An illustration of the Koebe-Carathéodory square-root trick

As you should recall, we have some simply connected U with a marked point $p \in U$, and some conformal map $f: U \to \mathbb{D}$ with f(p) = 0. If $f(U) \neq \mathbb{D}$, the Koebe-Carathéodory square root trick constructs a new map $g: U \to \mathbb{D}$ with the same properties but with |g'(p)| > |f'(p)|.

On the left is a simply-connected set V = f(U) (outlined in red) in the unit disk \mathbb{D} , with a marked red point f(p) at the origin. A point $a \in \mathbb{D}$ but not in f(U) is chosen (this is shown in green).

Let $\phi_a(z) = \frac{z-a}{1-\overline{a}z}$, which is the automorphism of \mathbb{D} sending *a* to the origin. On the left is shown $\phi_a(V)$, $\phi_a(0)$ (in red), and the image $\phi_a(a)$ (which is the origin).

Now comes the "trick": since $0 \notin \phi_a(V)$, there is a holomorphic branch of the square root defined in a neighborhood of V. (Here, it is the principal branch, with the branch cut along the negative real axis.) Let $W = \sqrt{V}$. W is shown on the left below (in red as usual), and then on the right is shown the effect of the composition with the automorphism ϕ_b , where $b = \sqrt{\phi_a(0)}$. This composition gives our new map $g: U \to \mathbb{D}$. In this picture, g(U) outlined in red, and f(U) is shown shaded in gray for comparison, with the point $\phi_b(0)$ in light green. Also shown (in blue) is the result of re-applying the process six more times, choosing points a_i of various arguments.

Scott Sutherland, Stony Brook, April 2023