MAT 311: Number Theory
Spring 2006

Solutions to HW5

. (Davenport, pp.217, ex. 2.05) We would like to find the remainder when z := (1027 + 55)37 is
divided by 111 = 3 - 37. To do this, we first find the remainders mod 3 and mod 37; for then,
those remainders will (uniquely) determine the remainder mod 111 by Chinese remainder theorem
(since 3 and 37 are coprime). Observe that 237 =z mod 37 by Fermat’s little theorem; and 1027 =
102236 . 102 = 102 = 18 mod 37. So z = 18 + 55 = 9 mod 37. Similarly, 237 = z mod 3, again by
FIT. Moreover, 102 =0 mod 3 and 55 =1 mod 3. Hence 2 =1 mod 3. So, the system

= 1 mod3
= 9 mod 37

has a unique solution mod 111 (by Chinese remainder theorem). It is straightforward to see that
this solution is 46.

. (Davenport, p.217, ex.2.07) We will find all natural numbers n for which p(n) is odd. Recall that
if n has prime factorization n = p{™* ...pR" (p; are distinct primes)then ¢(n) can be computed as
o(n) = Hf\;l (piai_l(pi - 1)) Observe that if n has an odd prime divisor, say p; then p?i_l(pz‘ —1)
is an even number; consequently, ¢(n) is even. On the other hand, n does not have an odd prime
divisor, then n = 2V for some N > 0. In this case we have p(n) = 2V"1(2 - 1) = 2N~ Soif N > 2
then p(n) is even. The remaining cases are n = 2 (when N = 1) and n =1 (when N = 0). Obviously,
(1) = p(2) = 1. So, 1 and 2 are the only numbers whose ¢-value is odd.

. (Davenport, p.217, ex.2.12) Assume that p is an odd prime. We will show that (p—2)! =1 mod p and
(p—3)!'=(p—1)/2 mod p. To prove these we will use Wilson’s theorem which says that (p—1)! = —1
mod p. Now, (p—1)!'=(p—1)(p—2)!'=(-1)(p—2)! mod p =1 mod p where the last congruence
follows from Wilson’s theorem. Similarly, 1 = (p — 2)! = (p — 2)(p — 3)! = (=2)(p — 3)! mod p. So
2(p—3)!=—-1=p—1 mod p. But since (2,p) = 1 we can divide both side of this congruence by 2.
This completes the proof.

. We have already shown in the previous problems that 2(p — 3)! = —1 mod p whenever p is an odd
prime.
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. We aim to find the remainder of when divided by 7. In other words, we are trying to find
mod 7. By Fermat’s little theorem, 5 = 1 mod 7. Hence 5'% = (56)!4.5% = 5% = 625 =2 mod 7.

. We want to find 18! mod 437. Since 437 = 19-23, we will first calculate the remainders mod 19 and
mod 23. Indeed, 18! = —1 mod 19 by Wilson’s theorem (with p = 19). On the other hand, the same
theorem tells us that 22! = —1 mod 23, and so 22! =22-21-20-19-19! = (—1)(—2)(—3)(—4)18! =
24 -18! = 18! mod 23. So, we have the system of congruences

18! = —1 mod 19
18! = —1 mod 23.

Hence, 18! = —1 mod [19,23], i.e. 18! = —1 mod 437. So the remainder is 437 — 1 = 436.

. We want to determine the last digit of 7'°°°. Equivalently, we would like to find 7! mod 10. By
Euler’s theorem 79(10) = 74 = 1 mod 10 since (7,10) = 1. So, 71900 = (74)250 = 1250 = 1 mod 10.
So, the remainder is 1.

. We aim to find the last digit of 3% in its base 7 expansion. Equivalently, we would like to determine
3190 mod 7. By Fermat’s little theorem 3 = 1 mod 7; hence 3% = (36)4.3* = 3% =81 =4 mod 7.
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We will show that 42| (n” — n) for all positive n. Since 42 = 2 -3 - 7, it suffices to show that each of
these primes indeed divide n” — n. In other words, we need to show that n” =n mod 2,3,7. All of
these congruences follow from Fermat’s little theorem, as

n=n mod2 = n'=®?)3n=n mod?2
n=n mod3 = n'=®*)?-n=n mod3
n"=n mod 7

We will prove that ¢(n)e(m) = ¢ ((n,m)) ¢ ([n, m]). First observe that we can rearrange the order of
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prime powers in the prime factorization of n and m so that we can write n = p{* ... p3fpy/ Y1 PNyt
and n = pﬂ1 ) p?j‘qlﬁ(ﬁﬁl . qff}fll where «;, ; > 0, N, M some natural numbers (0 if n or m is 1),

and K some nonnegative integer (0 if n and m does not have a common prime factor). Now, clearly
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By the formula to compute ¢-function given in Problem 2, we have
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Clearly the above two expressions are the same since min{«;, 4;} + max{a;, 3;} = a; + 0.

and

Let 7(n) denote the number of positive divisors of n It is known that 7 is a multiplicative function,
that is, 7(mn) = 7(m) - 7(n) if (n,m)=1. If n = ...pR" is the prime factorization of n, then

7(n) = (ay + 1)...(aN+ 1). (*)

If 7(n) = 3, then 3 is a product of the form (*). Since all the factors («; + 1) are > 2 this is possible
only when N = 1 and a3 = 2. The smallest such n is obviously 4 (by taking p; = 2. Of course
we could find this n by trial and error, but solving the problem like this gives an idea about how to
solve similar problems: Let’s find the smallest n with 7(n) = 13- 31. Then 13- 31 of the form (*);
so again the only possibilities for this is that (1) N =2 and a; = 12 and ap =31 or (2) N =1 and
ap = 13-31 — 1. If we want to get smaller n’s, we should choose smaller exponents; thus, we should
consider the first case. So, n must be of the form n = p{'p5? for some distinct primes py,p2. The two
smallest primes are 2 and 3. To minimize n, 3 must have smaller exponent. Hence n = 230 . 312,

We aim to find all positive integers with 7(n) = 4. Again, 4 should be written in the form of (*). This
is only possible when

(Case 1) N =2 and a1 = 1, ag = 1 (corresponding to the factorization 4 = 2 - 2),

or

(Case 2) N =1 and a; = 3 (corresponding to the trivial factorization 4 =1 -4).

In the first case, n is of the form n = p® - ¢® (here, p, q are distinct primes), and in the second of the
form n = p3 (where p is prime).



