MAT 311: Number Theory
Spring 2006

HW3 - Solutions

. (Davenport, pp.217, ex. 1.20) We will find all integral solutions of the equation 113x—355y =
1. By Euclid’s theorem, this equation has a solution since (113,355) = 1. Indeed, by
Euclidian algorithm, we get

356 = 113-3+16
113 = 16-7+1
16 = 1-16.

So, (113,355) = 1. Moreover, this algorithm (traversing backwards) actually gives us a linear
combination of 113 and 355 yielding 1. In fact, isolating 16 from the second equation and
putting into the first one gives

355 = 113 -3 + (113/7 — 1/7)

which reads 113 - 22 — 355 - 7 = 1 after clearing the denominators. So xg = 22 and yy = 7 is
a solution of the given equation. Thus, the general solution is

{r=22+4355n, y=T7T+113n:n € Z}.

. (Davenport, p.217, ex.1.23*) We aim to show that the binomial coefficient (¥) = #ir)! is
divisible by p if p is prime and 1 < r < p. First of all, the problem is well-posed because
those quotients are indeed integers (for instance, being the coefficients of (1 + x)?). Observe
that since r < p and p is prime, r! cannot be divisible by p (because (m,p) = 1 for m =
1,2,...,p—1). So (r!,p) = 1. Similarly ((p —r)!, p) = 1. This implies that (r!(p—7)!,p) = 1.
Therefore, we conclude that p|p!/(r!(p — r)!).

. (Davenport, pp.217, ex. 1.24) We will show that there are infinitely many primes of the form
6k — 1, k € N. Assume, for a contradiction, that there are only finitely many of them, say
P1,D2, -, Pn. Let N = 6(p1ps...pn) — 1. Since N is odd, it has an odd prime divisor, say
p. But an odd prime must be either of the form 6m + 1 or 6m — 1 (that is if one divides p
by 6, the remainder cannot be 0,2,3,4, by obvious reasons). Now, if p = 6n — 1, then it is
one of the p;’s (j = 1,2,...,n), and consequently it cannot divide N. So, N must be the
product of some primes of the form p = 6m + 1. On the other hand, observe that product of
two numbers of the form 6m + 1 is also of the form 6m + 1. Thus, N = 6m + 1 for some m.
But this is impossible, since N is already of the form 6m — 1.

. (Davenport, pp.217, ex. 2.01) Assume that a = b mod kn. We will show that a* = b*
mod k2n. First, note the following fact: if ¢ = d mod mn then ¢ = d mod m. This is
because if mn divides ¢ — d, then obviously m divides ¢ — d, too. Now, we know that
a? — bk = (a —b)(a* "t +a*2b + .- + b¥71). Then we have a1 + a*=2b 4 ... + b1 =
a* '+ a2+ -+ a1 = ka*! mod kn (replace b with a since they are congruent
mod kn). So, by our remark above a*~! +a*72b+ ... + b¥"1 = ka*~! =0 mod k. Since
kn|(a—b), and k|a* ! +a*~2b4- - - +b*~1 we deduce that k?n|a® —b*, ie. a¥ = b* mod k?n.

. We claim that (34709,100313) = 1. Indeed, by euclidian algorithm:

100313 = 34709 -2 + 30895
34709 = 30895 -1+ 3814
30895 = 38148 + 383
3814 = 383-9+ 367
383 = 367-1+16
367 = 16-22+415
16 = 15-1+1
15 = 1-15.



Traversing the algorithm backwards, we get 1 =16-1—15-1=16-1— (367-1—16-22) =
16-23 —367-1=---=100313 - 2175 — 34709 - 6286.

. It is clear that (15,35,90) = 5. To find « linear combination giving 5, we can again apply
the euclidian algorithm for, say, 15 and 35, and get 5 = —2 - 15 4+ 1 - 35. Finally, take the
coefficient of 90 to be 0.

. We will show that (F, Fl,) = F{(;5,,). This will follow from the following well-known identity:
Fm+n: m—an+Fan+la VTL,’ITLGN (]-)

To prove this, fix m € N. We proceed by induction on n. For n = 1, right hand side
(RHS) of the equation becomes F,,_1 Fy + F,, F5 = F,,_1 + F,,, which is equal to the
left hand side (LHS), i.e. to F,+1. When n = 2, the equation holds as well, because RHS
=Fn1F+F, Fs=F,1+2F, = (Fn,-1+ F,)+ F, = F,41 + F,, which is equal
to the LHS, i.e. to F,,4+2. Now, assume the equation holds for k = 3,4,...,n. We will show
that it holds for n + 1. Indeed,

fork=n—1wehave F,in1=Fn_1F1+F,F,
for k = n we have Foin=Fn_1F,+ F, Fpi1.

Adding both sides of these equations will give:

LHS = Foino1+ Fogn = Fngnt

RHS = Fy1 Foo1+ Fy Fo+ Fooo1 o+ Foy Fri
= Fn1(Fo-1+ Fo) + Fp(Fo + Foya)
= Fh1 Fopyi+Fy Foge

which is the equation for kK = n + 1, as required. So we proved that the equation (1) holds.
Alternatively, one could use the formula F,, = (¢" — 7)/+/5 that we proved in HW1, and
substitute it in (1) and check that both sides of the equation are indeed equal.

From this identity we can deduce that
(FmaFn+m) = (Fm>F77,) (2)

To show this, first note that two consecutive Fibonacci numbers are coprime, i.e. (Fy, Fy41) =
1 (apply euclidian algorithm for Fj,1q1 and F,,, and see that the last nonzero remainder is
Fy =1). Now, (F, Fruam) = (Fin, Fin—1 Fn 4+ Foy Frv1) = (Fon, Frne1 Fn) = (Fin, F). The
last equality follows from the fact that F),, and F,,_ 1 are coprime.

If we iterate identity (2) a times, then we get (Fp,, Fy) = (Fin, Fugm) = (Fim, Fogom) =+ =
(Fin, Frgam)- In particular, if n = m, then we deduce that (Fi,, Fla11)m) = (Fm, Fn) = Fin.
Putting this in other words: if m|M, then Fy,|Fa.

Now, if we assume n > m and apply euclidian algorithm, we get

n = am-+nmn
= agry+71re
T = asra+7r3
Tk = Ogi2Tky1 +d

where d = (n,m). Using the above remark, we obtain that (F,, Fn) = (Faym+r s Fm) =
(Fy,, Fyy) from the first line. Similarly, (F,, Fr,) = (Fy,, Fr,) from the second line. Finally,
the last line tells (F,., , Fy., ) = (Fy, .., Fa) = Fy (because Fy|F,, ,, since d|ry41). Combining

all of these, we get (F,,, F,,) = Fy, as desired.

k+1

. Let n be a positive integer, and p any prime. Let « be the largest power of p dividing n!,
that is, p®|n! but p®* /n! (in this case, we say that p® ezactly divides n!, and denote by



10.

11.

12.

13.

p®||n!). To find «, first note that the positive integers < n and divisible by p are S; =
{m € N:m <mn, pn} = {p,2p,3p,...,|n/p|p}. So, |Si| = |n/p]. However, we should
also count the multiplicities: If a number is in S; but is divisible by a higher power of p
then that power should contribute to calculation of «. Thus, for k € N, let Sy, = {m € N :
m < n, pFln} = {p*,2p*,3p*, ..., |n/p*|p*¥} which is the set of numbers < n divisible by
p¥. Clearly, |Sk| = |n/p*|. Now, |Ss| is the number of positive integers < n divisible by p*,
and hence it counts the square powers which we missed in S;. We can think similarly for
S3,84.... Thus a =377, |n/p*] (which is a finite sum since |n/p*| = 0 for all large k s.t.
P > n).

. We will find the number of N zeros at the end of 1000! in decimal notation. Clearly,

10V|1000!.  But to get a factor of 10 we must have a 2 and a 5 in the prime factor-
ization of 1000!. So, if 2¢[|1000! and 5°(|1000!, then N = min{a,b}. Clearly, a > b;
so, in fact N = b. Now, b can be found by the previous problem (with p = 5) as b =
[1000/5] + [1000/25] + [1000/125] 4 [1000/625] = 200 + 40 + 8 + 1 = 249.

We will find the prime factorization of 236 — 1. This will follow from multiple applications
of elementary identities: 236 — 1 = (218 —1)(218 +1). 218 —1 = (29— 1)(22+1). 2 -1 =
(22 —1)((23)2+22+1) =7-73. 2241 = (22 +1)((2%)2 — 23 + 1) = 3% . 19. Similarly
218 +1=5-13-37-109.

We would like to find min(x + y) among positive integer solutions (x,y) of the equation
18z 4+ 33y = 549. By the euclidian algorithm, it is straight-forward (yet cumbersome) to
get 549 = 18- 366 — 33 - 183. So, solutions of this equation are of the form (z,y) = (366 +
11k, —183 — 6k). The requirement that x,y be positive, reduces to three possibilities for
k, namely k = —31,—-32,—33. So we get three solutions: (25,3), (14,9), (3,15). So the
minimum of x + y is attained by the last solution: x =3, y =15, z +y = 18.

We want to find all solutions of the equation z+10y+25z = 99 for x, y, z nonnegative integers.
First of all, note that « must be of the form 99 — 5n, because 10y + 25z = 99 — z, so 5[99 — x,
i.e. bn =99 — x for some n. Then (equivalently) we would like to solve 10y + 25z = 5n (for
y and z). By the euclidian algorithm again, we obtain that (10,25) =5 = —2-10+ 1 - 25.
So, bn = —2n - 10+ n - 25 is a solution of the above equation. The general solution is then of
the form (y,z) = (—2n+ 5k, n — 2k). In other words, z = 99 — 5n, y = —2n+ 5k, z =n — 2k
give a solution (provided they are nonnegative). So one should start plugging values for
n=0,1,2,...,19 and find all k’s such that y and z are positive. Although it is not very
hard to do it by hand, a short computer program (for instance, written in pari) will save
our time:

for(n=0,19,for(k=0,10,if (sign(-2*n+5*k)+1, (if (sign(n-2*k)+1,
print (99-5*n,-2*n+5xk ,n-2*k))))))

The output is:

(99,0,0) (89,1,0) (79,2,0) (74,0,1) (69,3,0) (64,1,1) (59,4,0)
(54,2,1) (49,0,2) (49,5,0) (44,3,1) (39,1,2) (39,6,0) (34,4,1)
(29,2,2) (29,7,0) (24,0,3) (24,5,1) (19,3,2) (19,8,0) (14,1,3)
(14,6,1) (9,4,2) (9,9,0) (4,2,3) (4,7,1)

This time we would like to solve 140x + 110y 4+ 78z = 6548 such that = + y + 2z = 69,
and z,y,z > 0. Plugging © = 69 — y — z in the first equation gives 30y + 62z = 3112.
Using the euclidian algorithm, we obtain a solution (—3112,1556). So, the general solution
is (y,z) = (—3112 + 31k, 1556 — 15k). So we should find the k value for which y, z and
x = 69 — y — z are all nonnegative. It is easy to see that the only k value satisfying this is
k = 101, which gives x =9, y = 19, z = 41.



