
MAT 311: Number Theory
Spring 2006

Solutions to HW8

1. (Davenport, pp.219, ex. 3.04) To find primitive roots modulo a (big) prime p we use the fact that the
order of any x coprime to p has to be a divisor of (p − 1) (since xp−1 ≡ 1 mod p). In other words,
if x is NOT a primitive root, then there exists a strict positive divisor m of p − 1 such that xm ≡ 1
mod p. So, to check whether or not a number x is a primitive root mod p, it suffices to check wether
xm ≡ 1 mod p, when m divides p− 1. This will dramatically reduce the needed work.
As an example, take p = 19. Then p − 1 = 18 = 2 · 32. Its divisors are 1, 2, 3, 6, 9, 18. For
example, let us check whether 10 is a primitive root mod 19. An easy calculation shows 102 ≡ 5,
103 ≡ 10 · 5 ≡ 50 ≡ 12, 106 ≡ (102)3 ≡ 53 ≡ 11, 109 ≡ 18. And of course 1018 ≡ 1 mod 19. So, this
shows that the smallest power of x such that 10m is 1 (mod 19) is 18. Hence ord19 10 = 18, that is, 10
is a primitive root mod 19.
Let’s see what would happen if we took x = 5. Then, by the above computation, 53 ≡ 11, and 59 ≡ 1
mod 19. So 5 cannot be a primitive root mod 19.
Similarly, you can do the rest of the homework by yourselves. The complete list of primitive roots is:

mod 3 : 2
mod 5 : 2, 3
mod 7 : 3, 5
mod 11 : 2, 6, 7, 8
mod 13 : 2, 6, 7, 11
mod 17 : 3, 5, 6, 7, 10, 11, 12
mod 19 : 2, 3, 10, 13, 14, 15

Once you have found ϕ(p − 1) many primitive roots mod p, you are done, because mod p there are
exactly ϕ(p− 1) distinct primitive roots.

2. (Davenport, pp.219, ex. 3.05) It is easy to check that 108 ≡ 1 mod 73 and 29 ≡ 1 mod 73. We would
like to show that ord73 20 = 72. Proceed as in the previous problem. 73−1 = 72 = 23 ·32. The proper
divisors are 1,2,3,4,6,8,9,12,24,36. But for none of them we have 20m ≡ 1 mod 73. To see this, use
the above two congruences. For instance, 2024 = (26)4(108)3 ≡ (9)4 ≡ 37 mod 73 etc. The rest is
similar.

3. (Davenport, p.219, ex. 3.11) We will show that the product of the primitive roots modulo a prime
p > 3 is congruent to 1 mod p. Fix a primitive root α mod p. Then the set {α, α2, . . . , αp−1} coincides
with the set {1, 2, . . . , p−1}. In particular, any primitive root is of the form αm for some m (necessarily
coprime to p − 1, by Lagrange’s theorem). On the other hand, observe that if x is a primitive root
mod p, so is x−1. So, if αm is a primitive root, so is α−m = αp−1−m. We know that the number of
primitive roots mod p is ϕ(p− 1). If p > 3 then ϕ(p− 1) is even (recall prob. 2 in 5th hw). So, if we
multiply all primitive roots mod p, then a root of the form αm will cancel with its inverse α−m; thus,
we get 1.

4. (Davenport, p.219, ex. 3.12) Let p be a prime of the form p = 4k + 1. Assume that g is a primitive
root mod p. We claim that −g (which is congruent to p − g) is a primitive root mod p, too. Since g
is a primitive root, the set {g, g2, . . . , gp−1} coincides with {1, 2, . . . , p − 1} mod p. To show −g is a
primitive root is equivalent to showing that {−g, (−g)2, . . . , (−g)p−1} coincides with the same set, too.
It is clear that (−g)2m = g2m. So it suffices to consider odd powers. To show this, first note that (−1)
must be quadratic residue mod p, that is, (−1) is a square (or in terms of Legendre symbol: (−1

p ) = 1).
Indeed, gp−1 ≡ g4k ≡ 1 mod p by FlT; and so, g2k is congruent to either +1 or −1. But it cannot be
congruent to +1, because that would contradict to g being a primitive root (since ordp g = p−1 = 4k).

1



So −1 ≡ (gk)2 mod p, as desired (one could also use Euler’s theorem: (−1
p ) = (−1)

p−1
2 = (−1)2k = 1).

So −g ≡ g2k ·g ≡ g2k+1 mod p. Consequently, odd powers in {−g, (−g)2, . . . , (−g)p−1} coincides with
odd powers in {g, g2, . . . , gp−1}, as required (the order shifted by 2k).

5. Consider the polynomial f(x) = (x − 1)(x − 2) . . . (x − (p − 1)) − xp−1 + 1. This is a polynomial
with integer coefficients, and it is of degree ≤ p − 1. However, modulo p it has p roots which are
0, 1, 2, . . . p − 1 (note that we use Fermat’s little theorem). Lagrange’s theorem tells us basically
in that kind of situation (where the number of roots exceeds the degree) the polynomial must be
identically zero mod p. That is, each coefficient of f(x) is 0 mod p, i.e. divisible by p. Observe that
the constant term of f(x) is f(0) = (p− 1)!+1, which must be ≡ 0 mod p. But this is precisely what
Wilson’s theorem says.

6. Let q be an odd prime such that p = 2q+1 is also a prime. Let a be an integer such that 1 < a < p−1.
We will show that (−a2) (which is congruent to p−a2) is primitive root mod p. Indeed, this is equivalent
to showing that ordp(−a2) = p−1 = 2q. If not, then the order is smaller; more precisely, by Lagrange’s
theorem it is a proper divisor of p − 1 = 2q. Thus ordp(−a2) is either 1, 2 or q. ordp(−a2) cannot
be 1, because otherwise (−a2) ≡ −1 mod p implies that a2 ≡ 1 mod p, and thus a ≡ ±1 mod p,
which is a contradiction (a was assumed to be 1 < a < p − 1). Second, ordp(−a2) cannot be 2,
because otherwise (−a2)2 = a4 ≡ 1 mod p, that is, p | a4 − 1 = (a − 1)(a + 1)(a2 + 1). So p divides
(at least) one of the factors. But since a 6≡ ±1 mod p, this forces us to conclude that p | a2 + 1, i.e.
a2 ≡ −1 mod p. But this congruence has no solution since p is of the form 4k +3 (by Euler’s theorem
(−1

p ) = (−1)
p−1
2 = (−1)q = −1). Similarly, ordp(−a2) cannot be q (same idea). So we conclude that

ordp(−a2) = p− 1, as required.

7. We will solve the following congruences using index arithmetic. First note that 5 is a primitive root
mod 23 (do a similar calculation as in the first problem)

(a) 3x5 ≡ 1 mod 23. Take index to the base 5. Then ind5 3 + 5 ind5 x ≡ ind5 1 ≡ 0 mod 22. It is a
matter of computation to see that 516 ≡ 3 mod 23, so ind5 3 = 16. Also observe that the inverse
of 5 mod 22 is 9, since 5 · 9 = 45 ≡ 1 mod 22. So ind5 x ≡ (−16) · 9 ≡ 6 · 9 = 54 ≡ 10 mod 22.
Hence, x ≡ 510 ≡ 9 mod 23. Note that this congruence has a unique solution despite the fact
that it is of degree 5.

(b) 3x14 ≡ 2 mod 23. Similarly, this implies ind5 3 + 14 ind5 x ≡ ind5 2 mod 22. Again, ind5 3 = 16
and ind5 2 = 2. So, we have 14 ind5 x ≡ 2 − 16 ≡ 8 mod 22. This implies Since 14 = 2 · 7, and
7 has an inverse mod 22 (since (7, 22) = 1) which is 19, we have 2 ind5 x ≡ 19 · 8 ≡ 20 mod 22.
This says that 22 divides 2 ind5 x− 20, or equivalently 11 divides ind5 x− 10. So ind5 x is equal
to either 10 or 21. Thus x is either 510 ≡ 9 or 521 ≡ 14 mod 23. So there are two solutions: 9
and 14.

(c) 3x ≡ 2 mod 23. This time take index to the base 5. Then, x ind5 3 = x · 16 and ind5 2 = 2, so
16x ≡ 2 mod 22. So 22 divides 16x − 2, or equivalently, 11 divides 8x − 1. So 8x ≡ 1 mod 11,
which implies x ≡ 8−1 ≡ 7 mod 11. So x = 7 + 11k for some k. Thus we conclude that x = 7
and 18 are the only solutions.

8. Consider the congruence ax4 ≡ 2 mod 13. We are looking for positive integers a such that his
congruence has (at least) a solution x. By the first problem, 2 is a primitive root mod 13. So if we
take index to the base 2, we get ind2 a + 4 ind2 x ≡ ind2 2 ≡ 1 mod 12. So if we call ind2 a = A, and
ind2 x = X, we obtain A + 4X ≡ 1 mod 12. So 12 must divide A− 1 + 4X. In particular, A− 1 must
be divisible by 4, that is, A is allowed to be equal to either one of 1, 5, or 9 (it cannot be larger than
12). Thus, a = 2A is either 2, 6 or 5. Now, let us see in which cases we have solutions. If a = 2, then
2x4 ≡ 2 mod 13 has an obvious solution, which is x = 1. If a = 6, then it is easy to see that x = 4 is
a solution, and if a = 5 then x = 2 is a solution. So, the congruence is solvable precisely for a = 1, 5, 6.
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