MAT536 Homework 6

Due Wednesday, March 8

1. Use the residue theorem to compute
(a) $\int_{\mathbb{T}} \frac{e^{3 z}-e^{-2 z}}{z^{4}} d z$
(b) $\int_{\gamma} \frac{1}{z^{3}\left(z^{2}-1\right)} d z$,

where $\mathbb{T}=\mathbb{T}_{1}(0)$ is the positively oriented unit circle, and γ is the curve shown above.
2. This exercise outlines an application of residues in evaluating integrals of rational functions over the real line.
(a) Let P and Q be polynomials with real coefficients, with $\operatorname{deg} Q \geq \operatorname{deg} P+2$, and $Q(x) \neq 0$ for all $x \in \mathbb{R}$. Show that

$$
\int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} d x=2 \pi i \sum_{j} \operatorname{res}\left(\frac{P}{Q}, z_{j}\right)
$$

where the sum is taken over all zeros z_{j} of Q in the upper half-plane.
(b) Compute the integral $\int_{-\infty}^{+\infty} \frac{x^{2}}{x^{4}+1} d x$.

Hint for the first part: Let γ_{a} be the closed curve consisting of the oriented interval $[-a, a]$ in \mathbb{R} followed by the semicircle $|z|=a$ in the upper half-plane. Apply the residue theorem to compute $\int_{\gamma_{a}} P(z) / Q(z) d z$ for large $a>0$, and show that the integral over the semicircle part tends to zero as $a \rightarrow+\infty$.
3. Write the Laurent series for the function

$$
f(z)=\frac{z}{\left(z^{2}+4\right)(z-3)^{2}(z-4)} \quad \text { for } \quad\{z: 3<|z|<4\}
$$

4. Show that although the residue of a function $f(z)$ is not invariant under a local change of coordinates, the residue of the differential $f(z) d z$ is invariant.

That is, suppose ϕ maps a neighborhood U of p biholomorphically to a neighborhood V of $q=\phi(p)$. Then for any $f \in \mathcal{O}(V)$ with an isolated singularity at q, we have

$$
\operatorname{res}(f, q)=\operatorname{res}\left((f \circ \phi) \phi^{\prime}, p\right)
$$

5. If infinity is a fixed point of a holomorphic map f, relate the index of the fixed point at ∞ to the residue by showing

$$
\operatorname{ind}(f, \infty)=\operatorname{res}\left(\frac{f(z)}{z(z-f(z))}, \infty\right)
$$

