MAT536 Homework 8

Due Wednesday, April 5

1. Find an element of $\operatorname{Aut}(\widehat{\mathbb{C}})$ which maps the upper half-disk $U=\mathbb{H} \cap \mathbb{D}=\{z \in \mathbb{D} \mid \operatorname{Im}(z)>0\}$ onto the first quadrant $V=\{z \in \mathbb{C}: \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}$. Use this map to give the explicit formula for a biholomorphism $f: U \rightarrow \mathbb{D}$.
2. Determine the automorphism group of the thrice-punctured sphere $\widehat{\mathbb{C}} \backslash\{0,1, \infty\}$. (Hint: Every homeomorphism of $\widehat{\mathbb{C}} \backslash\{0,1, \infty\}$ extends uniquely to a homeomorphism of $\widehat{\mathbb{C}}$.)
3. Let $p_{1}, \ldots, p_{n} \in \mathbb{D}$ and $|\alpha|=1$. The rational function

$$
B(z)=\alpha \prod_{k=1}^{n} \varphi_{p_{k}}(z)=\alpha \prod_{k=1}^{n} \frac{z-p_{k}}{1-\overline{p_{k}} z}
$$

is called a finite Blaschke product.
(a) Show that B satisfies $B(1 / \bar{z})=1 / \overline{B(z)}$ for all z. In other words, B commutes with the reflection $z \mapsto 1 / \bar{z}$ across the unit circle.
(b) Verify that $B(\mathbb{T}) \subseteq \mathbb{T}, \quad B(\mathbb{D}) \subseteq \mathbb{D}, \quad$ and that $\quad B(\widehat{\mathbb{C}} \backslash \overline{\mathbb{D}}) \subseteq \widehat{\mathbb{C}} \backslash \overline{\mathbb{D}}$.
(c) If $f: \mathbb{D} \rightarrow \mathbb{D}$ is any holomorphic function which vanishes at p_{1}, \ldots, p_{n}, show that

$$
|f(z)| \leq|B(z)|=\prod_{k=1}^{n}\left|\frac{z-p_{k}}{1-\overline{p_{k}} z}\right| \quad \text { for all } z \in \mathbb{D}
$$

What can be said about f if equality holds for some $z \in \mathbb{D} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$?
(Hint: imitate the proof of the Schwarz lemma, which is the special case of this when $\left.B(z)=\varphi_{0}(z)=z.\right)$
4. Let f and g be non-identity elements of the group of Möbius maps. If f and g have the same set of fixed points, show that they commute, that is $f \circ g=g \circ f$. Conversely, if f and g commute, show that either they have the same set of fixed points or f and g are involutions (i.e. $f \circ f=$ $g \circ g=\mathrm{id}$) which swap each others fixed points (such as the pair $f(z)=-z$ and $g(z)=1 / z$).
5. If $f: \mathbb{D} \rightarrow \mathbb{D}^{*}$ is holomorphic, prove that $\left|f^{\prime}(0)\right| \leq 2 / e$.

