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HW2 - Solutions

1. (Davenport, pp.215-216, ex. 1.04) In general, given any positive integer
n, then {(n+1)!+m : 2 ≤ m ≤ n+1} is a set of n consecutive composite
numbers, because m divides (n + 1)! (and hence (n + 1)! + m) whenever
2 ≤ m ≤ n + 1.

2. (Davenport, pp.215-216, ex.1.05) If we evaluate n2 + n + 41 for first few
n = 0, 1, 2, . . . we see that they turn out to be primes. However, for
n = 40, we have n2 + n + 1 = 412 which is composite. Alternatively,
n = 41 actually divides n2 + n + 41 since each term is divisible by 41. It
is an interesting fact that for n = 0, 1, . . . , 39 this expression gives prime
numbers. This can be checked easily by writing a simple program (for
instance in pari)

for(n=0,40, if(isprime(n)=0, print(n)))

which will print 40 as output.

3. (Davenport, pp.215-216, ex. 1.11) Assume that n is a composite number,
say n = ab, where a, b ≥ 2. We want to show that 2n−1 cannot be prime.
Indeed,

2n−1 = 2ab−1 = (2a)b−1 = (2a−1)((2a)b−1 +(2a)b−2 + · · ·+(2a)1 +1).

Now, since a ≥ 2, we have 2a − 1 ≥ 3. Moreover, 2a − 1 is strictly less
than 2n − 1 since a < n. Hence 2n − 1 is a product of two numbers both
of which are > 1. Therefore, 2n− 1 cannot be a prime. The converse does
not hold, as for n = 11, we have 211 − 1 = 23 · 89.

4. (Davenport, pp.215-216, ex. 1.12) Assume that n is not a power of 2.
Then there is an odd integer m dividing n, so we can write n = mk for
some k > 1. Then we have

2n + 1 = (2k)m + 1 = (2k + 1)((2k)m−1 − (2k)m−2 + · · · − (2k)1 + 1).

Similarly, 2k + 1 is a number greater than 1 but strictly less than 2n + 1
which divides 2n + 1. Hence 2n + 1 cannot be a prime. The converse does
not hold here either: 2(25) + 1 is divisible by the prime 641.

5. Let sq(x) denote the number of squares less than x. We claim that sq(x) =
the greatest integer less than

√
x, denoted by b

√
xc. Given x ∈ R. Let

S = {12, 22, . . . ,m2} be the set of squares less than x (listed in increasing
order). Then clearly sq(x) = m, that is, sq(x) is equal to the largest
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integer m whose square is less than x. We claim that m = b
√

xc. Indeed,
since b

√
xc <

√
x, we have b

√
xc2 < x. So b

√
xc is an integer whose square

is less than x. This shows b
√

xc ≤ sq(x) = m. Conversely, if k is an integer
that is strictly grater that b

√
xc, then k2 ≥ (b

√
xc + 1)2 > (

√
x)2 = x.

Therefore, m = sq(x) ≤ b
√

xc. Combining it with the previous reverse
inequality we obtain that sq(x) = b

√
xc, as required.

To show why most numbers are non-square, we need to consider the limit
of the ratio (number of all squares < x)/ (all numbers < x) as x → ∞.
Indeed, this limit can be computed as

lim
x→∞

sq(x)
bxc

= lim
x→∞

b
√

xc
bxc

≤ lim
x→∞

√
x

x− 1
= 0

So the limit we were looking for is 0. That means, as x gets larger, the
number of squares less than x is ‘negligible’ compared to x.

6. We would like to show that there are no prime triplets (p, p+2, p+4) other
than (3, 5, 7). To show this note that among any n consecutive numbers
there is one divisible by n. In particular, one of p, p+1, p+2 is divisible by
3. Thus, one of p, p+2, p+4 is divisible by 3 (note that 3|p+1 iff 3|p+4).
Hence, if (p, p + 2, p + 4) is a prime triplet, this forces p to be actually
equal to 3 (if not, then p, p + 2, p + 4 are all primes > 3 and divisible by
3, a contradiction). So we conclude that (3, 5, 7) is the only prime triplet.

7. We will show that every integer > 11 is the sum of two composite integers.
Indeed, if n is even, then n = (n−4)+4; and if it is odd, then n = (n−9)+9
is a sum of two composite numbers. In the first case, n − 4 is an even
number strictly greater than 7 (hence necessarily composite); and in the
latter case n − 9 is an even number strictly greater than 2 (hence again
composite).

8. We will show that there are no primes of the form N3 + 1 for N > 1.
Indeed, we can factorize the expression as N3 +1 = (N +1)(N2−N +1).
The first factor is > 2 and strictly smaller than N3 + 1. Hence N3 + 1
cannot be prime.

9. The smallest five consecutive composite numbers are 24, . . . , 28.
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