
SKETCH OF SOLUTIONS (HOMEWORK I)

2.- Define the set S ⊂ N by S = {n ∈ N | n = a − bk, k ∈ Z}. S is not empty
since the hypotheses on a imply a ∈ S (taking k = 0) therefore S must
have a minimum element by the well ordering principle.

4.- a) True: (Proof by contradiction) Let t be irrational and a
b be a rational

number (a, b ∈ Z, b 6= 0). Suppose t + a
b is rational, that is, t

1 + a
b =

bt+a
b = p

q with p, q ∈ Z, q 6= 0. Then we get that

t =
bp− qa

qb

but this means that t is rational! (a contradiction). Therefore t + a
b is

irrational.
b) False:

√
2−

√
2 = 0 ∈ Q

c) False: 0 ·
√

2 = 0 ∈ Q
d) False:

√
2 ·

√
2 = 2 ∈ Q

26.-
∑n

k=2
1
k2 = 1

2

∑n
k=2

(
1

k−1 −
1

k+1

)
notice that in this last sum all terms

cancel each other out, except the first two terms. Therefore we get:
n∑

k=2

1
k2

=
1
2

[
1 +

1
2
− 1

n
− 1

n + 1

]
=

1
2

[
3
2
− 2n + 1

n(n + 1)

]
27.- Notice (k + 1)3 − k3 = 3k2 + 3k + 1 thus k2 = 1

3 [(k + 1)3 − k3 − 3k − 1].
Adding over k we get:

n∑
k=1

k2 =
1
3

[
n∑

k=1

(
k + 1)3 − k3

)
− 3

n∑
k=1

k +
n∑

k=1

1

]
=

1
3

[
(n + 1)3 − 1− 3

n(n + 1)
2

+ n

]
(Simplifying the expression we get: n(n+1)(2n+1)

6 )
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5.-

An =
(

1 n
0 1

)
Proof by induction:
Base: When n = 1 this is just the definition of A

Inductive step: Suppose Ak =
(

1 k
0 1

)
We must show then that

Ak+1 =
(

1 k + 1
0 1

)
. But Ak+1 = A · Ak = A ·

(
1 k
0 1

)
(By the

induction hypothesis) Multiplying we get:

Ak+1 = A ·Ak =
(

1 1
0 1

) (
1 k
0 1

)
=

(
1 k + 1
0 1

)
1
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10.- Base:
∑1

j=1(−1)j−1j2 = 1 = (−1)0 1(1+1)
2

Inductive step: Suppose
∑k

j=1(−1)j−1j2 = (−1)k−1 k(k+1)
2 Then

∑k+1
j=1 (−1)j−1j2 =∑k

j=1(−1)j−1j2+(−1)k(k+1)2 = (−1)k−1 k(k+1)
2 +(−1)k(k+1)2 = (−1)k (k+1)(k+2)

2

16.- Base: H21 =
∑2

j=1
1
j = 1 + 1

2 ≤ 1 + 1

Inductive step: Suppose H2k =
∑2k

j=1
1
j ≤ 1 + k. Then H2k+1 =∑2k+1

j=1
1
j =

∑2k

j=1
1
j +

∑2k+1

j=2k+1
1
j ≤ 1 + k +

∑2k+1

j=2k+1
1
j so we only need

to make sure the last sum is less than 1. But for this last sum we have
1
j ≤ 1

2k (by the range of the indices) therefore

2k+1∑
j=2k+1

1
j
≤

2k+1∑
j=2k+1

1
2k

=
1
2k

2k+1∑
j=2k+1

1 =
1
2k

(2k+1 − (2k + 1) + 1) = 1

30.- Base: 25 = 32 > 25 = 52

Inductive step: Suppose 2k > k2 Then 2k+1 = 2 ∗ 2k > 2k2 = k2 + k2 >
k2 + 2k + 1 = (k + 1)2 The last inequality is a consequence of the following
inequality: k2 > 2k+1 for k > 3 The proof of this inequality goes as follows
k > 3 ⇒ k2 > 3k = 2k + k > 2k + 1
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4.- f2 + f4 + . . . + f2n = f2n+1 − 1 The proof is by induction over n
Base: f2 = f3 − f1 = f3 − 1
Inductive step: Suppose f2 + f4 + . . . + f2k = f2k+1 − 1 then f2 + f4 +
. . . + f2k + f2(k+1) = f2k+1 − 1 + f2k+2 = f2k+3 − 1 = f2(k+1)+1 − 1

8.- By induction on k
Base: f1f2 = 1 ∗ 1 = f2

2

Inductive step: Suppose f1f2+. . . f2k−1f2k = f2
2k then f1f2+. . . f2k−1f2k+

f2kf2k+1 + f2(k+1)−1f2(k+1) = f2
2k + f2kf2k+1 + f2k+1f2k+2 = f2k(f2k +

f2k+1) + f2k+1f2k+2 = f2kf2k+2 + f2k+2f2k+1 = f2k+2(f2k + f2k+1) =
f2k+2f2k+2 = f2

2(k+1)

22.- Note: There is a mistake on the book. The last term of the sum
should be (

dn
2 e

bn
2 c

)
Base:

(
1
0

)
= 1 = f2

Inductive step: Suppose
(
n
0

)
+

(
n−1

1

)
+ . . . +

(dn
2 e

bn
2 c

)
= fn+1 for all n ≤ k

then let x :=
(
n
0

)
+

(
n−1

1

)
+ . . .+

(dn+1
2 e

bn+1
2 c

)
(that is, x is the sum corresponding

to k = n + 1) Then, using Pascal’s Identity (Theorem B.2. of the book)
we get that

x−fn+1 =
[(

n + 1
0

)
−

(
n

0

)]
+

[(
n

1

)
−

(
n− 1

1

)]
+. . .+ = 0+

(
n− 1

0

)
+

(
n− 2

1

)
+. . .+

which by the inductive hypothesis equals fn therefore we get

x− fn+1 = fn

But by the definition of the Fibonacci numbers this means x = fn+2


