MAT 536

Solutions to Midterm

10 pts 1 . Let $U \subset \mathbb{C}$ be a simply connected domain, and let f be meromorphic on U. Suppose that for each pole p of f, the residue of f at p is zero. Show that f has a primitive F on U.

Solution: By Morera's theorem, if a continuous function f on U satisfies $\int_{\gamma} f(z) d z=0$ for every closed, piecewise smooth curve γ in U, it is holomorphic in U and hence has a primitive.
Take any curve γ so that no pole of f lies on $\{\gamma\}$, and let E be the set of poles of f lying within $\{\gamma\}$. Since f is meromorphic, each pole of f is an isolated singularity, and we can apply the residue theorem:

$$
\int_{\gamma} f(z) d z=2 \pi i \sum_{p \in E} W(\gamma, p) \operatorname{res}(f, p) .
$$

But since res $(f, p)=0$ for each p, this integral is zero.
If a pole p_{0} lies on $\{\gamma\}$, observe that we can perturb γ slightly to obtain γ^{+}and γ^{-}so that $p_{0} \notin\left\{\gamma^{ \pm}\right\}$, with the poles within γ^{+}being E, and those within γ^{-}being $E \backslash p_{0}$. The above argument applies to the integrals over γ^{+}and γ^{-}, and hence the integral over γ is also zero. Since we have shown $f \in \mathcal{O}(U), f$ has a primitive.

You could also have done this by showing that any pole with residue zero is removable, or by constructing the primitive directly (fix a basepoint $z_{0} \in U$, and let the primitive $F(z)$ be the integral over a path from z_{0} to z. It isn't hard to show that f is the derivative of F, just a bit long.

10 pts
2. Let $f(z)=z^{9}+z^{5}-9 z^{3}+3 z+i / 3$.

How many zeros does f have in the annulus $1 / 3<|z|<1$? Fully justify your answer.
Solution: We will use Rouché's theorem, which says that if $f, g \in \mathcal{O}(U)$ with U a simplyconnected domain, and γ a Jordan curve in U such that $|f(z)-g(z)|<|g(z)|$ for $z \in \gamma$, then $|f|$ and $|g|$ have the same number of zeros (with multiplicity) in int (γ).
First, let's determine the number of zeros in \mathbb{D}. If $|z|=1$, then take $g(z)=-9 z^{3}$. Then we have

$$
|f(z)-g(z)|=\left|z^{9}+z^{5}+3 z+i / 3\right| \leq 1+1+3+1 / 3<9=\left|-9 z^{3}\right|,
$$

so f has three zeros in \mathbb{D}.
Now on $\mathbb{D}_{1 / 3}$ we can take $g(z)=3 z$ and observe that

$$
|f(z)-g(z)|=\left|z^{9}+z^{5}-9 z^{3}+i / 3\right| \leq \frac{1}{3^{9}}+\frac{1}{3^{5}}+\frac{1}{3}+\frac{1}{3}<1=|3 z|,
$$

giving just one zero with modulus less than $1 / 3$.
This means there are $3-1=2$ zeros of f in the annulus $\{1 / 3<|z|<1\}$.
In case you actually care, the roots of f (sorted by modulus) are approximately

$$
\{-0.107 i, \pm 0.598+0.0569 i, \pm 1.33-0.0564 i, \pm 0.755+1.29 i, \pm 0.7595-1.276 i\}
$$

10 pts 3. Let f be a non-constant entire function. Show the that $f(\mathbb{C})$ is dense in \mathbb{C}.
Solution: There are three possibilities for the behavior of f at infinity.
If $f(\infty)=a \in \mathbb{C}$, then by the continuity of $f,|f|$ is bounded and hence constant by Liouville's theorem. So this doesn't happen.
If $f(\infty)=\infty, f$ has a pole at ∞. Since f is entire, it must be a polynomial, and so $f(\mathbb{C})=\mathbb{C}$. Otherwise, there must be an essential singularity at infinity. By the Casorati-Weirstrass Theorem, the image of any deleted neighborhood of an essential singularity is dense in \mathbb{C}. (In fact, by Picard's theorem, it misses at most one point in \mathbb{C}.)
Strictly speaking, you shouldn't use either Picard's theorem here, since a proof relies on material we haven't covered yet (such as normal families). I should have put "don't use Picard's theorem" in the problem, but I didn't, so I won't penalize you if you use it properly.

10 pts 4. Let f be meromorphic in a simply connected domain U, and let p be a pole of f. Show that no pole p of f is also a pole of $e^{f}=\exp \circ f$.

Solution: Since f is meromorphic, any pole p is an isolated singularity, and hence in some disk $\mathbb{D}_{r}(p)$, we have $f(z)=g(z) /(z-p)^{m}$ for some $m \in \mathbb{Z}^{+}$and with $g(p) \neq 0$. Since $e^{z}=\sum_{n=0}^{\infty} z^{n} / n!$, we have

$$
e^{f(z)}=\sum_{n=0}^{\infty} \frac{(g(z))^{n}}{n!(z-p)^{n m}} .
$$

Since the series for e^{f} has infinitly many negative terms, it has an essential singularity at p, rather than a pole.

