MAT536 Homework 5

Due Wednesday, February 29

1. Let $U = \mathbb{C} \setminus \{-1, 1\}$ and $f \in \mathcal{O}(U)$ so that $\int_{\eta} f(z) dz = a$ and $\int_{\xi} f(z) dz = b$, where η is the circle of radius 1 around 1, and ξ is the circle of radius 1 around -1 (both positively oriented).

Express $\int_{\gamma} f(z) dz$ in terms of *a* and *b*, where γ is the closed curve shown below:

2. Recall that the complex cosine and sine are the entire functions defined by

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$
 $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$.

For each of the functions below, find their isolated singularities and determine their type (and order, if they are poles).

(a)
$$\frac{1 - \cos z}{z^2}$$

(b)
$$\frac{z}{\sin z}$$

(c)
$$\sin(1/z)$$

- **3.** Let *f* be a holomorphic function on a punctured open unit disk $\mathbb{D}^* = \{z \in \mathbb{C} \mid 0 < |z| < 1\}$. In each case, prove or give a counter-example.
 - (a) If f has a removable singularity at z = 0, so does e^{f} .
 - (**b**) If f has a pole at z = 0, so does e^f .
 - (c) If f has an essential singularity at z = 0, so does e^{f} .
- **4.** Suppose $f \in \mathcal{O}(\overline{\mathbb{D}} \setminus \{i\})$, that is, f is holomorphic on the closed unit disk except for a singularity at z = i. Let $\sum_{n=0}^{\infty} a_n z^n$ be the power series for f on \mathbb{D} . Prove that if f has a pole at z = i, then

$$\lim_{n\to\infty}\frac{a_n}{a_{n+1}}=i\;.$$

5. Suppose f is entire and $f(z) \to \infty$ as $z \to \infty$. Show that f must be a polynomial.