
MAT 311: Number Theory
Spring 2006

Solutions to HW9

1. (Davenport, pp.219, ex. 3.14) Let p be a prime, and assume that g is a primitive root mod p2. In this
case, g is a primitive root mod p: Suppose not, i.e. g is not a primitive root mod p. Then there is
some n with 1 ≤ n < p − 1 such that gn ≡ 1 mod p. By Lagrange’s theorem n must be a (proper)
divisor of p− 1, i.e. n | p− 1. But then, gnp ≡ 1 mod p2 (write gn = 1 + kp, and take the p’th power,
then all terms except the constant term 1 have at least a p2 factor). But this is a contradiction to the
assumption that ordp2 g = ϕ(p2) = p(p − 1), since a smaller power (namely np) makes g congruent
mod p2.
The converse is not true: 7 is a primitive root mod 5, but it is NOT a primitive root mod 52 = 25 as
ord25 7 = 4.

2. (Davenport, p.219, ex. 3.15) Assume that p and 4p + 1 are both primes. Observe that p cannot
be equal to 2. We will show that 2 must be a primitive root mod 4p + 1. By Fermat, 24p ≡ 1
mod 4p + 1 and 2p ≡ 2 mod p. By Lagrange’s theorem, it suffices to check that 2m 6≡ 1 mod 4p + 1
for m = 2, 4, p, 2p (proper divisors of 4p). The cases for m = 2 and m = 4 are trivial to check. Now,

since
(

2
4p+1

)
= (−1)

(4p+1)2−1
8 = −1, 2 is a quadratic nonresidue mod p. Thus we cannot have the

congruence 2p ≡ 1 mod 4p + 1, because multiplying both sides by 2 yields 2p+1 ≡ 2 mod 4p + 1
which would imply that 2 is a quadratic residue since p+1 is even. A contradiction. Similarly, 22p 6≡ 1
mod 4p + 1.

3. (Davenport, p.219, ex. 3.18) Constructing the table of indices for 41 is straightforward. Observe that
the difference of indices for a and −a is always 20. To see this: let A := ind6 a and B := ind6(−a).
Then a ≡ 6A and −a ≡ 6B mod 41. Thus, 6A−B ≡ −1 mod 41. Taking ind6 and noting that
620 ≡ −1 mod 41 (since 6 is a primitive root) we obtain the result.

4. (Davenport, p.219, ex. 3.19) Note that quadratic residues mod 8 are 0,1 and 4; and the 4th-power
(quartic) residues are 0 and 1.

5. Recall the following useful fact: if a is a primitive root modulo a prime p, then either a or a + p is a
primitive root mod p2. So, to find a root mod 172, first one needs to find a primitive root mod 17. It
is easy to show that 3 works. Since ordp2 x is either p − 1 or p(p − 1) for any primitive root x (recall
the proof of the above mentioned fact), this implies that ord172 3 is either 16 or 272. Using a pocket
calculator it is easy to see that 316 6= 17 mod 172, thus, 3 is a primitive root mod 172.

6. As an application of Lucas’ converse of Fermat’s little theorem, let us show that 101 is a prime. So
our n is going to be 101, and hence n − 1 = 100 = 22 · 52. To show that 101 is a prime, we need to
find an x such that x100 ≡ 1 mod 101 but xd 6≡ 1 mod 101 for any prime divisor d of 100. Indeed,
x = 2 works, i.e. none of 2d where d = 2, 5, is congruent to 1, however 2100 ≡ 1 mod 101 (this is a
tedious but straightforward calculation). This shows that 101 is a prime number.

7. Assume that there exists an integer x such that x22n

≡ 1 mod Fn and x22n−1 6≡ 1 mod Fn where
Fn = 22n

+ 1 is the n-th Fermat number. We claim that in this case Fn is actually prime. Indeed, the
first condition tells us that xFn−1 ≡ 1 mod Fn. But the only prime number dividing Fn − 1 = 22n

is 2, and (Fn − 1)/2 = 22n−1, so the second condition tells us that x(Fn−1)/2 6≡ 1 mod Fn. Then by
Lucas’ converse of Fermat’s little theorem, we deduce that Fn must be prime.

8. Let n be a positive integer possessing a primitive root, say a. Observe that {a, a2, . . . , aϕ(n)−1, aϕ(n) ≡
1} coincides with the subset of numbers from 1 to n − 1 which have an inverse mod n. We know

that these are all such integers relatively prime to n. Their product is
∏ϕ(n)

j=1 aj = a
Pϕ(n)

j=1 j =

1



aϕ(n)(ϕ(n)+1)/2 = (aϕ(n)/2)ϕ(n)+1 ≡ (−1)ϕ(n)+1 ≡ −1 mod n, as required. Notice that ϕ(n)/2 makes
sense because ϕ(n) is even (see HW5, Prob. 2) which also implies that the exponent ϕ(n) + 1 is odd;
and also we have aϕ(n) ≡ 1 and aϕ(n)/2 ≡ −1 since a is a primitive root mod n.

9. We will compute the minimal universal exponent of 884, i.e. λ(884). In general, if n = 2α0pα1
1 . . . pαm

m ,
then λ(n) = [λ(2α0), ϕ(pα1

1 ), . . . , ϕ(pαm
m )] where λ(2α0) = 2α0−2 if α0 ≥ 2 and 1 otherwise. Observe

that 884 = 22 · 13 · 17. So λ(22) = 1, ϕ(13) = 12, ϕ(17) = 16. Their LCM is 48.

10. We will find all positive integers n with λ(n) = 2. Notation as above: if LCM is 2, then each of
λ(2α0), ϕ(pα1

1 ), . . . , ϕ(pαm
m ) is either 1 or 2, and there is at least one equal to 2. First observe that

ϕ(pα) ≥ 2 for any odd prime p and α ≥ 1 (because 1 and 2 are coprime to pα), and ϕ(pα) = 2 only if
p = 3 and α = 1. Now assume that λ(n) = 2. Then α0 is either 0,1,2 or 3. If n is divisible by an odd
prime, then the only prime that divides n must be 3 (otherwise the LCM is going to be ≥ 2). So the
possibilities are 20 · 3 = 3, 21 · 3 = 6, 22 · 3 = 12 and 23 · 3 = 24. If not, i.e if n is not divisible by an
odd prime, then n is a power of 2, and consequently 23 = 8.

2


