MAT536 Homework 7

Due Wednesday, March 22 (but do it before)

1. (A generalized argument principle)

Let γ be a positively oriented Jordan curve in a domain U such that $D=\operatorname{int}(\gamma) \subset U$. Suppose f is meromorphic in U with no zeros or poles on $\{\gamma\}$. Let $\left\{z_{j}\right\}_{j=1}^{m}$ and $\left\{p_{j}\right\}_{j=1}^{n}$ denote the zeros and poles of f in D. If $\phi \in \mathcal{O}(U)$, show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \phi(z) \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j=1}^{m} \operatorname{deg}\left(f, z_{j}\right) \phi\left(z_{j}\right)-\sum_{j=1}^{n} \operatorname{deg}\left(f, p_{j}\right) \phi\left(p_{j}\right) .
$$

The standard argument principle corresponds to the constant function $\phi=1$.
2. Suppose that $f(z)$ is holomorphic for $|z|<2$, let \mathbb{T} be the positively oriented unit circle. If

$$
\frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{f^{\prime}(z)}{f(z)} d z=2 \quad, \quad \frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{z f^{\prime}(z)}{f(z)} d z=1 \quad, \quad \text { and } \quad \frac{1}{2 \pi i} \int_{\mathbb{T}} \frac{z^{2} f^{\prime}(z)}{f(z)} d z=\frac{5}{9} \quad
$$

determine the zeros of f within the unit disk \mathbb{D}. (The previous problem might be helpful.)
3. Counting multiplicities, how many roots of the equation

$$
z^{7}-2 z^{5}+6 z^{3}-z+1=0
$$

lie in each of the three sets $\mathbb{D}, \mathbb{D}_{2}(0) \backslash \overline{\mathbb{D}}$, and $\mathbb{C} \backslash \overline{\mathbb{D}}_{2}(0)$?

4. (Inverse Function Theorem)

Let γ be a positively oriented Jordan curve in a domain U so that $D=\operatorname{int}(\gamma) \subset U$. Suppose $f \in \mathcal{O}(U)$ is injective in D, that is, $f: D \rightarrow f(D)$ is a biholomorphism. Show that

$$
f^{-1}(w)=\frac{1}{2 \pi i} \int_{\gamma} \frac{\zeta f^{\prime}(\zeta)}{f(\zeta)-w} d \zeta
$$

for every $w \in f(D)$.
5. Show that a Möbius function f satisfies $f(\mathbb{D})=\mathbb{D}$ if and only if

$$
f(z)=\frac{a z+b}{\bar{b} z+\bar{a}} \quad \text { for } \quad a, b \in \mathbb{C} \quad \text { with } \quad|a|^{2}-|b|^{2}=1 .
$$

