MAT536 Homework 10

Due Wednesday, April 19

1. Let P(z) be a polynomial of degree at least 2, with P(0) = 0 and $P'(0) = \alpha$. Let $P^{\circ n}$ denote the *n*-fold composition of *P* with itself, that is, $P^{\circ n}(z) = (P \circ P \circ \cdots \circ P)(z)$. Show that the family of iterates

$$\mathcal{P} = \{ P^{\circ n} \mid n \in \mathbb{Z}^+ \}$$

is normal in some neighborhood of 0 if $|\alpha| < 1$. Also show that \mathcal{P} cannot be normal in any neighborhood of 0 if $|\alpha| > 1$ or $\alpha^k = 1$ for some positive integer k.

- **2.** Let f_n be meromorphic on a domain U with $f_n \to \infty$ in $\mathcal{C}(U, \widehat{\mathbb{C}})$. As the examples $z \mapsto z + n$ on $U = \mathbb{C}$ and $z \mapsto nz$ on $U = \mathbb{C}^*$ show, not much can be said about f'_n in general. Show, however, that under these assumptions $f_n^{\#} \to 0$ compactly in U.
- **3.** Find explicit formulas for a Riemann map $\mathbb{D} \to U$ when
 - (a) *U* is the strip $\{z \in \mathbb{C} \mid 0 < \text{Im}(z) < 1\}$
 - (**b**) U is the half-strip $\{z \in \mathbb{C} \mid 0 < \operatorname{Im}(z) < 1 \text{ and } \operatorname{Re}(z) > 0\}$
- **4.** Let $k \ge 2$ be an integer and $\omega = e^{2\pi i/k}$. Suppose $U \subsetneq \mathbb{C}$ is a simply connected domain such that $z \in U$ if and only if $\omega z \in U$ (thus, U has a rotational symmetry by the angle $2\pi/k$). Consider a Riemann map $f : \mathbb{D} \to U$ with f(0) = 0. If $f(z) = \sum_{n=1}^{\infty} a_n z^n$, prove that

$$a_n = 0$$
 if $n \not\equiv 1 \pmod{k}$.

As an example, if U has a 180° symmetry about the origin, its Riemann map can contain only the odd powers of z. (Hint: Show that $f(\omega z) = \omega f(z)$ for all $z \in \mathbb{D}$.)

- **5.** Let $U \subsetneq \mathbb{C}$ be a simply connected domain with $p \in$. Define the **conformal radius of** U at p to be (U, p) = |f'(0)|, where f is any Riemann map of U sending 0 to p.
 - (a) Verify that the definition of (U, p) is independent of the choice of f.
 - (b) Let $V \subsetneq U$ be a simply connected domain with $\phi : U \to V$ be holomorphic with $\phi(0) = q$, show that

$$|\phi'(p)| \leq rac{(V,q)}{(U,p)}$$
 .

with equality if and only if ϕ is a conformal isomorphism.