
MAT 311: Number Theory
Spring 2006

Solutions to HW11

1. (Davenport, p.220, ex. 3.16) Assume that 4k + 1 and 8k + 3 are both primes. Then 28k+2 ≡ 1
mod 8k + 3 by Fermat’s little theorem. But 8k + 2 = 2(4k + 1). Since 4k + 1 is prime, it suffices to
show that 24k+1 6≡ 1 mod 8k + 3 in order to show that the order of 2 is 8k + 2 (notice that we used

Lagrange’s theorem). Indeed, since
(

2
8k+3

)
= (−1)

(8k+3)2−1
8 = −1, we deduce that 2 is a quadratic

nonresidue mod 8k +3. Thus we cannot have 24k+1 ≡ 1 mod 8k +3 because otherwise, if we multiply
both sides with 2, then we get 24k+2 ≡ 2 mod 8k+3, which would imply that 2 is a quadratic residue,
a contradiction.

2. (Davenport, p.220. ex. 3.17) This time assume that 4k + 3 and 8k + 7 are both primes. We will show
that −2 is a primitive root, the order of −2 mod 8k + 6 is ϕ(8k + 7) = 8k + 6 = 2(4k + 3). Since
4k+3 is prime, it suffices to check that (−2)4k+3 6≡ 1 mod 8k+7 (again we used Lagrange’s theorem).

Now,
(

−2
8k+7

)
=

(
−1

8k+7

) (
2

8k+7

)
= (−1)

(8k+7)−1
2 (−1)

(8k+7)2−1
8 = (−1) · (1) = −1. So, (−2) is a quadratic

nonresidue mod 8k + 7. Consequently we cannot have (−2)4k+3 ≡ 1 mod 8k + 7, because otherwise,
by multiplying both sides of the congruence with −2, we would obtain (−2)4k+4 ≡ −2 mod 8k + 7,
i.e. −2 would be a quadratic residue, a contradiction.

3. Recall that Pepin’s test tells the following: Fm = 22m
+1 is prime if and only if 3

Fm−1
2 ≡ −1 mod Fm.

You should use a calculator to check that the congruences 3(F3−1)/2 ≡ −1 mod F3 and 3(F4−1)/2 ≡ −1
mod F4 hold.

4. We will show that 3 is a primitive root of every Fermat prime. Let Fm is a Fermat prime. Then, by
Pepin’s test, 322m−1 ≡ −1 mod Fm. Suppose, for a contradiction that 3 is not a primitive root mod
Fm = 22m

+1. Then, since ϕ(Fm) = 22m
, we must have 32d ≡ 1 mod Fm for some d ∈ {1, 2, . . . , 2m−1}.

But then taking to the power 22m−1−d of both sides (notice that taking to the power 2m− 1−d makes
sense since it is ≥ 1) we get 32d ≡ 1 mod Fm, a contradiction.

5. We will find a congruence describing all primes for which 5 is a quadratic residue. In other words, we
aim to characterize all primes p with

(
5
p

)
= 1. By the law of quadratic reciprocity

(
5
p

)
=

(p
5

)
since

5 ≡ 1 mod 4. So, p should be a quadratic residue mod 5. So p must be congruent to either 1 or 4
mod 5.

6. Let p = 1+8 ·3 ·5 ·7 ·11 ·13 ·17 ·19 ·23. Using a number theory/arithmetic software like pari, it can be
checked that p is indeed a prime. We first claim that all primes q with q < 24 are quadratic residues mod
p. This follows from quadratic reciprocity because

(
q
p

)
=

(
p
q

)
(−1)

p−1
2

q−1
2 =

(
1
q

)
(−1)2(3·····23)· q−1

2 =
1 · 1 = 1. So, all such q’s are quadratic residues. Observe that if m < 29, then m is a prodcut of such
primes q. Since product of quadratic residues is again a quadratic residue, we deduce that m must
be a quadratic residue, too. Moreover, since any quadratic residue is a square of some primitive root,
we conclude that none of these m’s can be a primitive root (a square of a primitive root cannot be a
primitive root).

7. The Jacobi symbol
(

1009
2307

)
=

(
1009

3

) (
1009
769

)
=

(
1
3

) (
240
769

)
= 1 ·

(
24

769

) (
3

769

) (
5

769

)
=

(
3

769

) (
5

769

)
=(

769
3

) (
769
5

)
=

(
1
3

) (
4
5

)
= 1 · 1 = 1. Note that we used the congruence 769 ≡ 1 mod 4 in using the law

of quadratic reciprocity, and the congruences 769 ≡ 1 mod 3 and 769 ≡ 4 mod 5 in evaluating the
Legendre symbols at the end.

8. We will find all n’s such that (n, 15) = 1 and
(

15
n

)
is 1. If n = 2, then obviously

(
15
2

)
= 1. Now assume

1



n is odd. By the reciprocity law for the Jacobi symbol, we get
(

15
n

) (
n
15

)
= (−1)

15−1
2

n−1
2 = (−1)

n−1
2 .

Thus
(

15
n

)
= (−1)

n−1
2

(
n
15

)
= (−1)

n−1
2

(
n
3

) (
n
5

)
. So we have a product of three things. To get 1, either

all of them must be 1, or exactly one of them must be 1 (and the others are -1). So there are 4 cases
Case 1: 1 · 1 · 1: In this case we have n ≡ 1 mod 4, n ≡ 1 mod 3, n ≡ 1 or 4 mod 5 . Combining
these using Chinese remainder theorem (since 3,4,5 are mutually coprime), we get n ≡ 1 or 49 mod 60.
Case 2: 1 · −1 · −1 In this case we have n ≡ 1 mod 4, n ≡ 2 mod 3, n ≡ 2 or 3 mod 5 . Combining
these using Chinese remainder theorem, we get n ≡ 17 or 53 mod 60.
Case 3: −1 · −1 · 1 In this case we have n ≡ 3 mod 4, n ≡ 2 mod 3, n ≡ 1 or 4 mod 5 . Combining
these using Chinese remainder theorem, we get n ≡ 11 or 59 mod 60.
Case 4: −1 · 1 · −1 In this case we have n ≡ 3 mod 4, n ≡ 1 mod 3, n ≡ 2 or 3 mod 5 . Combining
these using Chinese remainder theorem, we get n ≡ 7 or 43 mod 60.

So, any n that satisfies n ≡ 1, 7, 11, 17, 43, 49, 53, 59 mod 60 will satisfy
(

15
n

)
= 1.

Now, in general, given m coprime to 15, write m = 2αn where n is odd. Now, since
(

15
2

)
= 1, the(

15
m

)
=

(
15
n

)
. This characterizes all such m with

(
15
m

)
= 1.

9. By succesive squaring, it is easy (but tedious) to see that 11864 ≡ 1 mod 1729. Further,
(

11
1729

)
=(

1729
11

)
(−1)

11−1
2

1729−1
2 =

(
1729
11

)
=

(
2
11

)
= (−1)

112−1
8 = −1.

10. Suppose p is a prime > 5 and p = a2 + 5b2 for some a, b. Then, taking mod 5, we see that p ≡ 1 or
4 mod 5 (because these are the quadratic residues). Similarly, taking mod 4 gives us p ≡ 1 mod 4
(note that p is a prime, so it cannot be congruent to 0 or 2 mod 4). These two congruences now imply
that p is congruent to 1 or 9 mod 20 (again note that p is prime, so it connot be congruent to some
k ∈ {1, 2, . . . , 19} with (k, 20) 6= 1.
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