MAT536 Homework 11

Due Wednesday, April 26

- **1.** Establish the **subordination principle**: Let $f : \mathbb{D} \to U$ be a Riemann map with f(0) = 0 and let $g : \mathbb{D} \to U$ be any holomorphic map with g(0) = 0. Show that $g(\mathbb{D}_r(0)) \subset f(\mathbb{D}_r(0))$ for all 0 < r < 1.
- **2.** Suppose $f : \mathbb{D} \to U$ is conformal and $0 \notin U$.
 - (a) Prove that $|f'(0)| \le 4|f(0)|$.
 - (b) More generally, prove that $|f'(z)| \le \frac{4|f(z)|}{1-|z|^2}$ for $z \in \mathbb{D}$.
- **3.** Show that $f \in S$ commutes with $z \mapsto -z$ if and only if it is a holomorphic square root of $g(z^2)$ for some $g \in S$. (Recall that S is the family of schlict functions).
- **4.** Let $f \in S$, and let A(r) denote the area of $f(\mathbb{D}_r(0))$ for 0 < r < 1. Show that $A(r) \ge \pi r^2$. Hint: use the power series for f in $A(r) = \iint_{\mathbb{D}_r} |f'(z)|^2 dx dy = \int_0^r \int_0^{2\pi} f'(\rho e^{it}) \overline{f'(\rho e^{it})} \rho d\rho dt$ and estimate from below.
- 5. Although a Riemann map may fail to have radial limits at some points of the unit circle, its inverse behaves nicer in the following sense. If g : U → D is conformal and the curve ξ : [0,1) → U lands at a point q ∈ ∂ U, then the image g ∘ ξ : [0,1) → D lands at a well-defined point of ∂ D. Moreover, two curves in U with distinct landing points map to curves in D with distinct landing points.

Hint: Assume p_1 and p_2 are distinct accumulation points of $g(\xi(t))$ as $t \to 1$, construct cross-cuts γ_n and η_n near p_1 and p_2 and show that their images must lie in an arbitrarily small neighborhood of q for large n, arriving at a contradiction.