MAT536 Homework 9

Due Wednesday, April 12

1. Show that

$$f(z) = \sum_{n=1}^{\infty} \left(1 - \cos\left(\frac{z}{n}\right) \right)$$

is an entire function. (Hint: Prove the estimate $|1 - \cos w| \le C |w|^2$ for |w| < 1 and use the Weierstrass *M*-test.)

2. Let r_n denote the distance between 0 and the closest root of the polynomial

$$f_n(z) = 1 + z + \frac{z^2}{2!} + \dots + \frac{z^n}{n!}.$$

Show that $\lim_{n\to\infty} r_n = +\infty$. (Use Hurwitz's theorem).

- **3.** Let $\mathcal{F} \subset \mathcal{O}(U)$.
 - (a) Show that if \mathcal{F} is precompact, then so is the family of k^{th} -derivatives $\mathcal{F}^{(k)} = \{ f^{(k)} \mid f \in \mathcal{F} \}$.
 - (b) Show by example that \mathcal{F}' precompact does not imply that \mathcal{F} is precompact.
- 4. (a) Show that the family of holomorphic functions $f : \mathbb{D} \to \mathbb{D}$ is precompact.
 - (b) Let $f_n \in \operatorname{Aut}(\mathbb{D})$ with $f_n(z) = \frac{z p_n}{1 \overline{p_n}z}$. Describe the limit function f(z) as $p_n \to p$ with $p \in \mathbb{D}$ and the limit when |p| = 1.
- 5. Prove that the family of all $f \in \mathcal{O}(\mathbb{D})$ with $\operatorname{Re}(f) > 0$ is normal (that is, it is precompact in $\mathcal{C}(\mathbb{D},\widehat{\mathbb{C}})$), but it is not precompact in $\mathcal{C}(\mathbb{D},\mathbb{C})$.