
MAT 311: Number Theory
Spring 2006

HW3 - Solutions

1. (Davenport, pp.217, ex. 1.20) We will find all integral solutions of the equation 113x−355y =
1. By Euclid’s theorem, this equation has a solution since (113, 355) = 1. Indeed, by
Euclidian algorithm, we get

355 = 113 · 3 + 16
113 = 16 · 7 + 1
16 = 1 · 16.

So, (113, 355) = 1. Moreover, this algorithm (traversing backwards) actually gives us a linear
combination of 113 and 355 yielding 1. In fact, isolating 16 from the second equation and
putting into the first one gives

355 = 113 · 3 + (113/7− 1/7)

which reads 113 · 22− 355 · 7 = 1 after clearing the denominators. So x0 = 22 and y0 = 7 is
a solution of the given equation. Thus, the general solution is

{x = 22 + 355n, y = 7 + 113n : n ∈ Z}.

2. (Davenport, p.217, ex.1.23*) We aim to show that the binomial coefficient
(
p
r

)
= p!

r!(p−r)! is
divisible by p if p is prime and 1 ≤ r < p. First of all, the problem is well-posed because
those quotients are indeed integers (for instance, being the coefficients of (1 + x)p). Observe
that since r < p and p is prime, r! cannot be divisible by p (because (m, p) = 1 for m =
1, 2, . . . , p−1). So (r!, p) = 1. Similarly ((p− r)!, p) = 1. This implies that (r!(p− r)!, p) = 1.
Therefore, we conclude that p|p!/(r!(p− r)!).

3. (Davenport, pp.217, ex. 1.24) We will show that there are infinitely many primes of the form
6k − 1, k ∈ N. Assume, for a contradiction, that there are only finitely many of them, say
p1, p2, . . . , pn. Let N = 6(p1p2 . . . pn) − 1. Since N is odd, it has an odd prime divisor, say
p. But an odd prime must be either of the form 6m + 1 or 6m − 1 (that is if one divides p
by 6, the remainder cannot be 0,2,3,4, by obvious reasons). Now, if p = 6n − 1, then it is
one of the pj ’s (j = 1, 2, . . . , n), and consequently it cannot divide N . So, N must be the
product of some primes of the form p = 6m + 1. On the other hand, observe that product of
two numbers of the form 6m + 1 is also of the form 6m + 1. Thus, N = 6m + 1 for some m.
But this is impossible, since N is already of the form 6m− 1.

4. (Davenport, pp.217, ex. 2.01) Assume that a ≡ b mod kn. We will show that ak ≡ bk

mod k2n. First, note the following fact: if c ≡ d mod mn then c ≡ d mod m. This is
because if mn divides c − d, then obviously m divides c − d, too. Now, we know that
ak − bk = (a − b)(ak−1 + ak−2b + · · · + bk−1). Then we have ak−1 + ak−2b + · · · + bk−1 ≡
ak−1 + ak−2a + · · · + ak−1 ≡ kak−1 mod kn (replace b with a since they are congruent
mod kn). So, by our remark above ak−1 + ak−2b + · · · + bk−1 ≡ kak−1 ≡ 0 mod k. Since
kn|(a−b), and k|ak−1+ak−2b+· · ·+bk−1, we deduce that k2n|ak−bk, i.e. ak ≡ bk mod k2n.

5. We claim that (34709, 100313) = 1. Indeed, by euclidian algorithm:

100313 = 34709 · 2 + 30895
34709 = 30895 · 1 + 3814
30895 = 38148̇ + 383
3814 = 383 · 9 + 367
383 = 367 · 1 + 16
367 = 16 · 22 + 15
16 = 15 · 1 + 1
15 = 1 · 15.

1



Traversing the algorithm backwards, we get 1 = 16 · 1− 15 · 1 = 16 · 1− (367 · 1− 16 · 22) =
16 · 23− 367 · 1 = · · · = 100313 · 2175− 34709 · 6286.

6. It is clear that (15, 35, 90) = 5. To find a linear combination giving 5, we can again apply
the euclidian algorithm for, say, 15 and 35, and get 5 = −2 · 15 + 1 · 35. Finally, take the
coefficient of 90 to be 0.

7. We will show that (Fm, Fn) = F(m,n). This will follow from the following well-known identity:

Fm+n = Fm−1 Fn + Fm Fn+1, ∀n, m ∈ N (1)

To prove this, fix m ∈ N. We proceed by induction on n. For n = 1, right hand side
(RHS) of the equation becomes Fm−1 F1 + Fm F2 = Fm−1 + Fm, which is equal to the
left hand side (LHS), i.e. to Fm+1. When n = 2, the equation holds as well, because RHS
= Fm−1 F2 + Fm F3 = Fm−1 + 2Fm = (Fm−1 + Fm) + Fm = Fm+1 + Fm, which is equal
to the LHS, i.e. to Fm+2. Now, assume the equation holds for k = 3, 4, . . . , n. We will show
that it holds for n + 1. Indeed,

for k = n− 1 we have Fm+n−1 = Fm−1 Fn−1 + Fm Fn

for k = n we have Fm+n = Fm−1 Fn + Fm Fn+1.

Adding both sides of these equations will give:

LHS = Fm+n−1 + Fm+n = Fm+n+1

RHS = Fm−1 Fn−1 + Fm Fn + Fm−1 Fn + Fm Fn+1

= Fm−1(Fn−1 + Fn) + Fm(Fn + Fn+1)
= Fm−1 Fn+1 + Fm Fn+2

which is the equation for k = n + 1, as required. So we proved that the equation (1) holds.
Alternatively, one could use the formula Fn = (σn − τn)/

√
5 that we proved in HW1, and

substitute it in (1) and check that both sides of the equation are indeed equal.

From this identity we can deduce that

(Fm, Fn+m) = (Fm, Fn) (2)

To show this, first note that two consecutive Fibonacci numbers are coprime, i.e. (Fn, Fn+1) =
1 (apply euclidian algorithm for Fn+1 and Fn, and see that the last nonzero remainder is
F1 = 1). Now, (Fm, Fn+m) = (Fm, Fm−1 Fn + Fm Fn+1) = (Fm, Fm−1 Fn) = (Fm, Fn). The
last equality follows from the fact that Fm and Fm−1 are coprime.

If we iterate identity (2) a times, then we get (Fm, Fn) = (Fm, Fn+m) = (Fm, Fn+2m) = · · · =
(Fm, Fn+am). In particular, if n = m, then we deduce that (Fm, F(a+1)m) = (Fm, Fm) = Fm.
Putting this in other words: if m|M , then Fm|FM .

Now, if we assume n > m and apply euclidian algorithm, we get

n = a1m + r1

m = a2r1 + r2

r1 = a3r2 + r3

. . . . . .

rk = ak+2rk+1 + d

where d = (n, m). Using the above remark, we obtain that (Fn, Fm) = (Fa1m+r1 , Fm) =
(Fr1 , Fm) from the first line. Similarly, (Fr1 , Fm) = (Fr1 , Fr2) from the second line. Finally,
the last line tells (Frk

, Frk+1) = (Frk+1 , Fd) = Fd (because Fd|Frk+1 since d|rk+1). Combining
all of these, we get (Fn, Fm) = Fd, as desired.

8. Let n be a positive integer, and p any prime. Let α be the largest power of p dividing n!,
that is, pα|n! but pα+1 6 |n! (in this case, we say that pα exactly divides n!, and denote by
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pα‖n!). To find α, first note that the positive integers ≤ n and divisible by p are S1 =
{m ∈ N : m ≤ n, p|n} = {p, 2p, 3p, . . . , bn/pcp}. So, |S1| = bn/pc. However, we should
also count the multiplicities: If a number is in S1 but is divisible by a higher power of p
then that power should contribute to calculation of α. Thus, for k ∈ N, let Sk = {m ∈ N :
m ≤ n, pk|n} = {pk, 2pk, 3pk, . . . , bn/pkcpk} which is the set of numbers ≤ n divisible by
pk. Clearly, |Sk| = bn/pkc. Now, |S2| is the number of positive integers ≤ n divisible by pk,
and hence it counts the square powers which we missed in S1. We can think similarly for
S3, S4 . . . . Thus α =

∑∞
k=1bn/pkc (which is a finite sum since bn/pkc = 0 for all large k s.t.

pk > n).

9. We will find the number of N zeros at the end of 1000! in decimal notation. Clearly,
10N‖1000!. But to get a factor of 10 we must have a 2 and a 5 in the prime factor-
ization of 1000!. So, if 2a‖1000! and 5b‖1000!, then N = min{a, b}. Clearly, a > b;
so, in fact N = b. Now, b can be found by the previous problem (with p = 5) as b =
b1000/5c+ b1000/25c+ b1000/125c+ b1000/625c = 200 + 40 + 8 + 1 = 249.

10. We will find the prime factorization of 236 − 1. This will follow from multiple applications
of elementary identities: 236 − 1 = (218 − 1)(218 + 1). 218 − 1 = (29 − 1)(29 + 1). 29 − 1 =
(23 − 1)((23)2 + 23 + 1) = 7 · 73. 29 + 1 = (23 + 1)((23)2 − 23 + 1) = 33 · 19. Similarly
218 + 1 = 5 · 13 · 37 · 109.

11. We would like to find min(x + y) among positive integer solutions (x, y) of the equation
18x + 33y = 549. By the euclidian algorithm, it is straight-forward (yet cumbersome) to
get 549 = 18 · 366 − 33 · 183. So, solutions of this equation are of the form (x, y) = (366 +
11k,−183 − 6k). The requirement that x, y be positive, reduces to three possibilities for
k, namely k = −31,−32,−33. So we get three solutions: (25, 3), (14, 9), (3, 15). So the
minimum of x + y is attained by the last solution: x = 3, y = 15, x + y = 18.

12. We want to find all solutions of the equation x+10y+25z = 99 for x, y, z nonnegative integers.
First of all, note that x must be of the form 99−5n, because 10y +25z = 99−x, so 5|99−x,
i.e. 5n = 99− x for some n. Then (equivalently) we would like to solve 10y + 25z = 5n (for
y and z). By the euclidian algorithm again, we obtain that (10, 25) = 5 = −2 · 10 + 1 · 25.
So, 5n = −2n · 10 + n · 25 is a solution of the above equation. The general solution is then of
the form (y, z) = (−2n + 5k, n− 2k). In other words, x = 99− 5n, y = −2n + 5k, z = n− 2k
give a solution (provided they are nonnegative). So one should start plugging values for
n = 0, 1, 2, . . . , 19 and find all k’s such that y and z are positive. Although it is not very
hard to do it by hand, a short computer program (for instance, written in pari) will save
our time:

for(n=0,19,for(k=0,10,if(sign(-2*n+5*k)+1,(if(sign(n-2*k)+1,
print(99-5*n,-2*n+5*k,n-2*k))))))

The output is:

(99,0,0) (89,1,0) (79,2,0) (74,0,1) (69,3,0) (64,1,1) (59,4,0)
(54,2,1) (49,0,2) (49,5,0) (44,3,1) (39,1,2) (39,6,0) (34,4,1)
(29,2,2) (29,7,0) (24,0,3) (24,5,1) (19,3,2) (19,8,0) (14,1,3)
(14,6,1) (9,4,2) (9,9,0) (4,2,3) (4,7,1)

13. This time we would like to solve 140x + 110y + 78z = 6548 such that x + y + z = 69,
and x, y, z ≥ 0. Plugging x = 69 − y − z in the first equation gives 30y + 62z = 3112.
Using the euclidian algorithm, we obtain a solution (−3112, 1556). So, the general solution
is (y, z) = (−3112 + 31k, 1556 − 15k). So we should find the k value for which y, z and
x = 69 − y − z are all nonnegative. It is easy to see that the only k value satisfying this is
k = 101, which gives x = 9, y = 19, z = 41.
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