(H +K)) = π+χ− 1 = 16. Therefore, the
above diagram suggests to construct IS(4) as the cohomology of a quasi-monad

0 −→ 16O ϕ−→ T ψ−→ O −→ 0

where T is an appropriate sheafified syzygy module of M = ⊕m∈ZH2(IS(m+ 4)). An
artinian module M with a minimal free resolution of the form

0 ← M ←− 6R(3) ←− 25R(2) 36R(1) 16R

α
↖ ⊕ ←− ⊕

R 10R(−1) ↖ 9R(−2)

β
↖ R(−4) ← 0
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would have the desired Hilbert function and would possibly fit our approach. To obtain a
module with these syzygies it is easier to construct, as we did before, the k-dual module
M∗. Namely, we look for nine quadrics without common zeroes, having a single second
order linear syzygy. Moreover, the second order syzygy needs to properly involve 5 of the
first order syzygies since we want the induced morphism T ψ−→O to be surjective. We can
achieve this when, for instance, this part of the resolution comes from a truncated Koszul
complex. Therefore we consider part of the Koszul complex

R(−2)
δ
x ↖

@
ε

0 ← R ← 5R(−1) ← 10R(−2) ←
γ

10R(−3) ,

a general projection δ and the composition ε = δ ◦ γ. Then a general morphism in

Hom(R(−4), ker ε)

will give by composing with γ the nine quadrics defining β∗. Resolving β∗ gives α. We take
now T = Syz2(M) and ϕ, ψ those morphisms defined by the resolution of M . In fact, if we
denote the linear part of α by α′ and put E = 16OIP4 , F = ker(36OIP4(1) α̃′−→25OIP4(2)) =
ker(T ψ−→O) and ϕ̄ ∈ Hom(E ,F) the morphism induced by ϕ ∈ Hom(16O, T ), then
coker ϕ̄ = IS(4) is the twisted ideal sheaf of a smooth surface S with the desired invariants.
We compute also a minimal free resolution of type

5O(−5)
0 ← IS ←− ⊕

O(−6)
↖

10O(−7) ←− 6O(−8) ←− O(−9)← 0

On the other hand, as we can check, S is cut out only by the quintics generating the
homogeneous ideal IS and therefore, by remark 5.2, S is a non-minimal Enriques surface
with only 17 exceptional lines.

Remark 5.4 The above family was constructed in collaboration with Frank-Olaf Schreyer.

We describe in the sequel a variation of the above construction leading to a different family
of Enriques surfaces. We start again with part of the Koszul complex

2R(−2)
δ
x ↖

@
ε

0 ← R ← 5R(−1) ← 10R(−2) ←
γ

10R(−3)

and, this time, with a general projection δ on 2R(−2) and consider the composition ε =
δ ◦ γ. A general morphism in Hom(R(−4), ker ε) will give by composing with γ eight
quadrics cutting out a zero-dimensional scheme Z. We take as the nine quadrics defining
β∗ the previous eight plus a general one avoiding the scheme Z. The resulting module
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M will have a minimal free resolution with the same Betti numbers. We put, as before,
T = Syz2(M) and consider the monad

0 −→ 16O ϕ−→ T ψ−→ O −→ 0

where ϕ and ψ are those induced by the resolution of M . Its cohomology is the twisted
ideal sheaf of a smooth surface S with the same invariants as above, having a minimal free
resolution of type

5O(−5) O(−6)
0 ← IS ←− ⊕ ←− ⊕

2O(−6) 10O(−7)
↖

6O(−8) ←− O(−9) ← 0

We can check, as in the previous construction, that S is cut out only by the quintics
generating the homogeneous ideal IS and therefore, by remark 5.2, S is again a non-minimal
Enriques surface with 17 exceptional lines. The extra linear syzygy of the quintics in IS
possess only 3 linearly independent components, which in turn define one of the exceptional
lines of S.

Remarks 5.5.
a) An Enriques surface S belonging to one of the above two families is, by lemma 0.32,
the unique minimal scheme in its even liaison class.
b) We were not able to find flat deformations from Enriques surfaces belonging to the first
family to those of the second one, or to prove that the two constructed families reside in
different components of the Hilbert scheme.
c) The existence, or non-existence of rational surfaces with these invariants is also com-
pletely open.
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6. A K3 surface of degree 14

We construct in this chapter an example of a smooth non-minimal K3 surface of degree
14 in IP4. Namely, we show

Proposition 6.1. There exist smooth, non-minimal K3 surfaces S = Smin(p1, . . . , p15) ⊂
IP4 with d = 14, π = 19, K2 = −15, and embedded via

H = Hmin − 4E0 −
4∑
i=1

2Ei −
14∑
j=5

Ej ,

where |Hmin| is very ample on Smin of degree 56 and dimension 29.

Proof. We discuss first an approach as in chapter 1 via the Eagon-Northcott complex. A
plausible Beilinson cohomology table for a surface with these invariants is

i ↑

1

7 7 3 hi(IS(p))

−−−−−−−−−−−−−−−−−−−−−−−−−→
p

thus, in this case, everything is determined by M = ⊕m∈ZH2(IS(m+ 4)). We’ll look
again to the dual module M∗ and we’ll assume that it is generated, as R−module, by
Homk(H2(IS(3)), k). Then, by considering the Hilbert function of M∗, we find that M∗

has a minimal free resolution of type

0←− M∗ ←− 3R(−1)
ψ←− 8R(−2)⊕mR(−3)

with m ≥ 0. The morphism ψ = (ψ1, ψ2) is given by a 3 × (8 + m) matrix with linear
entries in ψ1 and quadratic entries in ψ2. Also m > 0 if and only if ψ1 has at least three
non-trivial linear syzygies. However, this doesn’t occur for a general choice of ψ1; in this
case the cokernel of ψ1 is an artinian graded module with Hilbert function (3, 7, 5). In order
to obtain a module with the desired Hilbert function, it is necessary that the number of
linear syzygies of ψ1 equals m+ 2, and we’ll choose it correspondingly. The idea is to start
with four planes Pi = {li1 = li2 = 0}, i = 1, 4, and to consider the direct sum of the four
Koszul complexes built on { li1, li2 }

4R α←− 8R(−1)
β←− 4R(−2).
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We take as ψ1 a morphism given by 3 general lines of α, i.e., ψ1 = γα(−1), with γ ∈ M3,4(k)
a random matrix, and as ψ2 a general 3× 2 matrix with quadratic entries, because ψ1 has
exactly 4 linear syzygies. M∗ = cokerψ is an artinian graded module with Hilbert function
(3, 7, 7) and from (1.11) we can compute its minimal free resolution

0← M∗ ←− 3R(−1) 8R(−2) 4R(−3)↖
ψ ⊕ ⊕

2R(−3)
↖

5R(−4)
⊕

15R(−5)
↖

38R(−6) ←− 28R(−7) ←− 7R(−8) ← 0

We dualize, and set according to proposition 1.15 F = Syz2(M). To obtain the second
bundle, we compare the syzygies of F with Beilinson’s spectral sequence for IS . Namely,
the E∞-filtration yields an exact sequence

0 −→ O(−1)⊕ (H0(F)⊗O) −→ F −→ IS(4) −→ 0.

Furthermore, h0(F) = 15, and if we put E = O(−1) ⊕ 15O, one checks, via [Mac] in
examples, that the degeneration locus of a ϕ ∈ Hom(E ,F) = Hom(O(−1) ⊕ (H0(F) ⊗
O),F) = H0(F(1)) ⊕ Hom(H0(F) ⊗ O,F), given by a general section and the natural
evaluation map, is a smooth surface S with the desired numerical invariants and the
desired cohomology. The minimal free resolution of the ideal sheaf of the surface is of type

4O(−5) 2O(−6)
0 ← IS ←− ⊕ ←− ⊕

4O(−6) 8O(−7)
↖

3O(−8) ← 0

so the homogeneous ideal is generated by 4 quintics and 4 sextics. Moreover, it follows
from the construction of the module M∗ that the four quintics containing S intersect in

V ((IS)≤5) = S ∪
4⋃
i=1

Pi,

and a closer look to the syzygies of M∗ shows that S cuts each plane Pi along a sextic
curve. Hence each of the planes Pi contains an ∞2 of 6-secant lines, and in particular Le
Barz’s formula doesn’t apply to this example.

To determine the type of surface we constructed, we check in an example that S ∪
⋃4
i=1 Pi

is an arithmetically Cohen-Macaulay scheme of degree 18 and sectional genus 39, with
syzygies of type

0 ← I
S∪
⋃4

i=1
Pi
←− 4O(−5) 2O(−6)

↖
⊕ ← 0

O(−8)
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and, moreover, that the minors of the 4×2 submatrix 4O(−5) α←−2O(−6) vanish precisely
along an exceptional quartic curve E0 on S. Furthermore, by computing equations for
the divisor contracted by the adjunction mapping, we see that there are ten exceptional
lines on the surface. Let now S1 denote the image of S under the adjunction map, and S2

denote the image of S1 under the map defined by |H1 + K1|. From (0.13) we obtain the
following invariants

S1 ⊂ IP19 H2
1 = 43 H1K1 = 7 K2

1 = −5 π1 = 26
S2 ⊂ IP26 H2

2 = 52 H2K2 = 2 K2
2 = −5 + b π2 = 28,

where b is the number of (−1)-lines on S1. But K2
2 = −5 + b ≥ −H2K2 = −2, and there

exists already an exceptional quartic curve E0 on S, so the only possibility is that b = 4
and K2 is a (−1) conic on S2. As it turns out, S = Smin(p0, . . . , p14) is a minimal K3
surface blown up in 15 points and

H = Hmin − 4E0 −
4∑
i=1

2Ei −
14∑
j=5

Ej ,

where Hmin is a very ample linear system on Smin = S4, giving an embedding Smin ⊂ IP29

with degSmin = 56.

We want further to recover an alternative liaison construction for the above K3 surface.
Proposition 0.30 and remark 0.31 ensure that we can link (5, 5) the configuration S∪

⋃4
i=1 Pi

to a smooth surface Y of degree 7 and sectional genus 6. The cohomology of the liaison
exact sequence

0 −→ OY (KY ) −→ OΣ5,5(5) −→ O
S∪
⋃4

i=1
Pi

(5) −→ 0,

where Σ5,5 denotes the complete intersection of the two quintic hypersurfaces used in the
linkage, gives pg(Y ) = 2 and q(Y ) = 0 while the double point formula yields K2

Y = 0.
Surfaces with these invariants are classified in [Ok2] and are known to be arithmetically
Cohen-Macaulay, minimal proper elliptic surfaces. Namely, |KY | is a pencil without base
points of plane cubic curves; the planes spanned by its members being those in one ruling
of the determinantal quadric defined by the linear syzygies in

0 −→ 2O(−5) −→ 2O(−4)⊕O(−2) −→ IY −→ 0.

Then liaison, once again, shows that Y cuts each plane Pi along a conic Ci, which is
necessarily a section of the elliptic fibration, since there are no singular fibers and the
fibration is by plane curves. In particular, this means that the rank of the Picard group
of Y is at least 6, while the Picard number of a generic elliptic surface of degree 7 in IP4

is only 2 by [ElP2]. Therefore we‘ll have to choose in the sequel Y carefully in order to
recover S via liaison from the scheme Y ∪

⋃4
i=1 Pi.

(6.2.) Liaison construction. The above facts suggest us the following liaison method of
construction for this family of K3 surfaces. Let P , P1, P2, P3, P4 be five planes in general
position in IP4 and denote by {pij} = Pi ∩ Pj , for 1 ≤ i < j ≤ 4, the mutual intersection
points of the last four of them.
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Lemma 6.3.
a) The homogeneous ideal IP∪{pij ,1≤i<j≤4} is generated by 3 quadrics and 4 cubics.
b) The three quadrics intersect along the plane P and a rational normal quartic curve Q,
which is trisecant to P and goes through the points pij .

Proof. The first part follows from the cohomology of the residual intersection sequences

0 −→ I{pij ,i<j}(m− 1) −→ IP∪{pij ,i<j}(m) −→ OIP2(m− 1) −→ 0

where m ∈ Z. For the second part observe that the plane P is linked in the complete
intersection of two of the quadrics to a rational cubic scroll T . If HT ∼ C0 + 2f , with
C2

0 = −1, C0f = 1 and f2 = 0, is the embedding of the scroll in IP4, then P ∩T ∼ C0 +f is
a conic and thus the third quadric cuts on T the rational normal quartic curve Q ∼ C0+3f .
Now P ∩Q = Q(C0 + f) = 3 and the lemma follows.ut

We consider now a general quadric V ∈ H0(IP∪{pij}(2)) and denote with Ci the conics
V ∩ Pi, for i = 1, 4. They intersect pairwise in the points {pij} = Ci ∩ Cj , 1 ≤ i < j ≤ 4.

Lemma 6.4. There exists a unique rational normal quartic curve E0 which is contained
in V , passes through the points pij , 1 ≤ i < j ≤ 4, and intersects the plane P in one point
p.

Proof. The claim is closely related to a theorem by James, see [Ja], [Sem]. For the proof
we use an idea of Semple [Sem], [SR]. Consider the rational map γ : IP4−−−>IP5 given by
the quadrics through the rational normal quartic curve Q in (6.3). It is one to one onto
a smooth hyperquadric Ω in IP5, which we’ll identify in the sequel with the image of the
grassmannian of lines in IP3 under the Plücker embedding. Let ĨP

4
be the blowing up

of IP4 along Q and denote by E the exceptional divisor and by γ̃ : ĨP
4
−→Ω ⊂ IP5 the

induced morphism. Then the trisecant planes of Q are mapped through γ to the planes
of one generating system, say α-planes, of the grassmannian Ω, while E is mapped by γ̃
onto a sextic threefold ruled in β-planes. Each of the β-planes corresponds to the normal
directions in IP4 at points of Q. We remark also that quadric cones through Q are mapped
via γ to special linear complexes, i.e., to tangent hyperplane sections of Ω. To fix notations,
let now H ⊂ IP5 be the hyperplane corresponding to V and let βij , 1 ≤ i < j ≤ 4, be the
β-planes corresponding to the points pij . Rational normal quartic curves which meet Q
in six points are represented via γ by conics in which Ω is met by planes. Thus, in order
to prove the lemma, all we need to check is that in H exists exactly one plane meeting all
six lines H ∩ βij and not contained in the quadric cone H ∩ Ω. But this is clear since, by
Schubert calculus, the Plücker embedding of the grassmannian of planes in IP4 has degree
5, while the planes of the cone H ∩Ω describe via the same Plücker embedding the union
of two conics. The rational quartic curve E0 represented by this unique plane meets P in
one point because γ maps P in an α-plane contained in H.ut

Lemma 6.5. If T = P ∪
⋃4
i=1 Ci, then its homogeneous ideal IT is generated by 1 quadric,

2 cubic and 4 quartic hypersurfaces.

Proof. One uses again the residual exact sequences

0 −→ I∪4
i=1Ci

(m− 1) −→ IT (m) −→ IP∪(∪4
i=1Ci∩H)(m) −→ 0
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where H is a general hyperplane through P and m ∈ Z, together with the fact that I∪4
i=1Ci

is generated by 1 quadric and 8 cubic hypersurfaces.ut

From the above lemma it follows that P can be linked in the complete intersection of V
and a general quartic hypersurface W ∈ H0(IT (4)) to a smooth, minimal proper elliptic
surface Y ⊂ IP4 with deg Y = 7, π(Y ) = 6. Moreover, by construction, the conics Ci lie
on Y .

Lemma 6.6.
a) On Y we have C2

i = −3 and KY Ci = 1, so each conic Ci is a section of the elliptic
fibration.
b) The planes Pi intersect Y exactly along the conics Ci.

Proof. In any case KY Ci ≥ 1 since there are no multiple fibers. On the other hand, we
recall that the elliptic fibration is cut out on Y by the planes in one of the rulings of the
cone V . Thus if KY Ci ≥ 2, then Pi would lie on V and this would contradict our choices.
It follows that C2

i = −3 and KY Ci = 1. Part b) is set theoretically clear by construction.
The claim follows because residual to each conic Ci there is a pencil |HY − Ci| of curves
of degree 5 and genus 2, without base points since (HY − Ci)2 = 0.ut

We need in the sequel some classical facts of projective geometry.

Proposition (Segre) 6.7. With any four general planes Pi, i = 1, 4, there is associated
a uniquely determined fifth plane P5, such that all lines which meet the first four planes
meet also the fifth.

Proof. As mentioned above, the Plücker embedding of the grassmannian of lines in IP4

has degree 5, thus the claim follows because the special linear complexes consist of lines
meeting a given plane. See also [Seg] or [SR]. ut

Corollary (Segre)[Seg] 6.8. The lines in IP4, which meet the four initial planes, generate
a cubic hypersurface X containing the five planes Pi, i = 1, 5, and having singularities
(nodes) exactly at the ten points at which the planes meet in pairs.

Proof. We briefly recall the arguments in [Seg]. The first part of the claim follows from
Bezout since H0(I∪Pi(3)) = 1 and from Schubert calculus in G(1, 4), since if l is a line
meeting P4 at one point q, in which case it is contained in a hyperplane H through P4,
then there is one line through q which meets P1, P2 and P3, and there are two other
lines meeting l and the three lines in which H cuts P1, P2 and P3, respectively. To check
singularities, observe first that residual to a plane Pi in a general hyperplane section of X
through it, there is a quadric surface containing 4 skew lines, thus smooth. Therefore X
has only isolated singularities and an easy argument shows that these are exactly the ten
points of pairwise intersection of the planes Pi.ut

A cubic threefold X ⊂ IP4 with the maximum number of ordinary double points, namely
10, is unique up to projective equivalence (cf. [Seg], [Ka]). It’s desingularization X̃ is
isomorphic to IP3 blown-up in five points a1, . . . , a5, in general position. The morphism
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ϕ : X̃ → X ⊂ IP4 is given by the quadrics through the five points while the nodes are the
images of the lines joining any two of the points ai. We mention in the sequel some of the
properties of this threefold (cf. [Seg], [SR], [Fi]).

The Segre cubic primal X has a symmetrical system of 15 planes, of which 5 correspond to
the exceptional divisors over the points ai, and 10 to the planes Pijk = ϕ(span(ai, aj , ak)),
for {i, j, k} ⊂ {1, 2, 3, 4, 5}. The symmetry of the the planes resides in the following
properties:
- each plane contains four of the nodes,
- each plane is met in lines by 6 others, namely the plane corresponding to ai by the planes
Pijk, for all {k, j} ⊂ {1, 2, 3, 4, 5} \ {i}, and the plane Pijk by those corresponding to ai,
aj , ak and Pα,β,γ , with α ∈ {i, j, k} and {β, γ} = {1, 2, 3, 4, 5} \ {i, j, k}.

We’ll assume in the sequel that we’ve chosen the desingularization morphism ϕ such that
the planes Pi, i = 1, 4, correspond to the exceptional divisors over ai. Let now Z =
Y ∪

⋃4
i=1 Pi. It is a local complete intersection scheme, except for the points Pij which are

Cohen-Macaulay of the type described in (0.31), and has invariants degZ = 11, π(Z) = 10,
χ = 3, q = 0. We remark here that Hodge index implies that there is no smooth surface
in IP4 with these invariants.
By computing syzygies one shows that Z has a resolution of type

0 −→ 2O(−1)⊕ (H0(G)⊗O) −→ G −→ IZ(4) −→ 0

with G = Syz1(M∗)(3), where M∗ is the graded artinian module we constructed above. In
particular the homogeneous ideal IZ is generated by 3 quintic and 15 sextic hypersurfaces,
and thus we can link Z in the complete intersection of two quintics to a surface S with
d = 14, π = 19, χ = 2, q = 0. One checks in examples via [Mac] that S is smooth.

Remark 6.9. By liaison, each plane Pi, i = 1, 4, intersects S along a sextic curve Di,
thus each of them contains an ∞2 of 6-secant lines.

Lemma 6.10.
a) E0 is an exceptional quartic on S.
b) The planes Pijk, with {i, j, k} ⊂ {1, 2, 3, 4}, cut the surface S along four exceptional
conics.

Proof. The rational normal curve E0 is contained in V and intersects W in a scheme of
length 16, of which one point is on P . Thus, for general choices, E0 cuts Z = Y ∪

⋃4
i=1 Pi

along a scheme of length 15 + 6 = 21 and, by Bezout, lies on all quintic hypersurfaces
containing Z, whence on S. We show now that, say P123 cuts S along a conic; the other
cases being similar. Observe first that P123 cuts P1, P2 and P3 along the lines pairwise
joining the points p12, p13, p23, while P4 and P5 meet both this plane at the node v45

corresponding to the line through a4 and a5. For general choices P123 meets Y in a scheme
of length 7: p12, p13, p23 and four extra points. Let E4 denote the unique conic through
these four points and the node v45. It is easily seen that E4 is a 11-secant conic to the
configuration Z, so by Bezout it necessarily lies on S.
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By linkage KS + ((Y ∪
⋃4
i=1 Pi) ∩ S)S ∼ 5HS . On the other hand (Y ∩ S)S ∼ 5HY −

KY −
∑4
i=1 Ci, which is a curve of degree 24 and arithmetic genus 37, and the quartic

E0 lie both on the quadric cone V . It follows that KS + ((
⋃4
i=1 Pi) ∩ S)S ∼ 3HS + E0,

thus KS +
∑4
i=1Di ∼ (X ∩ S)S + E0. Since H(K − E0 −

∑4
i=1Ei) = 22 − 12 = 10 and

K2 = −15 we deduce easily that Ei, i = 0, 4, are exceptional curves on S.ut

Adjunction and the above lemma show also that S must have 10 exceptional lines, thus it
is a non-minimal K3 surface embedded by

H = Hmin − 4E0 −
4∑
i=1

2Ei −
14∑
j=5

Ej .

Corollary 6.11. The Segre cubic primal X intersects S along the union of 10 exceptional
lines, 4 exceptional conics and 4 plane sextic curves.

A similar liaison construction gives also the following

Proposition 6.12. There exist smooth, non-minimal general type surfaces S ⊂ IP4 with
invariants d = 15, π = 22, pg = 3, q = 0, K2 = −6, and with 9 exceptional lines.

Proof. We start this time with a Castelnuovo surface Y ⊂ IP4, i.e., with a smooth,
arithmetically Cohen-Macaulay, rational surface with d = 5, π = 2 and K2 = 1 (see [Be]
or [Ok1]). Y is linked to a plane in the complete intersection of a hyperquadric and a cubic
hypersurface, and can be represented via the adjunction map as IF1 blown up in 7 general
points, thus it is embedded in IP4 by

HY = 4l − 2E0 −
7∑
i=1

Ei.

Consider now the following conics on Y :

C0 = 3l − 2E0 −
6∑
i=1

Ei

C1 = 2l − E0 − E7 − E1 − E3 − E5

C2 = 2l − E0 − E7 − E1 − E4 − E6

C3 = 2l − E0 − E7 − E2 − E4 − E5

C4 = 2l − E0 − E7 − E2 − E3 − E6.

They intersect pairwise in one point and the planes they span, denoted in the sequel by Pi,
for i ∈ {0, 4}, intersect the Castelnuovo surface Y only along the conics Ci. The scheme
Z = Y ∪

⋃4
i=0 Pi is regular, of degree 10 and sectional genus 7, and has a minimal free

resolution of type

5O(−5)
0 ← IZ ←− ⊕

10O(−6)
↖

34O(−7) ←− 27O(−8) ←− 7O(−9)← 0.
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The five quintics in the ideal intersect along Z and the union of 9 skew lines. In fact, if,
according to (6.7), Qi denotes the unique Segre cubic hypersurface containing the planes
Pi+1, Pi+2, Pi+3 and Pi+4, for i ∈ Z5, then one checks that Q1, Q2, Q3 and Q4 each
contain 6 skew lines which are 6-secant to the configuration Z, while Q0 contains only 5
such lines. On the other hand, the five Segre cubics Qi cut out an elliptic quintic scroll
T ⊂ IP4 (see [Seg], [SR, Th.XXXIII, p.278]); each of the planes Pi intersecting it along a
cubic curve, section of the ruling. It follows that there are exactly 5 rulings of the scroll
which are 6-secant to Z, and thus altogether 9 skew lines with this property. The scheme
Z can be linked in the complete intersection of two quintic hypersurfaces to a surface S
with the desired invariants, having the above 9 lines as exceptional curves. We compute
the cohomology table

i ↑

3

7 8 4 hi(IS(p))

−−−−−−−−−−−−−−−−−−−−−−−−−→
p

and a minimal free resolution of type

2O(−5)
0 ← IS ← ⊕

7O(−6)
↖

12O(−7) ←− 4O(−8) ← 0.

Finally, we remark that each of the planes Pi intersects S along a sextic curve, and thus
contains an ∞2 of 6-secant lines to S.ut

Remark 6.13. It follows from lemma 0.32 that S and Z are minimal elements in their
even liaison classes.

94



7. Construction of smooth surfaces with d=15, π=21, χ=0

First examples of surfaces with these invariants are due to Ellingsrud and Peskine; see
[Au2]. Namely, for construction one starts with a minimal abelian surface A ⊂ IP4 with
d = 10, π = 6. Any such surface comes as the zero-set of a section of the (twisted)
Horrocks-Mumford bundle EHM (3), and thus it is Heisenberg invariant (with respect to
IH5, see below for notations) and lies on a net of Heisenberg invariant quintic hypersurfaces.
The base locus of the net is made of 25 skew lines and one shows that A can be linked
in the complete intersection of two such quintics to a smooth abelian surface S with
d = 15, π = 21, having the 25 lines as (−1) curves, see [Au2]. A short discussion about a
construction using the Eagon-Northcott complex method can be found in [DES].

In the sequel we recall the determinantal construction of this example from a different point
of view and an upshot of our approach will be the construction of a new abelian surface
lying on only one quintic hypersurface. A rather striking fact, which was the starting
point of this investigation, is the existence of a degeneration of this abelian surface which
is scheme-theoretically the first infinitesimal neighborhood of an elliptic quintic scroll. This
chapter owes very much to the discussions I had with the authors of [ADHPR] during the
preparation of that paper.

Concerning the possible invariants of such surfaces we mention the following

Lemma 7.1. Let S ⊂ IP4 be a smooth surface with d = 15, π = 21, χ = 0. Then either:
a) S is a ruled surface over an elliptic curve, or
b) S is a non-minimal bielliptic surface embedded by

H = Hmin −
25∑
i=1

Ei,

or
c) S is a non-minimal abelian surface embedded by

H = Hmin −
25∑
i=1

Ei.

P roof. Adjunction and the double point formula give HK = 25 and K2 = −25. Therefore,
when pg ≥ 1, it follows that S has exactly 25 exceptional lines and the canonical class on
the minimal model needs to be trivial, whence b). Assume now pg = 0 and let S1 =
ϕH+K(S) ⊂ IP19 be the image of S through the adjunction morphism. The invariants of
S are

H2
1 = 40, H1K1 = 0, π1 = 21, K2

1 = −25 + a

where a is the number of (-1) lines on S. In particular H1(nK1) = 0 for all n, so if κ(S) ≥ 0
then some multiple of K1 is trivial, a = 25 and S is a bielliptic surface as claimed in c),
otherwise S needs to be ruled over an elliptic curve.ut
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Remark 7.2.
a) I know nothing about the existence of ruled surfaces with the above invariants.
b) Examples of smooth non-minimal bielliptic surfaces as in lemma 7.1, b) have been
constructed in [ADHPR].
b) Le Barz’s 6-secant formula gives N6 = N6(15, 21, 0) = 25 so an abelian or a bielliptic
surface as in the lemma has either none or infinitely many 6-secant lines.

7.3. We recall briefly some classical facts about the Heisenberg group IH5. Let, as usual,
IP4 = IP(V ), with V =<e0, e1, . . . , e4> and define IH5 ⊂ SL(V ) as the subgroup generated
by σ and τ , where

σ(ei) = ei−1, τ(ei) = ξiei

for all i ∈ Z5 and ξ = e
2πi
5 . In fact [σ, τ ] = ξ, so IH5 is a central extension

0 −→ Z5 −→ IH5 −→ Z5 × Z5 −→ 0.

The representation IH5 ⊂ GL(V ) described above is called the Schrödinger representation
and will be denoted in the sequel as V0. Let θ, with θ(ξ) = ξ2, be the generator of
Gal(Q(ξ) : Q) and denote by Vi the composition IH5

θi−→IH5
V0−→GL(V ). Then V0, V1, V2, V3

together with the 25 characters of Z5 × Z5 form a basis of irreducible representations of
IH5 [HM]. Let now ι ∈ NIH5|SL5(CI) be the standard Heisenberg involution ι(ei) = e−i and
let G = IH5oZ2 be the subgroup generated by IH5 and ι in the normalizer NIH5|SL5(CI). Let
also V +, resp. V − be the eigenspaces corresponding to the eigenvalues 1, resp. −1 of the
Heisenberg involution ι. As usual, we denote IP2

+ = IP(V +) and IP1
− = IP(V −). We will

make use in the sequel of the representation theory of G. For convenience, we list here its
character table [HM], [Ma]:

Zα Cm,n Cp
1 1 1 I

5θi(α) 0 θi(ξp) Vi
1 1 −1 S

5θi(α) 0 −θi(ξp) Vi
]

2 ξsn+tm + ξ−sn−tm 0 Zs,t

where the conjugacy classes of G are

Zα = { α }, with α ∈ Z(IH5) = Z5 = { 1, ξ, . . . , ξ4 } (5 items)

Cm,n = { ξ2mn+pσmτn , ξ2mn+pσ−mτ−n | p ∈ Z5 } (12 items)

and
Cp = { ξ2mn+pσmτnι | m,n ∈ Z5 } (5 items).

There are 12 different irreducible representations Zs,t and we denote by Z their direct sum.
We recall also the following formulae from [Ma]:

Vi ⊗ Vi = 3Vi+1 ⊕ 2V ]i+1, Vi ⊗ Vi+1 = 3Vi+3 ⊕ 2V ]i+3, Vi ⊗ Vi+2 = I ⊕ Z
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(Vi)
∗ = Vi+2, (V ]i )

∗
= V ]i+2, Vi ⊗ S = V ]i , Vi ⊗ Z = 12Vi ⊕ 12V ]i

where i ∈ Z4.
For the exterior powers the following isomorphisms hold

2

ΛV0 = 2V ]1 ,
3

ΛV0 = 2V ]3 ,
4

ΛV0 = V2

hence the Koszul complex, as complex of G modules, looks

0← k ← R← V2 ⊗R(−1)← 2V ]3 ⊗R(−2)← 2V ]1 ⊗R(−3)← V0 ⊗R(−4)← R(−5)←0.

Finally, the well-known formula for the characters of the symmetric powers

χSmV =
5∑
i=1

(−1)i+1
χSm−iV⊗Λi V

yields

H0(IP4,OIP4(1)) = V2, H0(IP4,OIP4(2)) = 3V3, H0(IP4,OIP4(3)) = 5V1 ⊕ 2V ]1

H0(IP4,OIP4(4)) = 10V0 ⊕ 4V ]0 , H0(IP4,OIP4(5)) = 6I ⊕ 5Z.

7.4. The H1-module of the Horrocks-Mumford bundle EHM is a well understood module
with Hilbert function (5, 10, 10, 2). We construct in the sequel other Heisenberg invariant,
graded artinian modules M with Hilbert function of type (5, 10, 10, a), with a ≥ 0, and we
make use for that of the double complex described in chapter 1.

Namely, assume that M is normalized such that Mn = 0 for n < 0 and that M0
∼= V3 as

G-representation spaces. Assume also that M0 generates M as R-module. The previous
formulae yields that, in terms of G-modules, the top part of the double complex in theorem
1.11 looks like

y y y y
V3 ⊗k R

1IM0⊗d1←− (3V1 ⊕ 2V ]1 )⊗k R(−1) ←− (4V0 ⊕ 6V ]0 )⊗k R(−2) ←− (2S ⊕ 2Z)⊗k ..y y(δ1)0⊗1IR(−1)

y(δ2)0⊗1IR(−2)

y
0 ←− M1 ⊗k R(−1) ←− M1 ⊗k V2 ⊗k R(−2) ←− M1 ⊗k 2V3 ⊗k ..y y y(δ1)1⊗1IR(−2)

y
0 ←− 0 ←− M2 ⊗k R(−2) ←− M2 ⊗k V2 ⊗k ..y y y y

The compatibility of the multiplication map (δ1)0 ⊗ 1IR(−1) with the action of G on M
implies that we have roughly speaking exactly three choices, as G-module, for the 10-
dimensional vector space M1:
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a) M1 = 2V1, or

b) M1 = 2V ]1 , or

c) M1 = V1 ⊕ V ]1 ,

We’ll discuss each case separately. The presentation matrix σ1 of M which comes out
from the homology spectral sequence of the double complex can be easily recovered in all
cases. Namely, fix first a splitting M0 ⊗k V2 = ⊕4

i=0 Li with Li ∼= V1 for i = 0, 2 and
Lj ∼= V ]1 for j = 3, 4. The general IH5 invariant subspace of M0 ⊗k V2 can be displayed as
La = a0L0 + a1L1 + · · ·+ a4L4 for some a = (a0 : a1 : . . . : a4) ∈ IP4, where the above sum
means component-wise addition of the bases with the prescribed aj as coefficients. The
restriction of 1IM0 ⊗ d1 to La ⊗k R(−1) is given by the 5× 5 matrix with linear entries

Φa =


x0a0 x3(a1 − a4) x1(a2 − a3) x4(a2 + a3) x2(a1 + a4)

x3(a1 + a4) x1a0 x4(a1 − a4) x2(a2 − a3) x0(a2 + a3)
x1(a2 + a3) x4(a1 + a4) x2a0 x0(a1 − a4) x3(a2 − a3)
x4(a2 − a3) x2(a2 + a3) x0(a1 + a4) x3a0 x1(a1 − a4)
x2(a1 − a4) x0(a2 − a3) x3(a2 + a3) x1(a1 + a4) x4a0


Therefore, introducing R.Moore’s matrices My(x) = (x3i+3jyi−j)i,j , with i, j ∈ Z5, Φa can
be expressed as

Φa = Mz(x)

where z ∈ IP4 has the following components:

z0 = a0, z1 = a1 + a4, z2 = a2 + a3, z3 = a2 − a3, z4 = a1 − a4.

It follows that the restriction of 1IM0 ⊗ d1 to a La of type V ]1 corresponds to a matrix
Φa = Mz(x) with z ∈ IP2

+, while the restriction to an La of type V ]1 corresponds to a
matrix Φa = Mz(x) with z ∈ IP1

−. To summarize, in case a)

σ1 =
(
Mz(x) |Mz1(x) |Mz2(x)

)
with z ∈ IP2

+, z1 = (0, 1, 0, 0,−1) ∈ IP1
−, z2 = (0, 0, 1,−1, 0) ∈ IP1

−, while in case b)

σ1 =
(
Mz0(x) |Mz1(x) |Mz2(x)

)
with zi ∈ IP2

+, i = 0, 2 and thus, without loss of generality, we can choose say z0 =
(1, 0, 0, 0, 0), z1 = (0, 1, 0, 0, 1) and z2 = (0, 0, 1, 1, 0), and in case c)

σ1 =
(
Mz1(x) |Mz2(x) |Mz(x)

)
with zi ∈ IP2

+, i = 1, 2 and z ∈ IP1
−.

We look first to the case b). The vertical differential (δ3)0 ⊗ 1IR(−1) : (2S ⊕ 2Z) −→
M1 ⊗k 2V3 = 4I ⊕ 4Z has a two-dimensional kernel. Since the two copies of S involve

98



two Koszul complexes in the top row of the double complex it follows that the differential
(δ3)0⊗ 1IR(−1) : 4V0⊕ 6V]

0 −→ M0⊗k V2 = 4V0⊕ 6V]
0 has a 10-dimensional kernel of type

2V ]0 . One checks easily that M2
∼= 2V ]0 and M3

∼= 2S, while Mk = 0 for k ≥ 4. Therefore
M has Hilbert function (5, 10, 10, 2) and a minimal free resolution of type

M ←− 5R σ1←− 15R(−1) 10R(−2)↖
⊕

4R(−3) 2R(−3)
⊕

↖
⊕

15R(−4) 35R(−5) ←− 20R(−6) ↖
2R(−8) ←− 0

This module is precisely (up to a twist) the H1-module of the Horrocks-Mumford bundle.
See also [De2] for a presentation of this module and [DES] for the Eagon-Northcott con-
struction using the syzygy bundles of this module of the abelian surface in degree 10 and
its (5, 5) linked abelian surface of degree 15.

In case c), for a generic projection on a subspace of type V1 ⊕ V ]1 , the vertical differential
(δ2)0⊗1IR(−1) : 4V0⊕6V]

0 −→ M0⊗k V2 = 5V0⊕5V]
0 has only a 5-dimensional kernel. It is

easy to check that the general such module will have Hilbert function (5, 10, 5). However,
special projections give modules with Hilbert function (5, 10, 10, 1), or (5, 10, 10), namely
the first type being the H1-module of the ideal sheaf of a union of two elliptic quintic scrolls
meeting along an elliptic normal curve in IP4 (construction due to Frank-Olaf Schreyer).
Since we’ll make no use of this we don’t insist on further details.

In case a), for a general projection on 2V1, the differential (δ2)0 ⊗ 1IR(−1) : 4V0 ⊕ 6V]
0 −→

M0 ⊗k V2 = 6V0 ⊕ 4V]
0 has a 10-dimensional kernel isomorphic with 2V ]0 . Its cokernel is

M2, whence M2
∼= 2V0. A similar argument shows that M3

∼= 2I and Mk = 0 for k ≥ 4.
Therefore, M has in this case again Hilbert function (5, 10, 10, 2), but this time a different
minimal free resolution. Namely, one gets

M ←− 5R σ1←− 15R(−1) 10R(−2)↖
⊕

2R(−3)
⊕

15R(−4)
↖

35R(−5) ←− 20R(−6) ↖
2R(−8) ←− 0

We use the syzygy bundles of the dual module to construct a smooth, non-minimal abelian
surface of degree 15 which is not coming via a (5, 5) linkage from the Horrocks-Mumford
torus. A plausible cohomology table for an abelian surface S of degree 15, sectional genus
21 in IP4 is the following:
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i ↑

1

2 10 10 5 hi(IS(p))

−−−−−−−−−−−−−−−−−−−−−−−−−→
p

Let now E = OIP4(−1)⊕(2V2⊕V ]2 )⊗kOIP4 = OIP4(−1)⊕15OIP4 and F = S⊗kSyz2(M∗)(1).
One checks in examples that the degeneracy locus of a general morphism ϕ ∈ Hom(E ,F)
is a smooth surface S ⊂ IP4 with d = 15, π = 21, pg = 1, q = 2, K2 = −25 which, by
lemma 7.1, is thus a non-minimal abelian surface with 25 exceptional lines. The minimal
free resolution of the ideal sheaf is of the form

I ⊗k O(−5)
0 ←− IS ←− ⊕

2V2 ⊗k O(−6)
↖

(2V3 ⊕ V ]3 )⊗k O(−7) ←− V ]1 ⊗k O(−8) ←− 0

or, numerically, of type

O(−5)
0 ←− IS ←− ⊕

10O(−6)
↖

15O(−7) ←− 5O(−8) ←− 0

We’ll focus in the sequel on the properties of the new abelian surface of degree 15 and of
the unique quintic hypersurface on which it lies.

To fix notations, assume as above the presentation matrix of M to be given by σ1 =(
Mz(x) | Mz1(x) | Mz2(x)

)
, where z = (a0, a1, a2, a2, a1) ∈ IP2

+, z1 = (0, 1, 0, 0,−1) ∈ IP1
−

and z2 = (0, 0, 1,−1, 0) ∈ IP1
−. In this setting the 10 linear syzygies of σ1 are given by

σ21 =

 Ly−1
(x) Ly−2

(x)
Ly11(x) Ly21(x)
Ly12(x) Ly22(x)

 ,

where Ly(x) = (x2i−jyi−j)i,j with i, j ∈ Z5, and the parameters have the following values

y−1 = (0, 1, 0, 0,−1), y11 = (2a2,−a1, 0, 0,−a1), y12 = (0,−a2, a0, a0,−a2),
y−2 = (0, 0, 1,−1, 0), y21 = (0,−a0, a1, a1,−a0), y22 = (2a1, 0,−a2,−a2, 0).

However, the two quadratic syzygies involve only the last ten columns of σ1. If a0 = 0,
then M = cokerσ1 is not artinian. If a0 6= 0, which we’ll assume in the sequel, they are
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given by the 15× 2 matrix

σ22 =

 0 0
(xi+2xi+3)i∈Z5

(x2
i )i∈Z5

(x2
i )i∈Z5

(−xi+1xi+4)i∈Z5

 .

Define now G as the kernel of the morphism ψ induced by the matrix with blocks (σ21, σ22)

15O(4)
ψ←− 10O(3)⊕ 2O(2) ←− G ←− 0. (∗)

For a general choice of the parameter z ∈ IP2
+, G is a rank 2 reflexive sheaf because ψ

has rank 10 (generically): it has rank smaller or equal 10 being defined by a part of the
syzygies of σ1, whereas it is easily seen that the submatrix of σ21 given by

A =
(
Ly11(x) Ly21(x)
Ly12(x) Ly22(x)

)
has a non-trivial determinant. In fact ψ has rank 10 outside codimension 3 since its
restriction to a general IP2, say {x0 = x1 = 0} for a2 6= 0 or {x0 = x2 = 0} for a1 6= 0, is
an epimorphism on the restriction of Syz1(M)(5) to this plane. It follows that G has first
Chern class c1 = −1, and thus dualizing the exact sequence (∗) we obtain the minimal free
resolution

2O(−3)
0 ←− G ←− ⊕

10O(−4)

ψT

↖
15O(−5)

σT1←− 5O(−6) ←− 0.

In particular G is a stable rank 2 reflexive sheaf with Chern classes c1 = −1, c2 = 9, c3 = 25
and c4 = 50. Observe now that the morphism ψ drops rank on the line E00 = {x1 − x4 =
x2 − x3 = a0x0 + 2a1x1 + 2a2x2 = 0} ⊂ IP2

+, whence by Heisenberg invariance also on its
translates Eij = σiτ jE00, for i, j ∈ Z5 by the group IH5. Therefore Eij ⊂ Sing(G), and
since Porteus’ formula yields c3(G) = [Sing(G)] = deg Sing(G) (see also [Ok3]) we see that
the singular locus of the sheaf G consists of the 25 lines Eij , i, j ∈ Z5. Now h0(G(3)) = 2
and, by construction, the zero locus of section s ∈ H0(G(3)) is a surface S of the type
described before, thus a smooth abelian surface of degree 15 for a general choice of the
parameter z ∈ IP2

+ and of the section s:

0 −→ O −→ G(3) −→ IS(5) −→ 0.

Lemma 7.5. The lines Eij , i, j ∈ Z5, are the 25 exceptional lines of S.

Proof. Clear since Sing(G) is contained in the zero locus of a section, while a line on an
abelian surface is necessarily exceptional.ut

One checks easily that G(3) is generated by sections outside the the lines Eij . Therefore,
for each fixed value of the parameter z ∈ IP2

+, we obtain a pencil of abelian surfaces
Sλµ = {λs1 + µs2 = 0} ⊂ IP4, where {s1, s2} is a base of H0(G(3)), all lying on the unique
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quintic hypersurface V = {s1 ∧ s2 = 0} ⊂ IP4 and sharing the base locus of the pencil,
namely the (−1) lines Eij . To compute the equation of the quintic hypersurface we remark
that from

(Mz1(x) Mz2(x) ) ·A = −Mz(x) ·
(
Ly−1

(x) Ly−2
(x)
)

it follows easily that detMz(x) | detA and thus finally that

V = {detA/detMz(x) = 0}.

A more geometrical way to describe the quintic hypersurface V is given by the following

Lemma 7.6.
a) For a general choice of the parameter z = (a0, a1, a2, a2, a1) ∈ IP2

+, there exists an unique

quintic hypersurface V ⊂ IP4 containing the configuration ∪i,j∈Z5Eij . Furthermore, V is
Heisenberg invariant.
b) For a general choice of the parameter z on the modular conic C = {a2

0 + 4a1a2 =
a1 − a4 = a2 − a3 = 0} ⊂ IP2

+, the lines Eij , i, j ∈ Z5, are rulings of an elliptic quintic
scroll X, and thus are contained in five independent Segre cubics. Moreover, in this case,
the homogeneous ideals IX and I∪Eij coincide in degrees less or equal to 6.

Proof. We use the idea in [Au2, 2.2]. The group IH5 acts as Z5 × Z5 = IH5/Z(IH5)
on IP4 and so H0(OIP4(5)) = 6V0,0 ⊕(r,s) 6=(0,0) 5Vr,s, where Vr,s are the characters of the
group Z5 × Z5 =< σ > × < τ >. On the other side, by construction, H0(O∪Eij (5))
is six times the regular representation, so, by Schur’s lemma, the restriction morphism
ρ : H0(OIP4(5)) → H0(O∪Eij (5)) decomposes as ρ = ⊕ρr,s, where ρ0,0 : 6V0,0 → 6V0,0,
while ρr,s : 5Vr,s → 6Vr,s for (r, s) 6= (0, 0). As a consequence H0(I∪Eij (5)) = ker ρ =
⊕r,s ker ρr,s.
Thus, in order to prove a), we check that the mappings ρr,s are injective for (r, s) 6= (0, 0),
while ker ρ0,0 is one dimensional. These are open conditions on IP2

+, so it suffices to check
them in a special case. Namely, we choose a0 = 1, a1 = a2 = 0 and make the computations
using explicit bases:

Br,s = {
4∑
i=0

ξ−ri
4∏

j∈Z5

x
mj
i+j |

∑
j∈Z5

jmj ≡ s mod 5,
∑
j∈Z5

mj = 5}

for 5Vr,s, when (r, s) 6= (0, 0), and the standard basis of H0(OIP4(5))IH5

γ0 = x0x1x2x3x4, γ1 =
∑
i∈Z5

xix
2
i+2x

2
i+3, γ2 =

∑
i∈Z5

x3
ixi+2xi+3,

γ3 =
∑
i∈Z5

x3
ixi+1xi+4, γ4 =

∑
i∈Z5

xix
2
i+1x

2
i+4, γ5 =

∑
i∈Z5

x5
i − 5x0x1x2x3x4.

This is straightforward and we’ll omit the details. We remark also that for this choice of
the parameters V = {γ0 = x0x1x2x3x4 = 0}.
For part b), we observe that in this case E00 is tangent at z to the conic section invariant
under the icosahedral group A5 on IP2

+: C = {x2
0 + 4x1x2 = x1 − x4 = x2 − x3 = 0}.

This conic can be naturally identified with the modular curve of level 5, which is in a
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1:1 correspondence with the Heisenberg equivariantly embedded normal elliptic curves in
IP4 (see [BHM]). Under this identification E00 corresponds to the line spanned by two
non-trivial 2-torsion points, say τ1 and τ1 + τ2, on the elliptic curve E defined as the
scheme-theoretic intersection of Qi = a0x

2
i +2a1xi+2xi+3 +2a2xi+1xi+4 = 0, i ∈ Z5. Then

(cf. [BHM])
X =

⋃
p∈E

p, p+ τ2 ⊂ IP4

is a Heisenberg equivariantly embedded, elliptic quintic scroll containing the 25 rulings
Eij . X is embedded by a linear system numerically equivalent to C0 + 2f , where f is the
class of a ruling while C0 is the class of a section with C2

0 = −e = 1. Therefore, if there
would exist a sextic hypersurface containing ∪i,j∈Z5Eij and not containing the scroll, then
its intersection with X would contain residual to the rulings Eij an effective divisor whose
numerical class is 6C0 − 13f , which is absurd.ut

Part b) in the previous lemma shows that, for a choice of the parameter z on the conic C,
the pencil of surfaces Sλµ has the scroll X as base component because ISλµ has generators
in degrees 5 and 6. Moreover, it follows easily that in this case the quintic V is the trisecant
variety of X (see [ADHPR] for its equation ), thus it is singular and has multiplicity 3 along
the scroll. Each Sλµ is set-theoretically cut out by the quintic and two sextic hypersurfaces,
so one checks easily that Sλµ contains residual to the scroll a surface Tλµ of degree 10 and
sectional genus 6, which meets the scroll X along a section of degree 15. The general
Tλµ are smooth minimal abelian surfaces of degree 10, isogeneous to a product. A special
member in the family is the first infinitesimal neighborhood of the elliptic quintic scroll X.

Remark 7.7. For z ∈ IP2
+ general, V coincides with the unique quintic hypersurface

containing the abelian surface S. In terms of the above basis for H0(OIP4(5))IH5 , V has
the equation

(a5
0 − 8a5

1 − 8a5
2 + 15a3

0a1a2)γ0 + (a4
0a1 + 8a3

1a
2
2 − 4a0a

4
2)γ1 + (a3

0a
2
2 − 2a2

0a
3
1 − 4a0a1a

3
2)γ2

+(a3
0a

2
1 − 4a0a

3
1a2 − 2a2

0a
3
2)γ3 + (a4

0a2 + 8a2
1a

3
2 − 4a0a

4
1)γ4 + a3

0a1a2γ5 = 0

Proof. First part is clear from (7.5) and (7.6), while for the second it is enough to check
that

(a5
0 − 8a5

1 − 8a5
2 + 15a3

0a1a2)γ0 + (a4
0a1 + 8a3

1a
2
2 − 4a0a

4
2)γ1 + (a3

0a
2
2 − 2a2

0a
3
1 − 4a0a1a

3
2)γ2

+(a3
0a

2
1 − 4a0a

3
1a2 − 2a2

0a
3
2)γ3 + (a4

0a2 + 8a2
1a

3
2 − 4a0a

4
1)γ4 + a3

0a1a2γ5 ∈ ker ρ0,0

ut

We fix from now on a general z ∈ IP2
+.

Proposition 7.8. The quintic V has 100 ordinary double points as singularities, four of
them on each line Eij .

Proof. By computing, e.g., with [Mac], a standard basis for the jacobian ideal one checks
that the singular locus of V is supported on ∪i,j∈Z5Eij . Moreover, if f denotes the above
equation of V then
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∂f

∂x2
− ∂f

∂x3
∈ IIP2

+
a0

(
∂f

∂x2
+

∂f

∂x3

)
− 2a2

∂f

∂x0
∈ IE00

∂f

∂x1
− ∂f

∂x4
∈ IIP2

+
a1

(
∂f

∂x2
+

∂f

∂x3

)
− a2

∂f

∂x1
∈ IE00

a1
∂f

∂x0
− a0

∂f

∂x1
∈ IE00

thus, for a0 6= 0, the singularities of V on E00 are defined by ∂f
∂x0

. Restricted to E00

∂f
∂x0

has simple roots, and one checks in fact that, for general choices, these points are A1

singularities on V . Therefore, by symmetry, V has 100 nodes as singularities. ut

Let Z denote the singular locus of V and let V̂ be a small resolution of the hypersurface;
i.e., V̂ is smooth and a singular point p ∈ Z is replaced by a IP1, denoted by Lp. We
recall that the defect of V is the rank of the subspace spanned by {Lp}p∈Z in H2(V̂ ,Q)
(cf. [We]). Also, by [Sch], it can be computed as

defect (V ) = h1(IZ(5)).

We can write Z = ∪g∈Z5×Z5 ∪4
i=1 g(pi), where p1, p2, p3 and p4 are the singularities of

V on E00, and thus split the natural restriction morphism ρ : H0(OIP4(5)) → H0(OZ) as
ρ = ⊕ρr,s, with ρ0,0 : 6V0,0 → 4V0,0 and ρr,s : 5Vr,s → 4Vr,s for (r, s) 6= (0, 0). By (7.6)
and (7.8) the mapping IP4−−−>IP5 defined by 6V0,0 sends the points p1, p2, p3 and p4 to
four distinct points spanning a IP4 ⊂ IP5. Hence ker ρ0,0, which comes from the set of
hyperplanes through this IP3, is 2-dimensional. As in [Au2, 2.2] we obtain:

Remark 7.9.
a) defect (V ) = 1
b) Pic (V̂ ) ∼= Z

2 , and e(V̂ ) = 200− 2(]nodes) = 0
c) If Ĥ is the pullback of a hyperplane section on V and Ŝ the pullback of the abelian

surface then {Ĥ, Ŝ} is a basis for Pic (V̂ )
d) dimCI H1(V̂ ,Θ

V̂
) = h1(Ω2

V̂
) = dimCI(H0(IZ(5))

/
< xi

∂f
∂xj

>) = 2, thus IP2
+ is the whole

moduli space of these quintic hypersurfaces.

Proof. Part b) follows from the fact that the Picard group of a small resolution of a nodal
hypersurface in IP4 is torsion free by Lefschetz’ theorem, while its rank is the defect +1 (cf.
[We]). For d), one observes that ⊕(r,s) 6=(0,0) ker ρr,s is contained in < xi

∂f
∂xj
| 0 ≤ i, j ≤ 4 >,

so the claim follows from Griffith’ residues.ut

Remark 7.10. We recall that, in contrast with (7.9), the general Horrocks-Mumford
quintic hypersurfaces have also 100 nodes, but have bigger defect, namely 3.

We mention in the sequel one further interesting degeneration of the abelian surface we’ve
described above. Namely, for a0 = 1, a1 = a2 = 0 the construction yields a pencil
of (singular) surfaces Sλ,µ ⊂ IP4, (λ, µ) ∈ IP1, which all lie on the degenerated quintic
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V0 = {γ0 = x0x1x2x3x4 = 0}. Restricting the resolutions to each of the hyperplanes
Hi = {xi = 0} we see that

Sλ,µ =
⋃
i∈Z5

Si(λ, µ),

where Si(λ, µ) ⊂ Hi are the cubic surfaces defined by

Si(λ, µ) = {xi = λ(x2
i+1xi+3 − xi+2x

2
i+4) + µ(xi+1x

2
i+2 − x2

i+3xi+4) = 0}.

Fix now a general (λ, µ) ∈ IP1 and let Si = Si(λ, µ), for i ∈ Z5.

Proposition 7.11.
a) Si is a smooth Del Pezzo surface in the hyperplane Hi. It is invariant under the action
of τ , whereas σ(Si) = Si−1, i ∈ Z5.
b) Any two surfaces Si and Sj meet along a smooth conic and a point outside it. There
are altogether five such points, namely these being the vertices pi = IP(ei), i ∈ Z5, of the
standard simplex in CI5. Through each point pi pass exactly four such Del Pezzo surfaces.
c) Consider the complete pentagon with vertices pi, i ∈ Z5, i.e., C∞ = ∪i∈Z5Li, with
Li = {xi+2 = xi+3 = xi+4 = 0} for i ∈ Z5, and C0 = ∪i∈Z5L

′
i, with L′i = {xi+1 = xi+3 =

xi+4 = 0}. Then
S ∩Hi = Si ∪ L′i+1 ∪ Li+2 ∪ Li+3 ∪ L′i+4.

Furthermore, these four lines are exceptional on all Sj with j ∈ Z5 \ {i}.

Proof. The claims are straightforward using the explicit equations of Si, so we omit the
calculations.ut

Observe now that the exceptional lines of the abelian surface degenerate in our situation
to E00 = {x0 = x1 − x4 = x2 − x3 = 0} and Eij = σiτ jE00, with i, j ∈ Z5. One checks
easily that Ei0, Ei1, Ei2, Ei3 and Ei4 are (−1) lines on the Del Pezzo surface Si. As a
consequence we obtain the following geometric characterization of our configuration:

Proposition 7.12. For each i ∈ Z5, the lines Ei0, Ei1, Ei2, Ei3, Ei4 and Li+3, L′i+1 can
be completed to a Schläfli’s double six configuration of lines in the hyperplane Hi, which
then determines the Del Pezzo surface Si as the unique cubic surface in Hi containing the
given double six.

Proof. The intersection patterns are clear from the explicit description of the configuration,
and the claim follows from [H-CV, §25].ut

For comparison, we mention here a rather similar degeneration for the abelian surfaces of
degree 15 which lie on three quintic hypersurfaces and thus come via liaison from degree
10. Namely, we start with the zero-scheme Yαβ of a special section of the twisted Horrocks-
Mumford bundle EHM (3), which is the union of 5 quadric surfaces [HM]:

Yαβ =
⋃
i∈Z5

{xi = αxi+2xi+3 + βxi+1xi+4 = 0}.
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It lies on the quintic V0 and on two other independent quintic hypersurfaces, and thus can
be linked on V0 to a configuration

Xλµ =
⋃
i∈Z5

Xi(λ, µ)

where this time

Xi(λ, µ) = {xi = λ(x2
i+1xi+3 + xi+2x

2
i+4) + µ(xi+1x

2
i+2 + x2

i+3xi+4) = 0},

the parameters λ, µ being functions of α, β and the linkage.

The configuration Xλµ lies now on three quintic hypersurfaces, nevertheless has similar
symmetry properties to those listed for Sλ,µ in proposition 7.11. Finally, there is an
analogue of the claim (7.12), the only difference being that the role of the Eij is taken here
by the Horrocks-Mumford lines Lij : L00 = IP1

− and Lij = σiτ jL00.
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