MAT 311: Number Theory
Spring 2006

Solutions to HW9

. (Davenport, pp.219, ex. 3.14) Let p be a prime, and assume that g is a primitive root mod p?. In this
case, ¢ is a primitive root mod p: Suppose not, i.e. g is not a primitive root mod p. Then there is
some n with 1 < n < p — 1 such that ¢" =1 mod p. By Lagrange’s theorem n must be a (proper)
divisor of p— 1, i.e. n|p— 1. But then, g"? =1 mod p? (write g" = 1 + kp, and take the p’th power,
then all terms except the constant term 1 have at least a p? factor). But this is a contradiction to the
assumption that ord,. g = ©o(p?) = p(p — 1), since a smaller power (namely np) makes g congruent
mod p?.

The converse is not true: 7 is a primitive root mod 5, but it is NOT a primitive root mod 5% = 25 as
01“(125 7T=4.

. (Davenport, p.219, ex. 3.15) Assume that p and 4p + 1 are both primes. Observe that p cannot
be equal to 2. We will show that 2 must be a primitive root mod 4p + 1. By Fermat, 2% = 1
mod 4p + 1 and 2P =2 mod p. By Lagrange’s theorem, it suffices to check that 2™ £ 1 mod 4p + 1
for m = 2,4, p,2p (proper divisors of 4p). The cases for m = 2 and m = 4 are trivial to check. Now,

(4p+1)% —
since (—41)2“) = (-1) =
congruence 2 = 1 mod 4p + 1, because multiplying both sides by 2 yields 2°P*! = 2 mod 4p + 1
which would imply that 2 is a quadratic residue since p+ 1 is even. A contradiction. Similarly, 227 # 1
mod 4p + 1.

= —1, 2 is a quadratic nonresidue mod p. Thus we cannot have the

. (Davenport, p.219, ex. 3.18) Constructing the table of indices for 41 is straightforward. Observe that
the difference of indices for a and —a is always 20. To see this: let A := indga and B := indg(—a).
Then a = 64 and —a = 68 mod 41. Thus, 64~F = —1 mod 41. Taking indg and noting that
62 = —1 mod 41 (since 6 is a primitive root) we obtain the result.

. (Davenport, p.219, ex. 3.19) Note that quadratic residues mod 8 are 0,1 and 4; and the 4th-power
(quartic) residues are 0 and 1.

. Recall the following useful fact: if a is a primitive root modulo a prime p, then either a or a 4+ p is a
primitive root mod p?. So, to find a root mod 172, first one needs to find a primitive root mod 17. It
is easy to show that 3 works. Since ord, x is either p — 1 or p(p — 1) for any primitive root x (recall
the proof of the above mentioned fact), this implies that ord;2 3 is either 16 or 272. Using a pocket
calculator it is easy to see that 3'® # 17 mod 172, thus, 3 is a primitive root mod 172.

. As an application of Lucas’ converse of Fermat’s little theorem, let us show that 101 is a prime. So
our n is going to be 101, and hence n — 1 = 100 = 2% - 52. To show that 101 is a prime, we need to
find an « such that 200 = 1 mod 101 but 2% # 1 mod 101 for any prime divisor d of 100. Indeed,
x = 2 works, i.e. none of 2% where d = 2,5, is congruent to 1, however 2'00 = 1 mod 101 (this is a
tedious but straightforward calculation). This shows that 101 is a prime number.

. Assume that there exists an integer x such that 22" =1 mod F, and 22 # 1 mod F,, where
F, = 22" +1 is the n-th Fermat number. We claim that in this case F}, is actually prime. Indeed, the
first condition tells us that 2f»~! = 1 mod F,. But the only prime number dividing F,, — 1 = 22"
is 2, and (F), —1)/2 = 22"~1, so the second condition tells us that z(F»=1/2 £ 1 mod F,. Then by
Lucas’ converse of Fermat’s little theorem, we deduce that F,, must be prime.

. Let n be a positive integer possessing a primitive root, say a. Observe that {a,a?,... ,ap)=1 ge(n) =
1} coincides with the subset of numbers from 1 to n — 1 which have an inverse mod n. We know

. p(n) .
that these are all such integers relatively prime to m. Their product is Hfg) @l = aXi=t ) =



10.

a?M)+D/2 — (ge)/2)p()+1 = (_1)»(W+1 = _1 mod n, as required. Notice that ¢(n)/2 makes
sense because ¢(n) is even (see HW5, Prob. 2) which also implies that the exponent ¢(n) + 1 is odd;
and also we have a?(™) =1 and a®(")/2 = —1 since a is a primitive root mod n.

. We will compute the minimal universal exponent of 884, i.e. A(884). In general, if n = 2%0p{* ... pom,

then A(n) = [A(2%), 0(p{"), - .., p(p2m)] where A\(2%0) = 220=2 if oy > 2 and 1 otherwise. Observe
that 884 = 22-.13-17. So A\(2%) =1, p(13) = 12, ¢(17) = 16. Their LCM is 48.

We will find all positive integers n with A(n) = 2. Notation as above: if LCM is 2, then each of
A(270), p(p]), ..., o(pSm) is either 1 or 2, and there is at least one equal to 2. First observe that
©(p®) > 2 for any odd prime p and a > 1 (because 1 and 2 are coprime to p®), and ¢(p®) = 2 only if
p =3 and a = 1. Now assume that A(n) = 2. Then «y is either 0,1,2 or 3. If n is divisible by an odd
prime, then the only prime that divides n must be 3 (otherwise the LCM is going to be > 2). So the
possibilities are 20-3 = 3,21 .3 =6, 22-3 =12 and 23 - 3 = 24. If not, i.e if n is not divisible by an
odd prime, then n is a power of 2, and consequently 23 = 8.



