MAT536 Homework 8

Due Wednesday, April 5

- **1.** Find an element of $\operatorname{Aut}(\widehat{\mathbb{C}})$ which maps the upper half-disk $U = \mathbb{H} \cap \mathbb{D} = \{z \in \mathbb{D} \mid \operatorname{Im}(z) > 0\}$ onto the first quadrant $V = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0, \operatorname{Im}(z) > 0\}$. Use this map to give the explicit formula for a biholomorphism $f : U \to \mathbb{D}$.
- **2.** Determine the automorphism group of the thrice-punctured sphere $\widehat{\mathbb{C}} \setminus \{0, 1, \infty\}$. (Hint: Every homeomorphism of $\widehat{\mathbb{C}} \setminus \{0, 1, \infty\}$ extends uniquely to a homeomorphism of $\widehat{\mathbb{C}}$.)
- **3.** Let $p_1, \ldots, p_n \in \mathbb{D}$ and $|\alpha| = 1$. The rational function

$$B(z) = \alpha \prod_{k=1}^{n} \varphi_{p_k}(z) = \alpha \prod_{k=1}^{n} \frac{z - p_k}{1 - \overline{p_k} z}$$

is called a finite Blaschke product.

- (a) Show that B satisfies $B(1/\overline{z}) = 1/\overline{B(z)}$ for all z. In other words, B commutes with the reflection $z \mapsto 1/\overline{z}$ across the unit circle.
- (**b**) Verify that $B(\mathbb{T}) \subseteq \mathbb{T}$, $B(\mathbb{D}) \subseteq \mathbb{D}$, and that $B(\widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}) \subseteq \widehat{\mathbb{C}} \setminus \overline{\mathbb{D}}$.
- (c) If $f : \mathbb{D} \to \mathbb{D}$ is any holomorphic function which vanishes at p_1, \ldots, p_n , show that

$$|f(z)| \le |B(z)| = \prod_{k=1}^{n} \left| \frac{z - p_k}{1 - \overline{p_k} z} \right|$$
 for all $z \in \mathbb{D}$.

What can be said about *f* if equality holds for some $z \in \mathbb{D} \setminus \{p_1, \dots, p_n\}$? (Hint: imitate the proof of the Schwarz lemma, which is the special case of this when $B(z) = \varphi_0(z) = z$.)

- **4.** Let *f* and *g* be non-identity elements of the group of Möbius maps. If *f* and *g* have the same set of fixed points, show that they commute, that is $f \circ g = g \circ f$. Conversely, if *f* and *g* commute, show that either they have the same set of fixed points or *f* and *g* are involutions (i.e. $f \circ f = g \circ g = id$) which swap each others fixed points (such as the pair f(z) = -z and g(z) = 1/z).
- **5.** If $f : \mathbb{D} \to \mathbb{D}^*$ is holomorphic, prove that $|f'(0)| \le 2/e$.