MAT536 Homework 5

Due Wednesday, February 29

1. Let $U=\mathbb{C} \backslash\{-1,1\}$ and $f \in \mathcal{O}(U)$ so that $\int_{\eta} f(z) d z=a$ and $\int_{\xi} f(z) d z=b$, where η is the circle of radius 1 around 1 , and ξ is the circle of radius 1 around -1 (both positively oriented).

Express $\int_{\gamma} f(z) d z$ in terms of a and b, where γ is the closed curve shown below:

2. Recall that the complex cosine and sine are the entire functions defined by

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2} \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

For each of the functions below, find their isolated singularities and determine their type (and order, if they are poles).
(a) $\frac{1-\cos z}{z^{2}}$
(b) $\frac{z}{\sin z}$
(c) $\sin (1 / z)$
3. Let f be a holomorphic function on a punctured open unit disk $\mathbb{D}^{*}=\{z \in \mathbb{C}|0<|z|<1\}$. In each case, prove or give a counter-example.
(a) If f has a removable singularity at $z=0$, so does e^{f}.
(b) If f has a pole at $z=0$, so does e^{f}.
(c) If f has an essential singularity at $z=0$, so does e^{f}.
4. Suppose $f \in \mathcal{O}(\overline{\mathbb{D}} \backslash\{i\})$, that is, f is holomorphic on the closed unit disk except for a singularity at $z=i$. Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ be the power series for f on \mathbb{D}. Prove that if f has a pole at $z=i$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}=i
$$

5. Suppose f is entire and $f(z) \rightarrow \infty$ as $z \rightarrow \infty$. Show that f must be a polynomial.
