
HW1 - Solutions

1. (Davenport, pp.215-216, ex. 1.01)

(a) We want to show
n∑

k=1

k =
n(n + 1)

2
. The claim clearly holds for

n = 1 (i.e. 1 = 2/2). Assume that it holds for n (that is, assume

that
n∑

k=1

k =
n(n + 1)

2
). We want to prove the claim for n + 1 (that

is,
n+1∑
k=1

k =
(n + 1)(n + 2)

2
) . Indeed,

n+1∑
k=1

k =
n∑

k=1

k + (n + 1) =

n(n + 1)
2

+ (n + 1) =
n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)
2

.

(b) We want to show
n∑

k=1

k2 =
n(n + 1)(2n + 1)

6
. The claim clearly holds

for n = 1. Assume that it holds for n. We want to prove the claim
for n + 1. Indeed,

n+1∑
k=1

k2 =
n∑

k=1

k2 + (n + 1)2 =
n(n + 1)(2n + 1)

6
+ (n + 1)2

=
n(n + 1)(2n + 1) + 6(n + 1)2

6
=

(n + 1) (n(2n + 1) + 6(n + 1))
6

=
(n + 1)(2n2 + 7n + 6)

6
=

(n + 1)(n + 2)(2n + 3)
6

,

as required.

(c) We want to show
n∑

k=1

k3 =
n2(n + 1)2

4
. The claim clearly holds for

n = 1. Assume that it holds for n. We want to prove the claim for
n + 1. Indeed,

n+1∑
k=1

k3 =
n∑

k=1

k3 + (n + 1)3 =
n2(n + 1)2

4
+ (n + 1)3

=
n2(n + 1)2 + 4(n + 1)3

4
=

(n + 1)2
(
n2 + 4n + 4

)
4

=
(n + 1)2(n + 2)2

4
,

as required.

2. (Davenport, pp.215-216, ex.1.02)

(a) We want to show that Fn < τn where τ is the golden ratio, (1+
√

5)/2.
The first step is the check the statement for n = 1 and n = 2: Since

1



√
5 > 1, (1+

√
5) > 2, and hence τ > 1 = F1. Similarly, τ2 > 1 = F2,

because τ2 = τ + 1 (observe that τ is the root of the second degree
polynomial x2 − x− 1; or you can verify it directly). The induction
step is as follows: Assume that the statement holds for n − 1 and
n, i.e. Fn−1 < τn−1 and Fn < τn. Then Fn+1 = Fn + Fn−1 <
τn + τn−1 = τn−1(τ + 1) = τn−1τ2 = τn+1.

(b) Now, we want to prove that Fn = (τn − σn)/
√

5, where σ = −1/τ =
(1 −

√
5)/2. Again, the first step is to check whether the statement

is true for n = 1, 2. Indeed, (τ − σ)/
√

5 = 1 = F1. Similarly,
(τ2 − σ2)/

√
5 = ((τ + 1) − (σ − 1))/

√
5 = (τ − σ)/

√
5 = 1 = F2,

where we used the fact that σ2 = σ + 1 (σ is the other root of
x2 − x − 1, or verify directly that σ2 = σ + 1). The induction step
is as follows: assume that the statement is true for n and n − 1,
i.e. Fn = (τn − σn)/

√
5 and Fn−1 = (τn−1 − σn−1)/

√
5. Then,

Fn+1 = Fn + Fn−1 = ((τn − σn)− (τn−1 − σn−1))/
√

5 = (τn−1(τ −
1)− σn−1(σ − 1))/

√
5 = (τn+1 − σn+1)/

√
5, as claimed.

3. (Davenport, pp.215-216, ex. 1.03) Prime factorizations of given numbers
are: 999 = 33 · 37, 1001 = 7 · 11 · 13, 1729 = 7 · 13 · 19, 11111 = 41 · 271,
65536 = 216, 6469693230 = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29.

4. We will prove that n < 2n for integers n ≥ 1. For n=1, the claim is
obviously true. Now assume that n < 2n. Then n + 1 < 2n + 1 <
2n + 2n = 2 · 2n = 2n+1, as required.

5. We want to show that 12−22 +32− . . .+(−1)n−1n2 =
∑n

k=1(−1)k−1k2 =
(−1)n−1 n(n+1)

2 . Easy to check for n = 1. Assume that it holds for n.
Then 12 − 22 + 32 − . . . + (−1)n−1n2 + (−1)n(n + 1)2 = (−1)n−1 n(n+1)

2 +

(−1)n(n + 1)2 = (−1)n−1n(n+1)+(−1)n2(n+1)2

2 = (−1)n(n+1)(−n+2(n+1))
2 =

(−1)n (n+1)(n+2)
2 .

6. We claim that F1 + F3 + . . . + F2n−1 = F2n (once you calculate this sum
for first few n, you could immediately come up with this formula). Indeed,
for n = 1, we have F1 = F2 = 1. Now, assume the formula is true for n.
Then, F1 + F3 + . . . + F2n−1 + F2n+1 = F2n + F2n+1 = F2n+2, as desired.

2


