
MAT 311: Number Theory
Spring 2006

Solutions to HW6

1. (Davenport, pp.219, ex. 2.21) We will prove that d |n implies ϕ(d) |ϕ(n). Let the prime factorization
of d be d =

∏K
i=1 pαi

i . Then the prime factorization of n is of the form

n =
K∏

i=1

pαi+βi
i ·

N∏
i=1

qγi
i .

Then

ϕ(n) =
K∏

i=1

pαi+βi
i

(
1− 1

pi

)
·

N∏
i=1

qγi
i

(
1− 1

qi

)

=

(
K∏

i=1

pαi
i

(
1− 1

pi

))
·

(
K∏

i=1

pβi
i

)
·

(
N∏

i=1

qγi
i

(
1− 1

qi

))

= ϕ(d) ·
K∏

i=1

pβi
i · ϕ

(
N∏

i=1

qγi
i

)
= ϕ(d) · some integer.

Now, that all the factors are integers, we deduce that ϕ(d) divides ϕ(n).

2. (Davenport, p.219, ex. 2.22) We will show that for any prime p different from 2 and 5, there are
infinitely many numbers of the form

∑n
i=0 10i (called repeated units, or repunits, for short) divisible

by p. If p 6= 2, 5, then (10, p) = 1, and so, by FlT, we have 10p−1 ≡ 1 mod p. This implies also that
10(p−1)·k ≡ 1 mod p for any k ≥ 0. So, p divides 10(p−1)·k − 1 = 9 · (1 + 10 + 102 + · · ·+ 10(k·(p−1))−1).
If p is not 3, then p should divide the second factor, which is a repunit for any k, done. If p = 3, then
the repunit 1 + 10 + · · ·+ 103n−1 is divisible by 3, since 10 ≡ 1 mod 3. This completes the proof.

3. (a) We will show that τ(n) is odd iff n is a perfect square. Indeed, if the prime factorization of n is
n =

∏K
i=1 pαi

i , then τ(n) =
∏K

i=1(αi + 1). So, τ(n) is odd iff all αi + 1 are odd iff all αi are even
iff n is a perfect square.

(b) We will show that σ(n) is odd iff n is a perfect or twice a perfect square. Let n =
∏K

i=1 pαi
i , as

above. Then σ(n) =
∏K

i=1

(∑αi
j=0 pj

i

)
. So, σ(n) is odd iff each

∑αi
j=0 pj

i is odd. But for if pi is
odd then this sum is ≡ αi + 1 mod 2; and if pi = 2 then this sum is definitely odd. So, this sum
is odd iff for any i we have either (a) pi is odd and αi is even, OR, (b) pi = 2 (doesn’t matter
what the power of 2 is). Therefore, σ(n) is odd iff n is a perfect square or twice a perfect square.

4. (a) A short computer program can find the six smallest abundant number within fractions of a second:
12, 18, 20, 24, 30, 36.

(b) We will show that a multiple of an abundant or a perfect number (other than the perfect number
itself) is abundant. Let σ(n) ≥ 2n. Then we have

σ(nk) =
∑
x |nk

x ≥
∑
y |n

∑
z | k

yz

because y |n and z | k imply that yz |nk (so that the latter sum is taken over fewer divisors).
Then

σ(nk) ≥
∑
y |n

∑
z | k

yz =
∑
y |n

y
∑
z | k

z = σ(n) · σ(k) > (2n)k

whenever k > 1 (since σ(k) > 1 if k > 1).
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(c) We will prove that 2m−1(2m − 1) is abundant if 2m − 1 is composite. Indeed, if there is an
integer n 6= 1, 2m − 1 dividing 2m − 1, then σ(2m − 1) > (2m − 1) + 1 = 2m. On the other
hand, σ(2m−1(2m − 1)) = σ(2m−1)σ((2m − 1)) (since these two factors are obviously coprime)
= (2m − 1)σ(2m − 1) > (2m − 1)2m = 2(2m−1(2m − 1)), as required.

5. (a) Λ(n) is not multiplicative simply because Λ(1) = 0 6= 1.
(b) We will prove the formula

∑
d |n Λ(d) = log n. Indeed,∑

d |n

Λ(d) =
∑
pi |n

Λ(pi) =
∑
pi |n

log p = log
∏
pi |n

p = log n.

6. (a) We will show that the Liouville function λ(n) is multiplicative. Given two coprime numbers n, m.
Say n =

∏N
i=1 pαi

i and m =
∏M

j=1 q
βj

j . Note that pi 6= qj for any i, j since (n, m) = 1. Now,
λ(n) = (−1)N and λ(m) = (−1)M , and moreover λ(nm) = (−1)N+M since nm is a product of
all pαi

i ’s and q
βj

j ’s so that nm has N + M (distinct) prime factors. Hence λ is multiplicative.
(b) We will show that the convolution inverse of λ(n) is the characteristic function of the squarefree

numbers (which is the function µ2, where µ is the Möbius function). So we have to prove that
(λ ∗ µ2)(1) = 1 and (λ ∗ µ2)(n) = 0 for n ≥ 2. Since both λ and µ are multiplicative, so is λ ∗ µ2.
Let n ≥ 2, and write n =

∏N
i=1 pαi

i , αi ≥ 1. Then

(λ ∗ µ2)(n) =
K∏

i=1

(λ ∗ µ2)(pαi
i ) =

K∏
i=1

∑
d | pαi

i

λ(d)µ2(
pαi

i

d
).

But µ2(p
αi
i
d ) is zero except p

αi
i
d = 1 or pi, and in these cases it is equal to 1 (recall that the

Möbius function µ is zero for non-squarefree numbers, and (−1)k if the number is product of k
-necessarily distinct- primes). So,

(λ ∗ µ2)(pαi
i ) = λ(pαi

i ) · µ2(1) + λ(pαi−1
i ) · µ2(pi) = λ(pαi

i ) · λ(pαi−1
i ) = (−1)αi + (−1)αi−1 = 0.

Hence, (λ∗µ2)(n) = 0 for n ≥ 2. On the other hand, since µ(1) = λ(1) = 1 we have (λ∗µ2)(1) = 1.
This completes the proof.

7. We will find a closed form expression for each of the following sums:

(a) Let x :=
∑

d |n
µ(d)

d . Hence, nx =
∑

d |n µ(d)n
d . If we denote the identity function by ι (that is,

ι(n) = n, ∀n), then nx = (µ ∗ ι)(n). Now, let n =
∏

pαi
i . Then, since µ ∗ ι is multiplicative,

(µ ∗ ι)(
∏

pαi
i ) =

∏
(µ ∗ ι)(pαi

i ) =
∏∑

d | pαi
i

µ(d)ι(
pαi

d
)

 but µ(pk
i ) = 0 for all k ≥ 2, thus

=
∏(

µ(1)ι(pαi
i ) + µ(pi)ι(pαi−1

i )
)

=
∏

(pαi
i − pαi−1

i ) = ϕ(n).

Thus, x = ϕ(n)
n .

(b) Let f(n) = µ(n)ϕ(n). Denote by I the constant function I(n) = 1, ∀n. Then for n =
∏

pαi
i we

have ∑
d |n

f(d) = (f ∗ I)(
∏

pαi
i ) =

∏
(f ∗ I)(pαi

i )

=
∏∑

d | pαi
i

µ(d)ϕ(d)I(
pαi

i

d
)

 =
∏

(µ(1)ϕ(1) · 1 + µ(pi)ϕ(pi) · 1)

=
∏

(1− (pi − 1)) =
∏

(2− pi).
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(c) Let g(n) = µ2(n)/ϕ(n). Then for n =
∏

pαi
i we have∑

d |n

g(n) = (g ∗ I)(
∏

pαi
i ) =

∏
(g ∗ I)(pαi

i )

=
∏∑

d | pαi
i

µ2(d)
ϕ(d)

I(
pαi

i

d
)

 =
∏

(
µ2(1)
ϕ(1)

· 1 +
µ2(pi)
ϕ(pi)

· 1)

=
∏

(1 +
1

pi − 1
) =

∏
(

1
1− 1

pi

) =
n

ϕ(n)
, cf. (a).

(d) We will show that
∑

d |n µ(n
d ) log d = Λ(n). This follows at once from Möbius inversion for-

mula since
∑

d |n Λ(d) = log(n) by Problem 5. We can also derive it directly: By definition∑
d |n µ(n

d ) log d = (µ∗ log)(n). Now, notice that µ∗I = ε, where ε is the unit function (1 if n = 1
and 0 otherwise). Thus,

((µ ∗ log) ∗ I)(n) = (log ∗(µ ∗ I))(n) = (log ∗ε)(n) = log(n).

Therefore we conclude that
∑

d |n(µ ∗ log)(d) = ((µ ∗ log) ∗ I)(n) = log(n). On the other hand,
since

∑
d |n Λ(d) = log(n), we have (µ ∗ log)(d) = Λ(d) for any d (for instance, by induction).
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