
MAT 536 Solutions to Midterm
1.10 pts Let U ⊂ C be a simply connected domain, and let f be meromorphic on U . Suppose that

for each pole p of f , the residue of f at p is zero. Show that f has a primitive F on U .

Solution: By Morera’s theorem, if a continuous function f on U satisfies
∫
γ
f(z) dz = 0

for every closed, piecewise smooth curve γ in U , it is holomorphic in U and hence has a
primitive.

Take any curve γ so that no pole of f lies on { γ }, and let E be the set of poles of f lying
within { γ }. Since f is meromorphic, each pole of f is an isolated singularity, and we can
apply the residue theorem:∫

γ

f(z) dz = 2π i
∑
p∈E

W (γ, p) res(f, p) .

But since res(f, p) = 0 for each p, this integral is zero.

If a pole p0 lies on { γ }, observe that we can perturb γ slightly to obtain γ+ and γ− so that
p0 6∈ { γ± }, with the poles within γ+ being E, and those within γ− being E r p0. The above
argument applies to the integrals over γ+ and γ−, and hence the integral over γ is also zero.

Since we have shown f ∈ O(U), f has a primitive.

You could also have done this by showing that any pole with residue zero is removable, or
by constructing the primitive directly (fix a basepoint z0 ∈ U , and let the primitive F (z) be
the integral over a path from z0 to z. It isn’t hard to show that f is the derivative of F , just a
bit long.

2.10 pts Let f(z) = z9 + z5 − 9z3 + 3z + i/3 .

How many zeros does f have in the annulus 1/3 < |z| < 1 ? Fully justify your answer.

Solution: We will use Rouché’s theorem, which says that if f, g ∈ O(U) with U a simply-
connected domain, and γ a Jordan curve in U such that |f(z)− g(z)| < |g(z)| for z ∈ γ, then
|f | and |g| have the same number of zeros (with multiplicity) in int(γ).

First, let’s determine the number of zeros in D. If |z| = 1, then take g(z) = −9z3. Then we
have

|f(z)− g(z)| = |z9 + z5 + 3z + i/3| ≤ 1 + 1 + 3 + 1/3 < 9 = | − 9z3| ,

so f has three zeros in D.

Now on D1/3 we can take g(z) = 3z and observe that

|f(z)− g(z)| = |z9 + z5 − 9z3 + i/3| ≤ 1
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3
< 1 = |3z| ,
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giving just one zero with modulus less than 1/3.

This means there are 3− 1 = 2 zeros of f in the annulus { 1/3 < | z| < 1 }.

In case you actually care, the roots of f (sorted by modulus) are approximately

{−0.107i, ±0.598 + 0.0569i, ±1.33− 0.0564i, ±0.755 + 1.29i, ±0.7595− 1.276i } .

3.10 pts Let f be a non-constant entire function. Show the that f(C) is dense in C.

Solution: There are three possibilities for the behavior of f at infinity.

If f(∞) = a ∈ C, then by the continuity of f , |f | is bounded and hence constant by Liou-
ville’s theorem. So this doesn’t happen.

If f(∞) =∞, f has a pole at∞. Since f is entire, it must be a polynomial, and so f(C) = C.

Otherwise, there must be an essential singularity at infinity. By the Casorati-Weirstrass
Theorem, the image of any deleted neighborhood of an essential singularity is dense in C.
(In fact, by Picard’s theorem, it misses at most one point in C.)

Strictly speaking, you shouldn’t use either Picard’s theorem here, since a proof relies on
material we haven’t covered yet (such as normal families). I should have put “don’t use
Picard’s theorem” in the problem, but I didn’t, so I won’t penalize you if you use it properly.

4.10 pts Let f be meromorphic in a simply connected domain U , and let p be a pole of f . Show
that no pole p of f is also a pole of ef = exp ◦ f .

Solution: Since f is meromorphic, any pole p is an isolated singularity, and hence in some
disk Dr(p), we have f(z) = g(z)/(z − p)m for some m ∈ Z+ and with g(p) 6= 0. Since
ez =

∑∞
n=0 z

n/n!, we have

ef(z) =
∞∑
n=0

(g(z))n

n!(z − p)nm
.

Since the series for ef has infinitly many negative terms, it has an essential singularity at p,
rather than a pole.
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