
MAT 311: Number Theory
Spring 2006

Solutions to HW5

1. (Davenport, pp.217, ex. 2.05) We would like to find the remainder when x := (10273 + 55)37 is
divided by 111 = 3 · 37. To do this, we first find the remainders mod 3 and mod 37; for then,
those remainders will (uniquely) determine the remainder mod 111 by Chinese remainder theorem
(since 3 and 37 are coprime). Observe that x37 ≡ x mod 37 by Fermat’s little theorem; and 10273 =
1022·36 · 102 ≡ 102 ≡ 18 mod 37. So x ≡ 18 + 55 ≡ 9 mod 37. Similarly, x37 ≡ x mod 3, again by
FlT. Moreover, 10273 ≡ 0 mod 3 and 55 ≡ 1 mod 3. Hence x ≡ 1 mod 3. So, the system

x ≡ 1 mod 3
x ≡ 9 mod 37

has a unique solution mod 111 (by Chinese remainder theorem). It is straightforward to see that
this solution is 46.

2. (Davenport, p.217, ex.2.07) We will find all natural numbers n for which ϕ(n) is odd. Recall that
if n has prime factorization n = pα1

1 . . . pαN
N (pi are distinct primes)then ϕ(n) can be computed as

ϕ(n) =
∏N

i=1

(
pαi−1

i (pi − 1)
)
. Observe that if n has an odd prime divisor, say pi then pαi−1

i (pi − 1)
is an even number; consequently, ϕ(n) is even. On the other hand, n does not have an odd prime
divisor, then n = 2N for some N ≥ 0. In this case we have ϕ(n) = 2N−1(2− 1) = 2N−1. So if N ≥ 2
then ϕ(n) is even. The remaining cases are n = 2 (when N = 1) and n = 1 (when N = 0). Obviously,
ϕ(1) = ϕ(2) = 1. So, 1 and 2 are the only numbers whose ϕ-value is odd.

3. (Davenport, p.217, ex.2.12) Assume that p is an odd prime. We will show that (p−2)! ≡ 1 mod p and
(p−3)! ≡ (p−1)/2 mod p. To prove these we will use Wilson’s theorem which says that (p−1)! ≡ −1
mod p. Now, (p− 1)! = (p− 1)(p− 2)! ≡ (−1)(p− 2)! mod p = 1 mod p where the last congruence
follows from Wilson’s theorem. Similarly, 1 ≡ (p − 2)! = (p − 2)(p − 3)! ≡ (−2)(p − 3)! mod p. So
2(p− 3)! ≡ −1 ≡ p− 1 mod p. But since (2, p) = 1 we can divide both side of this congruence by 2.
This completes the proof.

4. We have already shown in the previous problems that 2(p − 3)! ≡ −1 mod p whenever p is an odd
prime.

5. We aim to find the remainder of 5100 when divided by 7. In other words, we are trying to find 5100

mod 7. By Fermat’s little theorem, 56 ≡ 1 mod 7. Hence 5100 = (56)14 · 54 ≡ 54 = 625 ≡ 2 mod 7.

6. We want to find 18! mod 437. Since 437 = 19 · 23, we will first calculate the remainders mod 19 and
mod 23. Indeed, 18! ≡ −1 mod 19 by Wilson’s theorem (with p = 19). On the other hand, the same
theorem tells us that 22! ≡ −1 mod 23, and so 22! = 22 · 21 · 20 · 19 · 19! ≡ (−1)(−2)(−3)(−4)18! =
24 · 18! ≡ 18! mod 23. So, we have the system of congruences

18! ≡ −1 mod 19
18! ≡ −1 mod 23.

Hence, 18! ≡ −1 mod [19, 23], i.e. 18! ≡ −1 mod 437. So the remainder is 437− 1 = 436.

7. We want to determine the last digit of 71000. Equivalently, we would like to find 71000 mod 10. By
Euler’s theorem 7ϕ(10) = 74 ≡ 1 mod 10 since (7, 10) = 1. So, 71000 = (74)250 ≡ 1250 ≡ 1 mod 10.
So, the remainder is 1.

8. We aim to find the last digit of 3100 in its base 7 expansion. Equivalently, we would like to determine
3100 mod 7. By Fermat’s little theorem 36 ≡ 1 mod 7; hence 3100 = (36)14 ·34 ≡ 34 ≡ 81 ≡ 4 mod 7.
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9. We will show that 42 | (n7 − n) for all positive n. Since 42 = 2 · 3 · 7, it suffices to show that each of
these primes indeed divide n7 − n. In other words, we need to show that n7 ≡ n mod 2, 3, 7. All of
these congruences follow from Fermat’s little theorem, as

n2 ≡ n mod 2 ⇒ n7 = (n2)3 · n ≡ n mod 2
n3 ≡ n mod 3 ⇒ n7 = (n3)2 · n ≡ n mod 3
n7 ≡ n mod 7.

10. We will prove that ϕ(n)ϕ(m) = ϕ ((n, m))ϕ ([n, m]). First observe that we can rearrange the order of
prime powers in the prime factorization of n and m so that we can write n = pα1

1 . . . pαK
K p

αK+1

K+1 . . . p
αN+1

N+1

and n = pβ1
1 . . . pβK

K q
βK+1

K+1 . . . q
βM+1

M+1 where αi, βi > 0, N,M some natural numbers (0 if n or m is 1),
and K some nonnegative integer (0 if n and m does not have a common prime factor). Now, clearly

(n, m) =
K∏

i=1

p
min{αi,βi}
i

[n, m] =

(
K∏

i=1

p
max{αi,βi}
i

)
·

(
N∏

i=K+1

pαi
i

)
·

(
M∏

i=K+1

qβi
i

)
.

By the formula to compute ϕ-function given in Problem 2, we have

ϕ(n)ϕ(m) =

(
K∏

i=1

p
(αi−1)+(βi−1)
i (pi − 1)2

)
·

(
N∏

i=K+1

pαi−1
i (pi − 1)

)
·

(
M∏

i=K+1

qβi−1
i (qi − 1)

)
and

ϕ ((n, m))ϕ ([n, m]) =

(
K∏

i=1

p
(min{αi,βi}−1)+(max{αi,βi}−1)
i (p− 1)2

)
·

·

(
N∏

i=K+1

pαi−1
i (pi − 1)

)
·

(
M∏

i=K+1

qβi−1
i (qi − 1)

)
.

Clearly the above two expressions are the same since min{αi, βi}+ max{αi, βi} = αi + βi.

11. Let τ(n) denote the number of positive divisors of n. It is known that τ is a multiplicative function,
that is, τ(mn) = τ(m) · τ(n) if (n, m) = 1. If n = pα1

1 . . . pαN
N is the prime factorization of n, then

τ(n) = (α1 + 1) . . . (αN + 1). (*)

If τ(n) = 3, then 3 is a product of the form (*). Since all the factors (αi + 1) are ≥ 2 this is possible
only when N = 1 and α1 = 2. The smallest such n is obviously 4 (by taking p1 = 2. Of course
we could find this n by trial and error, but solving the problem like this gives an idea about how to
solve similar problems: Let’s find the smallest n with τ(n) = 13 · 31. Then 13· 31 of the form (*);
so again the only possibilities for this is that (1) N = 2 and α1 = 12 and α2 = 31 or (2) N = 1 and
α1 = 13 · 31 − 1. If we want to get smaller n’s, we should choose smaller exponents; thus, we should
consider the first case. So, n must be of the form n = pα1

1 pα2
2 for some distinct primes p1, p2. The two

smallest primes are 2 and 3. To minimize n, 3 must have smaller exponent. Hence n = 230 · 312.

12. We aim to find all positive integers with τ(n) = 4. Again, 4 should be written in the form of (*). This
is only possible when
(Case 1) N = 2 and α1 = 1, α2 = 1 (corresponding to the factorization 4 = 2 · 2),
or
(Case 2) N = 1 and α1 = 3 (corresponding to the trivial factorization 4 = 1 · 4).
In the first case, n is of the form n = pa · qb (here, p, q are distinct primes), and in the second of the
form n = p3 (where p is prime).
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